Chapitre 4 - Systèmes algébriques - Méthodes indirectes

4. Résolution de systèmes algébriques linéaires

 Méthodes indirectes (méthodes itératives)

4.1. Introduction

La caractéristique essentielle des méthodes itératives est qu’elles procèdent par approximations successives et qu’on ne connaît pas a priori le nombre d’itérations (donc le nombre d’opérations) à effectuer pour atteindre une précision donnée.

Une deuxième caractéristique particulièrement importante est que lorsqu’une méthode itérative converge elle est auto-correctrice : si on commet une erreur de calcul au cours du processus, tout se passe comme si on recommençait le calcul à partir d’un nouveau vecteur initial x(0).

De manière paradoxale, le fait de commettre une erreur peut donc éventuellement améliorer la convergence de la méthode utilisée. En effet, l’erreur commise peut avoir comme conséquence qu’on redémarre le calcul avec un vecteur plus proche de la solution. Ceci peut avoir un effet accélérateur de convergence. Cette caractéristique est d’ailleurs exploitée en pratique (cf. plus loin, relaxation).

Dans les méthodes itératives, on remplace le système à résoudre

 Ax = b

par un système équivalent écrit sous la forme

x = Fx + c
que l’on essaye de résoudre à l’aide d’un algorithme de point fixe, selon le schéma :

Choisir
x(0)
Calculer
x (k+1) = Fx (k) + c
… tant qu’il faut !
Tout « l’art » consiste à bien choisir F et c et à déterminer de bons critères pour arrêter les calculs.

4.2. Méthode de Jacobi

On décompose A en une somme de trois matrices : A = L + D + U
D est la diagonale de A
U est la triangulaire supérieure de A
L est la triangulaire inférieure de A
On a alors

F = I – D-1A et c = D-1b
Ce qui donne

F = I – D-1(L + D + U) = -D-1(L + U) (F est la matrice de Jacobi)

Et la relation d’itération fournit L’algorithme de Jacobi :

[image: image1.wmf].

...,

,

2

,

1

,

)

(

1

)

1

(

n

i

a

b

x

a

a

x

ii

i

k

j

n

i

j

j

ii

ij

k

i

=

+

-

=

å

¹

=

+

Exemple :

Résoudre le système

9x1 - 2x2 - 2x3 = 11

2x1 + 2x2 + 8x3 = 13

2x1 - 9x2 + 2x3 = 15

Voici un programme Matlab qui permet de résoudre ce système par la méthode de Jacobi :

% Méthode de Jacobi

% On part de [0 0 0]

% On constate que la méthode diverge (à faire) !

%

x10=0; x20=0; x30=0;

for k=1:30

x(1,k)= (2*(x20 + x30) + 11)/9;

x(2,k)= (-2*(x10 + 4*x30) + 13)/2;

x(3,k)= (-2* x10 + 9*x30) + 15)/2;

x10 = x(1,k);

x20 = x(2,k);

x30 = x(3,k);

end

x'

Le programme suivant, qui applique la même méthode, converge

% Méthode de Jacobi

% On part de [0 0 0]

% On a interverti les équations 2 et 3 pour assurer

% dominance diagonale.

% On constate que la méthode converge (à vérifier) !

%

x10=0; x20=0; x30=0;

for k=1:30

 x(1,k)= (2*(x20 + x30) + 11)/9;

 x(2,k)= (2*(x10 + x30) - 15)/9;

 x(3,k)= (-2*(x10 + x20) + 13)/8;

 x10 = x(1,k);

 x20 = x(2,k);

 x30 = x(3,k);

end

x'

4.3. Méthode de Gauss Seidel

Si on examine l’algorithme de Jacobi, on se rend compte que le calcul de la composante xi à l’itération k+1 fait intervenir les composantes x1, x2 … xi-1 à l’itération k.

On peut également constater que lorsque le calcul de xi à l’itération k+1 est effectué, les composantes x1, x2 … xi-1 sont déjà connues à cette même itération.

Si on tient compte de ce qui précède, on peut remplacer l’algorithme de Jacobi par le suivant :

[image: image2.wmf].

