Le Cracking

Le Cracking
&

le Reverse Engineering

[image: image1.jpg]

Le crackme - Voilà l'ennemi !

Pierre B. Equey

Introduction

●
En tout premier lieu, nous tenons à souligner que le but de ce cours n’est pas d’encourager la diffusion, l'utilisation ou même la fabrication de cracks.

Le cracking : un fléau économique

●
Selon les estimations des professionnels du secteur, plus de quatre exemplaires de logiciels sur dix utilisés en Europe sont des copies illicites. Les conséquences en termes d’emplois, de croissance économique et de recette fiscale sont énormes.

Le fait de ramener l'énorme taux de piratage européen (plus de 40 %) au niveau de celui des Etats-Unis (27 %) aurait, par exemple, permis pour la seule année 1996 …

…
de créer plus de 200 000 emplois ;

…
d'augmenter les recettes fiscales de l'état de plus de 57 milliards de Francs;

…
d'accroître le chiffre d’affaire des entreprises du secteur du logiciel de plus de 138 milliards de Francs.

●
Ainsi, si tout un chacun se mettait au cracking, de nombreuses sociétés devraient mettre la clé sous la porte ; l’industrie du logiciel serait condamnée à disparaître.

Nous tenons alors absolument à préciser qu'un logiciel dont on se sert régulièrement doit être acheté, ne serais-ce que pour être solidaire des collègues programmeurs qui n'ont pas passé 30 minutes ou 1 heure (le temps souvent nécessaire pour réaliser un crack) mais souvent des semaines et des semaines à la conception de leur programme.

Pourquoi apprendre le cracking ?

●
Si tout le monde - y compris l'auteur des présentes - reconnaît que la pratique du cracking est éminemment critiquable, pourquoi alors apprendre cette technique ?

Et bien, nous pensons que l’étude de cette technique, la maîtrise et le contrôle de l'information en ce domaine (comme, d'ailleurs, en tout autre domaine sensible) sont fondamentaux pour tout informaticien amateur ou professionnel. Nous avons voulu illustrer cette importance par un exemple médical.

Ainsi, deux méthodes de diffusion des connaissances médicales pourraient être envisagées :

–
La première méthode serait de ne pas faire confiance aux gens. En médecine, elle consisterait à interdire l’enseignement de cette science sous le motif qu’un docteur mal intentionné pourrait utiliser son savoir pour répandre des maladies. Il est alors très probable que cette méthode empêche les médecins (et non les maladies) de proliférer. Elle ne serait pas très efficace pour soigner les gens.

–
La seconde méthode consisterait à faire confiance aux gens. Elle consisterait, pour ce qui concerne notre exemple médical, à laisser les gens apprendre la médecine. Il est déjà arrivé qu'un médecin fou utilisât ses connaissances pour assassiner ses patients, mais ce n'est pas la loi du genre. Et malgré ce danger, cette seconde méthode, basée sur la confiance est la seule qui se soit montrée efficace pour accumuler les connaissances sur les maladies puis de les vaincre une à une.

●
Pour en revenir au cracking, nous croyons que le refus de son apprentissage n’empêcherait pas les « craqueurs » de proliférer. Par contre, nous sommes certains que, dans ce cas, il n’y aurait personne sachant mettre au point des contre-mesures efficaces.

Nous pensons que la seule façon de lutter contre un mal est d'accumuler les connaissances à son sujet, puis d'utiliser ces connaissances pour en éliminer une à une ses manifestations.

Le cracking n'est ici utilisé que dans un but de partage d’expériences et de connaissances concernant les schémas de protection utilisés dans certains logiciels. En aucun cas vous ne devez vous servir de ce document pour utiliser des logiciels d’une manière illégale. Il ne sera d’ailleurs plus à jour rapidement. Les nouvelles techniques apprises par l’expérience, par exemple pour contourner une nouvelle protection, sont rapidement diffusées entre les crackeurs eux-mêmes.

●
Amis lecteurs, si un programme vous plait et si vous désirez l’utiliser pleinement, alors achetez-le !!! Vous rendrez - tout d'abord - service à celui ou ceux qui l’ont conçu.

