CHAPITRE IV
Solution numérique du problème par la MEF


Chapitre IV - Solution numérique du problème par la méthode des éléments finis

IV Introduction

Les équations décrites dans le chapitre précédent ont été résolues par la méthode des éléments finis que l'on exposera en détail dans ce chapitre. On présentera, d'abord, la méthode des éléments finis générale adaptée au type de problème qui nous concerne, puis sa mise en application. Ces méthodes ont été programmées dans l'environnement de programmation MATLAB version 5.3 [
], [
].

IV.1 Equation elliptique

Le type d'équation aux dérivées partielles que nous devons résoudre se présente sous la forme suivante:
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Dans le domaine simplement connexe 
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 représente l'opérateur vectoriel gradient; u est la fonction inconnue ; 
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, 
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 et 
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 sont des fonctions complexes des coordonnées x et y définies dans 
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. La fonction 
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 est appelée fonction source.

Les conditions aux limites que l'on peut imposer sur la frontière 
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 correspondent aux deux cas usuels suivants:

1. Condition de Dirichlet :
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2. Condition généralisée de Neumann :
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où 
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n 

 est le vecteur unitaire normal à la frontière 
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,  dirigé vers l'extérieur;
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, 
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, 
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 et 
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 sont des fonctions définies sur 
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. Les conditions de Dirichlet sont aussi connues comme des conditions essentielles et les conditions de Neumann comme des conditions naturelles.

On procédera en trois étapes pour définir la solution de l'équation elliptique décrite précédemment :

1. Description de la géométrie du domaine
[image: image19.wmf]D

 et des conditions aux limites associées.

2. Construction d'un maillage triangulaire du domaine 
[image: image20.wmf]D

. On utilisera des fonctions spécifiques pour la génération automatique du maillage aussi bien que pour son raffinement. Le maillage sera décrit par trois matrices de format fixe contenant l'information des nœuds, des segments de la frontière et des éléments triangulaires.

3. Discrétisation de l'équation différentielle IV.1 et des conditions aux limites pour obtenir un système linéaire 
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 où le vecteur 
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 contient les valeurs de la solution approximative sur les points du maillage ; 
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 est construite à partir des coefficients 
[image: image24.wmf]c

, 
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, 
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 et 
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 est le second membre 
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 contenant, essentiellement, les moyennes de 
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 autour de chaque point du maillage et les contributions provenant de 
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.

4. Solution du système linéaire 
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 et exploitation des résultats. Dans notre cas, les paramètres importants de l'écoulement tels que la fonction de courant, les vitesses ou la pression seront obtenues à partir de 
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 et de ses dérivées.

On commencera par établir la forme variationnelle de l'équation différentielle IV.1. En restant simple dans la démarche, on peut supposer que toutes les conditions aux limites sont des conditions généralisées de Neumann, car les conditions de Dirichlet peuvent être exprimées approximativement à partir des premières. Dans les cas simples où 
[image: image33.wmf]h

 est une matrice unitaire, et en faisant 
[image: image34.wmf]g

=

q

r

 et 
[image: image35.wmf]q

®

¥

, on peut négliger le premier terme de IV.3, obtenant ainsi une approximation à la condition de Dirichlet. 

En supposant que 
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 est une solution de l'équation différentielle IV.1, en multipliant cette équation par une fonction arbitraire de test 
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 et en intégrant sur le domaine 
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, on écrira:
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En intégrant par parties avec la formule de Green :
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L'intégrale sur la frontière peut être remplacée par la condition de frontière :
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Maintenant, on peut remplacer le problème originel par l'énoncé "déterminer 
[image: image42.wmf]u

 telle que satisfaisant à" :
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Cette équation est connue comme la forme variationnelle de l'équation différentielle. Evidemment, toute solution de l'équation différentielle est aussi une solution du problème variationnel. L'inverse est aussi vrai sous certaines conditions imposées sur le domaine et sur les fonctions prises comme coefficients. La solution du problème variationnel est aussi appelée solution faible de l'équation différentielle.

