


Page 6 sur 6

Equations de Maxwell Propagation

Résumé de Cours
I. EQUATIONS DE MAXWELL : Voir tableau page suivante.

A. Régime statique : Alors les grandeurs ne dépendent pas du temps, donc 
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Il en résulte donc que les champs électrique & magnétique (
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) sont séparés. 

B.
Régime variable : 

Alors les grandeurs dépendent du temps, & il existe un couplage entre les champs électrique & magnétique, responsable des phénomènes d'induction électromagnétique. On ne considère alors plus qu'un seul champ à 6 composantes qualifié d'électromagnétique 
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, notamment en théorie de la relativité, seul modèle réellement adapté à la description de ces phénomènes.

C.  Milieux matériels : 

On passe des équations hors milieux (dans le vide) aux équations dans les milieux (diélectriques de constante 
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 ou magnétiques de constante 
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· la densité volumique de charges (total  en  (libre = (total - (polar

· la densité volumique de courants   
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D.  Lois intégrales : 

Les équations de Maxwell sont des lois locales, & donc relient des champs de vecteurs ou de scalaires au même point, & donc indépendamment de la géométrie du problème considéré, ce qui fait que les postulats seront toujours des équations locales & ne feront intervenir que les distributions volumiques, les seules à correspondre à la réalité. En revanche, les lois intégrales font intervenir la géométrie du problème, & sont donc d'un emploi plus limité (en fait liées à une symétrie forte), & peuvent faire intervenir des distributions linéiques ou surfaciques (ou même ponctuelles en électrostatique) qui ne sont que des idéalisations mathématiques des distributions volumiques. De plus, ces lois intégrales supposent impérativement que le domaine d'intégration (courbe, surface, volume) ne soit pas déformable.
Remarque : en ce qui concerne la symétrie : pour les calculs de champs (
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 par le théorème de Gauss 
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 par le théorème d’Ampère 
[image: image16.wmf]int

.

.

I

dl

B

o

LC

m

=

ò

r

), l'inconnue est le champ & donc la seule possibilité est d’arriver à : 
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, ce qui suppose d’abord que les vecteurs 
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 soient colinéaires (donc la surface fermée S  doit être une équipotentielle, & la courbe fermée LC doit être une ligne de champ), & de plus on doit avoir E = cste sur S ou  B = cste sur LC. Ces conditions ne seront réunies que dans le cas d’une symétrie forte. 

Equations locales
Régime Statique
Régime Variable
Cas du vide
Milieux Matériels
Equation Intégrale

Equation de Maxwell-Gauss
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Th. de Gauss

Equation de Maxwell-Faraday
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Loi de Faraday

Equation du Flux
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Conservation du Flux

Equation de Maxwell-Ampère
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Th. d’Ampère

En ce qui concerne le domaine d'intégration : pour les phénomènes d'induction, le domaine d'intégration C correspond au circuit, mobile dans le cas de Lorentz & donc on évitera d'utiliser la loi intégrale de Faraday pour ce cas, en échange elle constituera le mode de calcul adapté pour le cas de Neumann, C étant fixe.

Il. EQUATION DE MAXWELL – AMPERE :

A. Equation intégrale : 

Elle s'écrit (théorème d'Ampère généralisé) 
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, où le Iint  inclut le courant ohmique (réel) I(  & le courant de déplacement de densité volumique 
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.  Par rapport au régime statique, l'équation locale a été corrigée de façon à satisfaire l'équation de continuité de la charge électrique : 
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B. Application : établissement du régime permanent dans un conducteur ohmique.  

La densité de  courant 
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 satisfait l’équation de continuité & la loi d’Ohm locale 
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, où ( est la conductivité du matériau. On élimine 
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 au moyen de l'équation de Maxwell - Gauss : 
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, ce qui fournit une équation différentielle en ((t) donnant l'évolution de la densité volumique de charge pendant le régime transitoire, soit : 
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, où la constante de temps vaut approximativement  
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, donc non mesurable & on peut raisonnablement considérer que la densité ( est constamment nulle.