	
Première partie - La théorie

	[image: image2.png]R
(i

 LISTNUM \L1Notions de base

 LISTNUM \L2Principe

●
Le cracking consiste à analyser le code d'un programme cible (couramment appelé crackme ou crack-me) afin d'en comprendre le mode de protection, puis à modifier ce code de manière à supprimer cette protection.
●
Une fois ce premier forfait accompli, le crackeur peut également écrire un patch, qu'il mettra à disposition du public sur internet. Un patch est un programme qui modifie le code d'un autre programme protégé, en abolissant lesdites protections.
Les patchs ne sont pas illicites en eux-mêmes. D'ailleurs, les éditeurs de logiciel en diffusent souvent pour corriger leurs propres programmes. C’est leur utilisation qui tombe sous le coup de la loi, ainsi que de (manière générale) toute modification d’un programme régulièrement protégé.

 LISTNUM \L2Les connaissances nécessaires

●
Le crackeur à besoin de différentes connaissances, notamment :

–
des connaissances d'assembleur ;

–
de bonnes connaissances de la terminologie informatique;
–
des connaissances d’un langage évolué, tel que par exemple le Visual Basic ou le Delphi ;

●
Ces connaissances peuvent être acquises sur de nombreux sites, notamment :

–
http://www.crossbar.demon.co.uk/
–
http://www.amok.gulli.com/v3.htm

 LISTNUM \L2Terminologie

●
Bien que la France s'illustre dans le cracking, la terminologie est le plus souvent anglo-saxonne :

	Terme
	Définition

	Reverse Engineering
	Reverse Engineering est l’opération qui consiste à désassembler un programme afin d’étudier son fonctionnement, ce qui permet de modifier un exécutable en lui ajoutant ou lui retranchant des fonctions supplémentaires.

	Crack-me ou crackme
	C’est le programme à cracker

	Dump
	Image mémoire du crackme.

 LISTNUM \L2Les outils nécessaires

●
Quelques outils absolument indispensables :

–
un désassembleur également appelé décompilateur ;

–
un debugger, en français un débogueur ;

–
un éditeur hexadécimal ;

– une calculette (particulièrement utile pour convertir les codes hexadécimaux et binaires qui « pullulent » en la matière), un crayon et un bloc-notes ;

–
un ordinateur.

●
Des outils complémentaires peuvent quelquefois s'avérer nécessaires :

–
un patcher (nécessaire uniquement si le crackeur souhaite mettre ses cracks sur le Net.)

–
des programmes espions, qui permettent de surveiller les accès disques, les accès à la base de registre, (etc.) du crackme.

 LISTNUM \L3Qu'est-ce qu'un désassembleur ?

●
Un désassembleur est un programme qui permet d'obtenir le code en assembleur du programme à cracker sous la forme d'un fichier texte (nommé dead listing.) La plupart des désassembleurs possèdent également des fonctions facilitant l’exploration du code.

●
Un décompilateur permet d’obtenir également le code dans le langage où le programme a été écrit, mais seulement pour un langage donné. Il y a ainsi des décompilateurs pour le Delphi, pour le Java...

 LISTNUM \L3Qu'est-ce qu'un débuggeur?

●
Un débuggeur est un logiciel qui permet d’exécuter ligne par ligne les instructions d'un programme en cours d’exécution, et de placer des points d’arrêt (breakpoint) aux endroits les plus intéressants de ce programme.

●
Les débuggeurs permettent également de modifier en temps réel le code et les paramètres de ce programme. Néanmoins, lorsqu'on modifie un programme de cette façon, la plupart des débuggeurs n'affectent pas ces changements au programme lui-même mais à son image mémoire.

Les changements ainsi effectués ne marchent donc q'une seule fois. Pour les rendre permanent (et ainsi modifier de manière définitive le programme) il faut un éditeur hexadécimal.

 LISTNUM \L3Qu'est-ce qu'un éditeur hexadécimal ?

●
Un éditeur hexadécimal sert à modifier réellement le code source d'un programme à tel ou tel endroit. Les deux meilleurs éditeurs hexadécimaux sont UltraEdit et Hiew.

 LISTNUM \L2Les outils disponibles
●
Ci-dessous un tableau indiquant les principaux outils actuellement disponibles, sur le marché.

	Outils
	Commentaire

	Désassembleurs
	[image: image3.png]

	WinDasm

(ou W32Dasm)
	WinDasm est un désassembleur sous Windows d'un usage très simple, idéal pour débuter.