La solution et les fonctions de test appartiennent à un espace fonctionnel. Il faut, ensuite, choisir un subespace de dimension 
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 tel que "projeter la forme faible de l'équation différentielle sur un espace fonctionnel de dimensions finies" signifie tout simplement, imposer que 
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 et 
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 tombent dans 
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 alors que la solution du problème de dimension fini résulte de 
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 qui est le plus proche de la solution faible dans le sens de la norme énergétique. La convergence est assurée si l'espace 
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. Etant donné que l'opérateur différentiel est linéaire, on demandera que l'équation variationnelle soit satisfaite par 
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 fonctions de test 
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formant une base, c'est-à-dire, 
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En développant 
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 dans la même base 
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on obtient le système d'équations suivant :
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En posant les notations suivantes: 
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On peut réécrire le système:
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 EMBED Equation.DSMT36  [image: image62.wmf]K

, 
[image: image63.wmf]M

 et 
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 sont des matrices de dimensions 
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 par 
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, 
[image: image67.wmf]F

 et 
[image: image68.wmf]G

 sont des vecteurs colonnes de 
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 éléments. Quand il ne sera pas nécessaire de distinguer entre 
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, 
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 et 
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 ou entre 
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 et 
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, on utilisera la notation 
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 comme référence du système IV.11.

Quand le problème est auto–adjoint et elliptique dans le sens mathématique usuel, la matrice 
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 devient symétrique et définie positive. Plusieurs problèmes communs ont ces mêmes caractéristiques, notamment ceux qui peuvent être formulés comme des problèmes de minimisation. Dans notre cas, les fonctions 
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 et 
[image: image78.wmf]u

 sont des scalaires, les matrices 
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 et 
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 sont, évidemment, symétriques. Si 
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, on a alors:
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Le terme 
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 est désigné comme une norme énergétique.

Il existe une infinité de choix pour l'espace des fonctions de test. On utilisera, pour simplifier, l'espace des fonctions linéaires par morceaux qui sont continues à l'intérieur de chaque triangle. La continuité par morceaux assure l'existence des intégrales qui définissent la matrice
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. La projection sur 
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 n'est pas autre chose que l'interpolation linéaire où l'évaluation de la solution à l'intérieur de chaque triangle est obtenue seulement en fonction des valeurs aux nœuds. Si le maillage est de taille uniforme, 
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 est une approximation de l'ensemble des fonctions lisses dans
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 .

Une base appropriée pour 
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 est l'ensemble des fonctions en forme de chapeau 
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. Ces fonctions sont linéaires dans chaque triangle et prennent la valeur 0 en tous les points 
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En résolvant le système d'éléments finis, on obtient les valeurs nodales de la solution approximée. Finalement, notons que la base des fonctions 
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 disparaît dans tous les triangles qui ne contiennent pas le point 
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. La conséquence immédiate est que les intégrales qui apparaissent dans 
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 peuvent être calculées seulement dans les triangles qui contiennent le sommet 
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 sont des matrices très creuses. Leur structure dépendra de l'ordre des indices des points du maillage.

Les intégrales qui apparaissent dans les matrices du système d'éléments finis sont calculées en additionnant les contributions de chaque triangle dans la cellule correspondante, c'est-à-dire, seulement si le point est  un sommet du triangle considéré. Ce processus est appelé couramment assemblage de matrices.

Pour chaque triangle, on calcule des matrices dites "locales". Ce sont des matrices de dimension 3 par 3, contenant les intégrales évaluées seulement dans le triangle considéré. Pour chaque triangle, les coefficients sont supposés constants et sont évalués seulement au barycentre. Une fois calculées les matrices "locales", ces composantes sont additionnées aux positions correctes dans les matrices et vecteurs globaux creux. Les intégrales sont calculées par la règle du point moyen. Cette approximation est optimale car elle a la même précision que l'interpolation linéaire par parties utilisée. Considérons le triangle désigné par les sommets 
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Figure IV.1 Maille triangulaire élémentaire.

Le calcul des éléments de la matrice de "masse"
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 est effectué par :
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où 
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 est le centre de gravité du triangle 
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La contribution du second terme 
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 est :
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Pour évaluer la matrice de "rigidité" locale, il est nécessaire de calculer les gradients des fonctions qui ne sont pas comprises dans 
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qui après intégration en prenant 
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 constante dans le triangle donne :
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Si deux sommets du triangle coïncident avec la frontière 
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, ils contribueront aux intégrales de ligne associées aux conditions de frontière. Si les points appartenant à la frontière sont 
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et
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où 
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 est le point moyennant 
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Pour chaque triangle, les sommets 
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 du triangle local correspondent aux indices 
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 des points du maillage. Les contributions individuelles des triangles sont additionnées aux matrices globales de la façon suivante:
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Les conditions de bord de Dirichlet sont traitées d'une façon légèrement différente. Elles sont d'abord éliminées du système linéaire de façon à obtenir un système réduit toujours symétrique.

�	The MathWorks, Inc, 1999, Using MATLAB :Version 5 : Matlab programming enviromment.


� 	The MathWorks, Inc, 1999, Partial Differential Equation Toolbox User’s Guide.
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