Remarque : si on ajoute au tableau des équations de Maxwell la loi d'Ohm locale 
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, la force de Lorentz sur une particule chargée : 
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, & la loi de Newton de la gravitation donnée par 
[image: image54.wmf]u

r

mm

G

F

r

r

²

'

-

=

, on obtient sept équations qui contiennent toute la physique (électricité, optique, mécanique) à l'exclusion de physique quantique & statistique (thermodynamique).

III. EQUATIONS DE PROPAGATION :

A. Lien entre champs & potentiels : on a les relations : 
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B. Equations de propagation des champs : 

On utilise la relation : 
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  déduite de la relation du double produit vectoriel : 
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, avec : 
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 est l'opérateur vectoriel différentiel « Nabla » de composantes 
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. En utilisant les équations de Maxwell, & en tenant compte que ( est toujours nul dans le vide ou un conducteur, on obtient les équations : 
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Remarquer que le premier membre ne dépend pas de la nature du milieu, alors que le second le caractérise. On rencontrera en pratique la propagation dans le vide (où 
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), dans un plasma (milieu diélectrique où 
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Rappelons que les équations de Maxwell sont conventionnellement écrites dans un repère lié au circuit, le seul clairement défini (cas de Neumann, ce qui se voit avec l'expression du champ électromoteur dans l’expression de 
[image: image68.wmf]E
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C. Equations de propagation des potentiels : commencer par 
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La méthode précédente ne peut être appliquée qu’à un vecteur. Elle conduit à :


[image: image70.wmf]ú

û

ù

ê

ë

é

¶

¶

m

e

+

+

¶

¶

g

m

=

¶

¶

m

e

-

D

t

V

A

t

A

t

A

A

o

o

o

o

o

r

r

r

r

 

Div

 

Grad

²

²


Comme le potentiel-vecteur 
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  n’est défini à un gradient près, on peut toujours annuler le crochet d'où la deuxième jauge de Lorentz : 
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  qui redonne la première en régime permanent.

& le potentiel-vecteur satisfait à la même équation de propagation que les champs. Comme le potentiel scalaire V n'est pas un vecteur, on ne peut utiliser la même méthode mais on utilise la définition intrinsèque de l’opérateur Laplacien : peu d'intérêt.

D. Invariance de Jauge : 

On
considère deux couples de potentiels 
[image: image73.wmf](

)

V

A

,

r

 & 
[image: image74.wmf](

)

'

 

,

'

 

V

A

r

  donnant le même couple de champs 
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. Avec : 
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, où  f est une fonction quelconque de (x, y, z, t).  On reporte dans 
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Si on impose que le deuxième couple de potentiels satisfasse aussi la seconde jauge de Lorentz, on obtient : 
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, soit aussi :
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& la fonction  f  satisfait aussi à l'équation de propagation.

IV. CONDITIONS DE PASSAGE :
Rappelons les relations de continuité sur les champs à la traversée d'une surface ouverte S pouvant porter une densité surfacique de charges statiques ( & une densité de courant en surface 
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où les indices t & n désignent respectivement des composantes tangentielles & normales relativement à la surface S, & l'indice t( une composante tangentielle orthogonale à la densité de courant JS. Les grandeurs 
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 désignent des vecteurs unitaires se dirigeant du milieu correspondant au premier indice vers l'autre. Il en résulte que la formule donnant la discontinuité du vecteur 
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 est symétrique (les deux milieux jouant des rôles équivalents), & que cette symétrie est détruite (notation () par le choix d'une seule orientation pour la normale & alors
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V. PROPAGATION :

A. Généralités sur les ondes :

On rappelle qu’une onde correspond à la propagation d’un mouvement vibratoire. Si la vibration a lieu orthogonalement à la direction de propagation, l’onde est dite transversale (cas des ondes électromagnétiques), & sera dite longitudinale (cas du son) si la vibration se fait suivant la direction de propagation. Si la vitesse des ondes dépend de la fréquence, le milieu traversé par les ondes sera dit dispersif.

Remarque : en partant de l’hypothèse d’un milieu homogène, isotrope, non dispersif, sans pertes (donc vitesse & amplitude de l’onde constantes) on établit l’équation dite de d’Alembert : 
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B. Onde plane progressive harmonique :   OPPH !