 Il existe de nombreuses versions de ce programme mais seules 2 versions sont utilisées par les crackeurs : les versions 8.5 et 8.93.

	
	[image: image4.png]

	IDA
	IDA est un désassembleur beaucoup plus puissant que WinDasm, mais également beaucoup plus difficile à manier que celui-ci.

Il peut être "customisé" avec de nombreux scripts et plugins.

	Débogueur
	[image: image5.png]

	SoftICE
	SoftICE est l'outil de référence en matière de cracking, sous DOS. Il ne tourne donc qu’avec Windows 3.1, 9x, ME et NP.
Il permet de tracer un programme pas à pas, de changer des instructions en cours de route, de changer les valeurs des registres....

La version actuelle est la version 4.05

	Editeur

hexa.
	[image: image6.png]

	Hex- Workshop
	HexWorkshop est l’éditeur hexadécimal le plus simple à utiliser. Avec son Interface Win32, par rapport à son concurrent Hacker's View, vous pouvez patcher un programme sur votre disque.

	Editeur Hexa.
	[image: image7.png]

	WinHex
	WinHex permet en outre de visualiser et modifier les données en mémoire, et d’obtenir divers renseignements.

	Autres outils
	
[image: image8.wmf]

	Icedump
	Icedump est un outil compagnon pour SoftICE. Il lui apporte de nouvelles fonctionnalités.

	
	[image: image9.png]

	Revirgin
	Quand un dump, obtenu avec SoftICE par exemple, donne un exécutable déprotégé, mais dont le format n’est pas correct, Revirgin permet de le reconstruire très rapidement... Un très grand outil de Tseph.

	
	[image: image10.png]

	FrogsIce
	Frogsice est un anti-antidébugger …
Quand certaines protections empêchent d'utiliser SoftICE, l'outil de Frog's Print détourne les routines de détection et les logs !

●
La plupart des logiciels cités ci-dessus ont à peu près tous été craqués. Ils ne sont donc pas à vendre, leur fabricant ayant renoncé à les commercialiser normalement. On peut néanmoins les télécharger depuis de nombreux sites Internet mentionnés en annexe.

 LISTNUM \L2Les méthodes

●
Il existe de nombreuses méthodes de cracking qui dérivent toutes de deux méthodes de base :

–
La première méthode, le Dead Listing, qui consiste à désassembler le programme à cracker (le crackme) afin d'en obtenir le listing de son code, à modifier le listing ainsi obtenu, puis à le réassembler.

–
La seconde méthode, la Live Listing (également appelé Live Approach), consiste à déboguer le crackme et à le suivre pas a pas grâce à un programme de déboguage. Le programme de déboguage le plus utilisé à cet effet est SoftICE de NuMega.

●
En ce qui concerne le Dead Listing, il est important de noter que beaucoup de programmes (et notamment beaucoup de programmes volumineux) ne peuvent être ainsi désassemblés puis réassemblés facilement. Les raisons de cette difficulté sont multiples, mais tiennent principalement à la compatibilité entre le compilateur d'origine et le désassembleur.

 LISTNUM \L1L'assembleur

 LISTNUM \L2Fonctionnement d’un processeur

●
Un processeur exécute un programme constitué d’une suite d’instructions placées dans la mémoire vive. Le fichier programme est donc chargé en mémoire avant d’être exécuté. Chaque instruction a aucun, un ou plusieurs arguments selon sa nature.
●
Pour travailler, le processeur dispose de zones mémoires spéciales où il peut stocker des données. Ces zones portent le nom de registres. Ils sont très rapides d'accès puisqu'ils se situent directement dans le processeur et non dans la mémoire vive.

●
Un de ces registres sert de compteur qui indique l’instruction suivante à exécuter. Le processeur suit le cycle suivant : aller chercher une instruction, incrémenter le compteur, exécuter l’instruction, recommencer.

 LISTNUM \L2Les systèmes de numération

●
Il est indispensable de bien comprendre cette section. En effet, le système décimal que nous utilisons tous les jours n'est pas forcément le plus simple pour programmer en assembleur. En effet, le microprocesseur ne connaît et ne traite que le binaire, et nous allons voir que pour simplifier les choses on peut utiliser l'hexadécimal.

