Algèbre - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés. Au bout du chemin, le plaisir de découvrir de nouveaux univers, de 

Part of the document

ALGÈBRE
COURS DE MATHÉMATIQUES
PREMIÈRE ANNÉEExo7

À la découverte de l"algèbreLa première année d"études supérieures pose les bases des mathématiques. Pourquoi se lancer dans une
telle expédition? Déjà parce que les mathématiques vous offriront un langage unique pour accéder à une
multitude de domaines scientifiques. Mais aussi parce qu"il s"agit d"un domaine passionnant! Nous vous
proposons de partir à la découverte des maths, de leur logique et de leur beauté.
Dans vos bagages, des objets que vous connaissez déjà : les entiers, les fonctions... Ces notions en apparence
simples et intuitives seront abordées ici avec un souci de rigueur, en adoptant un langage précis et en
présentant les preuves. Vous découvrirez ensuite de nouvelles théories (les espaces vectoriels, les équations
différentielles,...).
Ce tome est consacré à l"algèbre et se divise en deux parties. La première partie débute par la logique
et les ensembles, qui sont des fondamentaux en mathématiques. Ensuite vous étudierez des ensembles
particuliers : les nombres complexes, les entiers ainsi que les polynômes. Cette partie se termine par l"étude
d"une première structure algébrique, avec la notion de groupe.
La seconde partie est entièrement consacrée à l"algèbre linéaire. C"est un domaine totalement nouveau pour
vous et très riche, qui recouvre la notion de matrice et d"espace vectoriel. Ces concepts, à la fois profonds et
utiles, demandent du temps et du travail pour être bien compris.
Les efforts que vous devrez fournir sont importants : tout d"abord comprendre le cours, ensuite connaître
par coeur les définitions, les théorèmes, les propositions... sans oublier de travailler les exemples et les
démonstrations, qui permettent de bien assimiler les notions nouvelles et les mécanismes de raisonnement.
Enfin, vous devrez passer autant de temps à pratiquer les mathématiques : il est indispensable de résoudre
activement par vous-même des exercices, sans regarder les solutions. Pour vous aider, vous trouverez sur le
site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés.
Au bout du chemin, le plaisir de découvrir de nouveaux univers, de chercher à résoudre des problèmes... et
d"y parvenir. Bonne route!

Sommaire
1 Logique et raisonnements
1
1 Logique
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Raisonnements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Ensembles et applications
11
1 Ensembles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Applications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Injection, surjection, bijection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Ensembles finis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Relation d"équivalence
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Nombres complexes31
1 Les nombres complexes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Racines carrées, équation du second degré
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Argument et trigonométrie
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Nombres complexes et géométrie
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Arithmétique45
1 Division euclidienne et pgcd
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 Théorème de Bézout
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3 Nombres premiers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Congruences
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 Polynômes59
1 Définitions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Arithmétique des polynômes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Racine d"un polynôme, factorisation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Fractions rationnelles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Groupes71
1 Groupe
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2 Sous-groupes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3 Morphismes de groupes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Le groupeZ=nZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Le groupe des permutationsSn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7 Systèmes linéaires87
1 Introduction aux systèmes d"équations linéaires
. . . . . . . . . . . . . . . . . . . . . . . . . . 87
2 Théorie des systèmes linéaires
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3 Résolution par la méthode du pivot de Gauss
. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8 Matrices99
1 Définition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 Multiplication de matrices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3 Inverse d"une matrice : définition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4 Inverse d"une matrice : calcul
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5 Inverse d"une matrice : systèmes linéaires et matrices élémentaires
. . . . . . . . . . . . . . 110
6 Matrices triangulaires, transposition, trace, matrices symétriques
. . . . . . . . . . . . . . . 117
9 L"espace vectorielRn123
1 Vecteurs deRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2 Exemples d"applications linéaires
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3 Propriétés des applications linéaires
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10 Espaces vectoriels137
1 Espace vectoriel (début)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2 Espace vectoriel (fin)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3 Sous-espace vectoriel (début)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4 Sous-espace vectoriel (milieu)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5 Sous-espace vectoriel (fin)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6 Application linéaire (début)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7 Application linéaire (milieu)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8 Application linéaire (fin)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11 Dimension finie167
1 Famille libre
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2 Famille génératrice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3 Base
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4 Dimension d"un espace vectoriel
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5 Dimension des sous-espaces vectoriels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12 Matrices et applications linéaires
187
1 Rang d"une famille de vecteurs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2 Applications linéaires en dimension finie
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3 Matrice d"une application linéaire
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4 Changement de bases
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
13 Déterminants211
1 Déterminant en dimension 2 et 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
2 Définition du déterminant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3 Propriétés du déterminant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4 Calculs de déterminants
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5 Applications des déterminants
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228