Elle est de la forme : 
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 est appelé vecteur d’onde, 
[image: image94.wmf]u

r

 étant le vecteur unitaire de la direction de propagation. La notation complexe est permise car l’équation d’onde est linéaire. Seule la partie réelle de  f a un sens physique : c’est un cosinus, donc pair, & le sens des termes dans la phase ne semble pas avoir d’importance, mais il faut garder ce sens si on veut faire le lien avec l’alternatif ordinaire 
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. Une telle onde ne peut exister que dans un milieu ouvert, donc infini, sans frontières, où donc il n’existera pas d’onde réfléchie. Alors ses paramètres ((, () sont continus. 

Remarque : le théorème de Fourier permet de décomposer toute onde périodique en superposition d’ondes planes, d’où l’intérêt de ces dernières. Il en résulte qu’on pourra toujours écrire que 
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C. Onde stationnaire : 

Dans un milieu fermé, donc fini, donc limité par des frontières (qui donneront naissance à une onde réfléchie), on écrit des conditions aux limites appropriées. Par exemple, pour une propagation suivant Ox dans un milieu fermé de longueur L, avec frontières fixes :
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 en x = 0 ou L, & ceci quel que soit t. Remarquer qu’il est prudent de revenir aux notations réelles car l’exponentielle complexe ne s’annule pas. La condition en x = 0 conduit à Fo = - F’o (miroir parfait). On transforme la différence de cosinus en produit, & la condition en L conduit à 
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. Remarquer que le temps & la variable d’espace interviennent dans des phases différentes, de sorte que la condition ( = cste conduit à x = cste, & les surfaces d’onde ne se déplacent plus.

D. Application aux ondes électromagnétiques : 

En identifiant l’équation de propagation à l’équation de d’Alembert, on obtient la relation de Maxwell 
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 qui conduit à l’invariance de c & donc à la théorie de la Relativité. 

L’onde plane électromagnétique est alors constituée du trièdre direct 
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E. Aspect énergétique : 

On appelle densité d’énergie de l’onde la quantité :  
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On définit le vecteur de Poynting par la relation : 
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En partant de la formule 
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, on établit l’équation de continuité de l’énergie (ou équation locale de Poynting) :  
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Les termes de cette équation sont homogènes à une puissance volumique. Le second membre correspond alors à l’effet Joule volumique dans un milieu conducteur. Dans le vide, ce terme est nul & on retrouve la forme classique d’une équation de continuité.

En intégrant cette équation sur le volume limité par une surface fermée (, on obtient l’équation intégrale de Poynting traduisant le bilan énergétique sur ( :  
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où W est l’énergie contenue à l’instant t dans la surface fermée (. Elle diminue donc pour deux raisons : le terme PJ correspond à la puissance dissipée par effet Joule dans (, & le flux ( du vecteur de Poynting (donc homogène à une puissance) correspond à la puissance qui sort de ( par rayonnement.

Remarque : la puissance d’une onde plane de section S (faisceau cylindrique, cas du faisceau LASER avec une bonne approximation) se propageant dans le vide est alors donnée par la relation : 
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, ce qui permet de calculer les champs d’un LASER de puissance.

F. Corde vibrante : 

On étudie les petites déformations transversales d’une corde de masse négligeable : on en déduit l’équation de d’Alembert sous la forme : 
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, ( étant l’élongation transversale, & V la vitesse de l’onde donnée par : 
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 où T est la tension de la corde & 
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 sa masse linéique. On reconnaît bien les deux paramètres commandant le son d’une corde de guitare par exemple.

G. Propagation du son dans un fluide : 

Dans un fluide subissant de petits mouvements isentropiques, la vitesse du fluide v & la surpression p vérifient l’équation de d’Alembert, obtenue en écrivant l’équation de conservation de la masse, l’équation d’Euler du mouvement & l’invariant thermodynamique. La vitesse du son est donnée par : 
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 où (o est la masse volumique du fluide au repos, & 
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 le coefficient de compressibilité isentropique. La densité d’énergie vaut alors : 
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, & le vecteur de Poynting : 
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. Si la section de l’écoulement est constante, l’impédance acoustique est définie par : 
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. Si la section est variable, on divisera p par Sv.

Agreg Interne Cours Propagation
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