 LISTNUM \L3Le binaire

●
Vous savez très certainement qu'un ordinateur code toutes les informations essentiellement avec des 0 et des 1. Donc, les nombres aussi. C'est-à-dire que le système binaire est utilisé pour représenter et traiter les nombres. En décimal, on compte à partir de 0, puis on ajoute 1 à chaque fois, jusqu'à atteindre le dixième chiffre, 9. A partir de là, on rajoute un « 1 » devant et on recommence... En binaire, c'est pareil mais avec seulement deux chiffres (les 0 et les 1 ne sont plus appelés « chiffres », mais « bits » pour « binary digits » (chiffre binaire.)) On obtient donc la table de correspondance suivante :

	Décimal
	Binaire

	0
	0b

	1
	1b

	2
	10b

	3
	11b

	4
	100b

	5
	101b

	6
	110b

	7
	111b

	
	Remarque : pour différencier les nombres binaires des nombres décimaux, on fait suivre les nombres binaires d'un « b ». On laisse les nombres décimaux comme ils le sont, bien que certains préfèrent les faire suivre d'un « d ». C'est vous qui voyez...

Avec 3 bits, on peut représenter 23 (2 puissance 3) = 8 valeurs différentes : de 0 à 7.
Nous verrons dans les sections suivantes que le microprocesseur travaille avec des nombres d'au moins 8 bits (8 bits = 1 octet.) Avec 8 bits, on peut donc représenter 28=256 valeurs différentes : de 0 à 255.

Comme vous pouvez l'imaginer, on arrive très vite à des nombres comportant des dizaines de bits... Pour convertir en décimal, il existe une méthode très simple : compter les puissances de 2. Pour cela, on attribue à chaque bit un index de position, en partant du bit le moins significatif (le bit de droite.) Le nombre en décimal est égal à la somme des 2n, n correspondant aux index des « 1 ».

Exemple pour le nombre binaire 10011011b codé sur 8 bits :

	Index
	7
	6
	5
	4
	3
	2
	1
	0

	Bits
	1
	0
	0
	1
	1
	0
	1
	1

En décimal, cela donne donc :

27+24+23+21+20 = 128+16+8+2+1 = 155

Mais il y a plus simple : utiliser une calculatrice. Si vous n'en possédez pas, sachez que la calculatrice de Windows le fait (affichage scientifique) !

Quant à la conversion décimal => binaire, il vous suffit de décomposer le nombre en puissances de 2 et d'en déduire les positions des « 1 ».

Pour représenter les nombres négatifs, la méthode est un petit peu plus complexe. Pour rendre un nombre négatif, on commence par le complémenter (c'est-à-dire inverser tous ses bits, 0 devenant 1 et vice-versa.) On obtient alors le « complément-à-1 », ou plus simplement « complément ». Puis on ajoute 1, on a alors le « complément-à-2 », qui représente le négatif du nombre. Par exemple, prenons le nombre 70 codé sur 8 bits : 01000110b. On le complémente-à-2, c'est-à-dire on inverse tous ses bits : 10111001b, puis on lui ajoute 1 : 11011010b. Ce nombre est donc -70 en binaire.

ATTENTION : Lors du compément-à-1, il faut absolument inverser TOUS les bits. Par exemple, le même nombre -70, codé sur 16 bits cette fois, donnera 1111111110111010b.

Remarque : Bien sûr, si on complémente-à-2 deux fois un nombre, le résultat reste inchangé.

Mais vous allez me dire, si on applique la méthode de conversion précédente, on trouve que 10111010b = 27+25+24+23+21 = 128+32+16+8+2 = 186 ! En fait, tout dépend de comment vous considérez votre nombre. Si vous décidez qu'il est signé, alors il sera égal à -70, et avec 8 bits vous pourrez représenter des nombres de -128 à 127. Si vous le considérez comme non-signé, il sera égal à 186, et avec 8 bits vous pourrez représenter des nombres de 0 à 255. L'avantage de considérer les nombres comme non-signés, est donc qu'avec le même nombre de bits, on peut représenter plus de valeurs positives, donc si vous savez qu'une variable ne peut pas prendre des valeurs négatives, n'hésitez pas.