...,

,

2

,

1

,

)

(

1

)

1

(

1

1

)

1

(

n

i

a

b

x

a

a

x

a

a

x

ii

i

k

j

n

i

j

ii

ij

k

j

i

j

ii

ij

k

i

=

+

-

-

=

å

å

+

=

+

-

=

+

connu sous le nom de «méthode de Gauss Seidel ».
La résolution du système de l’exercice ci-dessus par la méthode de Gauss Seidel peut être obtenue à l’aide du programme suivant :

% Méthode de Gauss Seidel

% On part de [0 0 0]

% On a interverti les équations 2 et 3 pour assurer

% dominance diagonale.

% On constate que la méthode converge (à vérifier) !

%

x10=0; x20=0; x30=0;

for k=1:30

 x(1,k)= (2*(x20 + x30) + 11)/9;

 x(2,k)= (2*(x(1,k) + x30) - 15)/9;

 x(3,k)= (-2*(x(1,k) + x(2,k) + 13)/8;

 x20 = x(2,k);

 x30 = x(3,k);

end

x'

Très souvent, l’algorithme de Gauss Seidel converge plus vite que l’algorithme de Jacobi (pourquoi ?).

4.4. Méthodes de relaxation

On peut décomposer la matrice A d’une infinité de manières.

Soit A =
[image: image3.wmf]w

1

D + L + (
[image: image4.wmf]w

w

1

-

 D + U) (le réel non nul est appelé paramètre de relaxation)

La méthode itérative devient alors : (
[image: image5.wmf]w

1

D + L) x(k+1) = - (
[image: image6.wmf]w

w

1

-

 D + U) x(k) + b

C’est-à-dire, si l’inversion est possible :

x(k+1) = - (
[image: image7.wmf]w

1

D + L)-1 (
[image: image8.wmf]w

w

1

-

 D + U) x(k) + (
[image: image9.wmf]w

1

D + L)-1 b
Cette méthode est appelée méthode de relaxation. Elle est identique à la méthode de Gauss Seidel si  = 1 et nécessite également, à chaque itération, la résolution d’un système triangulaire.

Lorsque  < 1 on parle de sous-relaxation et si  > 1 de sur-relaxation.

Il est possible, dans certains cas, de démontrer qu’il existe une valeur optimale du paramètre de relaxation (pour plus de détails cf. « Introduction à l’analyse numérique » de Jacques Rappaz et Marco Picasso, Presses polytechniques et universitaires romandes, 1998).

4.5. Condition suffisante de convergence

On peut démontrer que les méthodes de Jacobi et Gauss Seidel sont convergentes si la matrice du système est à diagonale prépondérante.

4.6. Critères d’arrêt

Lorsqu’on programme un algorithme itératif il est vivement conseillé de prévoir au moins deux critères d’arrêt.

Le premier critère consistera à arrêter les calculs si deux approximations successives de la solution sont « suffisamment proches » l’une de l’autre. Ce que signifie « suffisamment proches » est laissé à l’appréciation du programmeur et nécessite la définition d’une mesure de la proximité de deux solutions approchées (distance, norme). On pourra par exemple décider que la « convergence » est atteinte si la norme euclidienne de la différence entre deux approximations successives n’excède pas une constante positive  choisie a priori.

Le deuxième critère doit imposer que le programme soit arrêté après un nombre limité d’itérations. En effet, si la méthode produit une suite de vecteurs qui diverge, le programme s’arrêtera en général suite à un « overflow ». Cependant, le programme peut « cycler » : il n’y a ni convergence numérique ni « overflow ». La suite des approximations reproduit périodiquement une même succession de vecteurs ou donne naissance à une suite chaotique de vecteurs bornés. Dans pareil cas, si l’on ne limite pas le nombre d’itérations, le programme fonctionnera jusqu’à ce que l’ordinateur tombe en panne… sauf bien entendu si l’opérateur intervient pour provoquer l’arrêt de la machine !

PAGE
1

_1096720575.unknown

_1096788474.unknown

_1096788396.unknown

_1036402888.unknown