ATTENTION : Un nombre signé n'est pas forcément négatif, cela signifie simplement qu'il possède un signe : positif ou négatif. Par contre un nombre non-signé est forcément positif.

Une question que se posent beaucoup de débutants : pourquoi n'a t'on pas inventé une méthode plus simple pour représenter les nombres négatifs, par exemple le bit le plus à gauche pourrait représenter le signe : 0 pour positif et 1 pour négatif ? En fait, personne n'a établit de règle, c'est tout simplement le résultat que l'on trouve en faisant une soustraction de zéro. Exemple : -70 peut s'écrire 0-70. 70 en binaire est 01000110b. On effectue donc la soustraction, en prenant garde aux retenues (c'est comme en décimal.)

[image: image11.wmf]

L'énorme avantage de cette convention est que le microprocesseur n'a pas besoin de savoir si les nombres sont signés ou non-signés pour effectuer les additions et les soustractions, le résultat est bon dans les deux cas. Par contre, pour une multiplication ou une division, il faudra l'indiquer au microprocesseur, car si les nombres sont signés, le résultat sera négatif si les deux nombres n'ont pas le même signe.

 LISTNUM \L3L'hexadécimal

L'hexadécimal (base 16), contrairement à ce que pourraient penser certains, est utilisé pour simplifier les choses. En effet, il permet non seulement d'écrire de gros nombres en peu de chiffres (en fait on parle de « digits »), mais surtout il est facilement convertible en binaire, pour la bonne et simple raison que chaque digit peut être remplacé par exactement 4 bits.

On a donc 16 digits pour coder les nombres : 0, 1,...., 9 puis A, B, C, D, E, F ! Pour différencier les nombres en hexa des nombres en décimal, on rajoute un « h », par exemple « 6h ». En notation langage C, on les fait précéder de « 0x ». Ces deux notations sont acceptées par l'assembleur.

Voici la table de correspondance complète :

	Décimal
	Hexadécimal
	Binaire

	0
	0
	0000

	1
	1
	0001

	2
	2
	0010

	3
	3
	0011

	4
	4
	0100

	5
	5
	0101

	6
	6
	0110

	7
	7
	0111

	8
	8
	1000

	9
	9
	1001

	10
	A
	1010

	11
	B
	1011

	12
	C
	1100

	13
	D
	1101

	14
	E
	1110

	15
	F
	1111

Avec cette table, vous pouvez passer très rapidement de binaire à hexadécimal et d'hexadécimal à binaire, il n'y a qu'à remplacer. Exemple : B8h=10111000b. 01001110b=4Eh.

Remarque : Si vous utilisez la notation « h » plutôt que « 0x », alors il faudra penser à rajouter « 0 » (le nombre, pas la lettre) devant les nombres hexadécimaux qui commencent par une lettre, sinon l'assembleur va confondre avec un nom de variable. B8h devra donc être écrit 0B8h.

Mais je préfère vous faire découvrir par la pratique l'intérêt de l'hexadécimal. Nous nous en servirons donc dans les sections suivantes, lorsque nous en aurons besoin.

 LISTNUM \L2Les types de base

●
Suivant leur longueur en nombre de bits, les noms portent des noms différents, listés dans le shéma suivant :

[image: image12.emf]Bit

Byte (Nibble)

Octet

Double Word

Word

Quad Word

Paragraph

 LISTNUM \L2L'hexadécimal

Tout d'abord ouvrez un crackme avec WinDasm. On aperçoit des lignes semblables à celle-ci :

 :00401013 83F807 cmp eax, 00000007
 :00401016 EB1A jmp 00401032
 :00401018 6A40 push 00000040
Le nombre en bleu est l'adresse de la ligne pour WinDasm.

Le nombre en noir représente les instructions en hexadécimal. C'est ce qu'on recherchera dans l'éditeur hexadécimal et qu'on modifiera.

Les mots et nombres en rouge sont les instructions en assembleur du programme désassemblé. C'est un peu la « traduction » de l'adresse hexadécimale.

Exemple :

En décimal vous compter comme ça :
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

Et bien en hexadécimal on compte de cette manière :

 0 1 2 3 4 5 6 7 8 9 A B C D E F

Par exemple 15 s'écrira F, 16 => 10, 17 => 11, 26 => 1A etc.

Les adresses de WinDasm sont en hexadécimal et dans l'ordre croissant, mais il ne les met pas toutes comme on peut le voir dans l'exemple ci-dessus.
 LISTNUM \L2Représentation de la mémoire

●
La représentation de la mémoire des processeurs Intel est héritée du 8086 (un des premiers processeurs 16 bits, conçu en 1978.)

Nous allons donc décrire les principes du 8086 qui restent (à peu près) valables pour tous les processeurs, du 80286 au Pentium (80586). Tous les PC sont équipés d’un processeur de la famille 80x86 ou compatible. Ce qui n’est pas le cas de la plupart des autres machines, sur lesquelles ne tournent donc pas les outils que nous avons présentés.

L’unité de base du 8086 est l’octet. Ceci signifie que chaque cellule de mémoire peut contenir un nombre de 0 à 256. Chaque cellule de mémoire a une adresse. La première dans la mémoire a l’adresse 0, puis l’adresse 1, puis 2, etc.

Il y a plusieurs façons d’accéder cette mémoire. Ce sont les différents modes d’adressage.

Adressage inhérent : l’adresse est le nom d’un registre interne du processeur. La mémoire proprement dite n’est donc pas accédée.
Adressage immédiat : la donnée est incluse dans le programme lui même, en paramètre d’une instruction. L’adresse réelle est l’emplacement mémoire après le code de l’instruction.
Adressage direct : le paramètre de l’instruction est l’adresse de la donnée.

Adressage indirect ou indexé : l’adresse mémoire est contenue dans le registre spécifié en paramètre de l’instruction.

Adressage indirect avec déplacement : Pour obtenir l’adresse, il faut ajouter une constante figurant en paramètre à la valeur contenue dans le registre. Ce nombre peut également être contenu dans un registre.
Les registres du 8086 peuvent contenir 1 mot (2 octets), ce qui veut dire qu’un registre peut stocker et effectuer des opérations sur des nombres allant de 0 à 65535.

Puisqu’un registre ne peut pas contenir un nombre supérieur à 65535, il est impossible d’adresser plus de 65535 octets en adressage indirect. Intel a résolu ce problème en créant les segments. Chaque segment est long de 65535 octets. On dit au 8086 où on veut se placer dans la mémoire en lui disant dans quel segment on se trouve et à quelle adresse on se trouve dans ce segment (la position dans un segment s’appelle l’offset) : une adresse mémoire est repérée par le couple segment :offset. Les segments sont numérotés de 0 à 65535.

Par conception, on trouve un segment tous les 16 octets.

	Numéro de segment
	Adresse de départ

	0h
	0h

	1h
	10h

	2h
	20h

Les segments se recouvrent. A l’exception des 16 premiers octets, n’importe quelle adresse dans la mémoire appartient à plus d’un segment. Par exemple l’adresse 37h peut être notée 0:37 ou 1:27 ou 2 :17 ou 3 :7.

Au-dessus de l’adresse 65519d chaque adresse appartient à 4096 segments.

Représentation des nombres : les nombres sont stockés en commençant par les bits de poids faible (bit de poids faible dans l’adresse la plus basse.) Ex : le nombre 2D 56 A1 8E est stocké sous la forme 8E A1 56 2D.

C’est une convention qui peut changer pour d’autres familles de processeurs.

 LISTNUM \L2Les registres

●
Les registres se classent en plusieurs catégories, qui (pour les processeurs Intel) sont :

…
les registres généraux (également appelés registres de travail) ;

…
les registres de segment ;

…
les registres d'offset (également appelés registres pointeurs) ;

…
le registre des indicateurs (également appelés registre d'état ou registre de flags.)

●
Il existe d’autres registres, tel que par exemple le registre de déboguage, mais ceux-ci ne sont généralement pas utilisés pour la génération de code.
 LISTNUM \L3Les registres généraux

●
Ils ne sont pas réservés à un usage très précis, aussi les utilise-t-on pour manipuler des données diverses. Ce sont en quelque sorte des registres à tout faire. Chacun de ces quatre registres peut servir pour la plupart des opérations, mais ils ont tous une fonction principale qui les caractérise.

	Registres
	Nom

	AX
	Accumulateur

	BX
	Base

	CX
	Compteur

	DX
	Données

●
Le registre AX sert souvent de registre d'entrée-sortie : on lui donne des paramètres avant d'appeler une fonction ou une procédure. On l'utilise pour de nombreuses opérations arithmétiques, telles que la multiplication ou la division de nombres entiers. Il est appelé accumulateur.

Voici deux exemples d'utilisation :

─
L'instruction MOV AX, 2003 place le nombre 2003 dans le registre AX ;

─
L'instruction ADD AX, 2003 ajoute 2003 à AX et place le résultat dans AX.

●
Le registre BX peut servir de base. Nous verrons plus tard ce que ce terme signifie.

●
Le registre CX est utilisé comme compteur dans les boucles. Par exemple, pour répéter 15 fois une instruction en assembleur, on peut mettre la valeur 15 dans CX, écrire l'instruction précédée d'une étiquette qui représente son adresse en mémoire, puis faire un LOOP à cette adresse.

Lorsqu'il reconnaît l'instruction LOOP, le processeur « sait » que le nombre d'itérations à exécuter se trouve dans CX. Il se contente alors de décrémenter CX, de vérifier que CX est différent de 0 puis de faire un saut (« jump ») à l’étiquette mentionnée. Si CX vaut 0, le processeur ne fait pas de saut et passe à l’instruction suivante.

Voici un exemple :

 ;(…)

 mov cx, 12 ; Place 12 dans le registre CX

 reviens_ici:

 ; écrire les instructions à répéter ici

 ;(…)

 loop reviens_ici

 xxx ax, bx ; instruction suivante

 ;(…)

●
Le registre DX contient souvent l'adresse d'un tampon de données lorsqu'on appelle une fonction du DOS. Par exemple, pour écrire une chaîne de caractères à l'écran, il faut placer l’offset de cette chaîne dans DX avant d'appeler la fonction appropriée.

●
Sur un processeur Intel relativement récent, à partir du 80386, AX, BX, CX, DX ne sont en fait que les parties basses de registres de 32 bits nommés EAX, EBX, ECX, EDX (« E » pour « Extended ».) On a donc un moyen plus pratique de stocker les grands nombres.

[image: image13.emf]AX

BX

CX

DX

BP

SI

DI

SP

EAX

EBX

ECX

EDX

EBP

ESI

EDI

ESP

AH AL

BH BL

CH CL

DH DL

Registres sur 32 bits

Registres sur 16 bits

31

16 15 8 7 0

EAX se décompose en AX (qui contient les 16 bits de poids faible.) A son tour AX se décompose en deux « sous registres » de 8 bits, qui se nomment respectivement AH (8 bits de poids fort, H = high) et AL (8 bits de poids faible, L = low.) Il en va de même pour les trois autres registres BX, CX et DX.

 LISTNUM \L3Les registres de segment

●
Ils sont au nombre de quatre :

	Registres

de segment
	Nom

	
	Anglais
	Français

	CS
	Code segment
	Segment de code

	DS
	Data segment
	Segment de données

	ES
	Extra segment
	Segment supplémentaire

	SS
	Stack segment
	Segment de pile

●
Contrairement aux registres généraux, ces registres ne peuvent servir pour les opérations courantes : ils ont un rôle très précis. On ne peut d’ailleurs pas les utiliser aussi facilement que AX ou BX, et une petite modification de l’un d’eux peut suffire à « planter » le système. Eh oui ! L’assembleur, ce n’est pas Turbo Pascal ! Il n’y a aucune barrière de protection, si bien qu’une petite erreur peut bloquer la machine. Mais rassurez-vous : tout se répare très bien en redémarrant l’ordinateur…

●
Dans le registre CS est stockée l’adresse de segment de la prochaine instruction à exécuter. La raison pour laquelle il ne faut surtout pas changer sa valeur directement est évidente. De toute façon, vous ne le pouvez pas. Le seul moyen viable de le faire est d’utiliser des instructions telles que des sauts (JMP) ou des appels (CALL) vers un autre segment. CS sera alors automatiquement actualisé par le processeur en fonction de l’adresse d’arrivée.

●
Le registre DS est quant à lui destiné à contenir l’adresse du segment des données du programme en cours. On peut le faire varier à condition de savoir exactement pourquoi on le fait. Par exemple, on peut avoir deux segments de données dans son programme et vouloir accéder au deuxième. Il faudra alors faire pointer DS vers ce segment.

●
ES est un registre qui sert à adresser le segment de son choix. On peut le changer aux mêmes conditions que DS. Par exemple, si on veut copier des données d’un segment vers un autre, on pourra faire pointer DS vers le premier et ES vers le second.

●
Le registre SS adresse le segment de pile. Il est rare qu’on doive y toucher car le programme n’a qu’une seule pile.

 LISTNUM \L3Les registres d’offset

●
Les voici :

	Registres

d'offset
	Nom

	
	Anglais
	Français

	IP
	Instruction pointer
	Pointeur d’instruction

	SP
	Stack pointer
	Pointeur de pile

	SI
	Source index
	Index de source

	DI
	Destination index
	Index de destination

	BP
	Base pointer
	Pointeur de base

●
Le registre IP désigne l’offset de la prochaine instruction à exécuter, par rapport au segment adressé par CS. La combinaison de ces deux registres (i.e. CS:IP) suffit donc à connaître l’adresse absolue de cette instruction. Le processeur peut alors aller la chercher en mémoire et l’exécuter. De plus, il actualise IP en l’incrémentant de la taille de l’instruction en octets. Tout comme CS, il est impossible de modifier IP directement.

●
Le registre SP désigne le sommet de la pile. Il faut bien comprendre le fonctionnement de celle-ci, aussi allons-nous insister sur ce point.

La pile est une zone de mémoire servant à stocker provisoirement des données. Il s'agit donc d'un moyen d'accéder à des données en les empilant (comme une pile de livres), puis en les dépilant afin de les utiliser ensuite.

La pile est de type LIFO (Last In First Out), c'est-à-dire que la première valeur empilée sera la dernière sortie (Si on empile des livres, il faudra les dépiler en commençant par enlever les livres du dessus. Le premier livre empilé sera donc le dernier sorti!). Il existe aussi des piles de type FIFO (First In First Out), plutôt appelées files. Mais elles doivent être implémentées par logiciel car elles n’ont pas l’importance des piles LIFO, à savoir la gestion des sous-programmes.

La pile ne peut stocker que des mots. On appelle un mot (« word » en anglais) un nombre codé sur deux octets (soit 16 bits.) Prenons un exemple simple : un programme COM. Le segment de pile (adressé par SS) et le segment de code ne font qu’un. Avant l’exécution, SP vaut FFFE. C’est l’offset de la dernière donnée de 16 bits empilée, par rapport à SS bien sûr. Pourquoi FFFE ? Tout simplement parce que la pile se remplit à l’envers, c’est-à-dire en partant de la fin du segment et en remontant vers le début, le sommet de la pile est donc à l’adresse la plus faible de la zone de pile. Le premier mot empilé se trouve à l’offset FFFE. Il tient sur deux octets : l’octet FFFE et l’octet FFFF. Mais comment se fait-il qu’un mot soit déjà empilé avant le début du programme ? Ce mot est un zéro que le DOS place sur la pile avant l’exécution de tout programme COM. Nous en verrons la raison plus tard.

A présent, que se passe-t-il si, à un instant quelconque, une instruction ordonne au processeur d’empiler un mot ? Eh bien le stack pointer sera décrémenté de 2 et le mot sera copié à l’endroit pointé par SP. Rappelez-vous que la pile se remplit à l’envers ! C’est pour cette raison que SP est décrémenté à chaque empilage et non pas incrémenté.

Voici un petit exemple pour rendre les choses plus concrètes :

 push ax

L’effet de cette instruction est d’empiler le mot contenu dans le registre AX. Autrement dit, SP est automatiquement décrémenté de 2, puis AX est copié à l’adresse SS:SP.

Lors du dépilage, le mot situé au sommet de la pile, c’est-à-dire le mot adressé par SS:SP, est transféré dans un registre quelconque choisi par le programmeur, après quoi le stack pointer est incrémenté de 2.

Exemple :

 pop bx

Cette fois, on retire le dernier mot empilé pour le placer dans le registre BX. Evidemment, SP sera incrémenté de 2 aussitôt après. La pile est extrêmement utile lorsqu’il s’agit de stocker provisoirement le contenu d’un registre qui doit être modifié.

Exemple :

 ;(…)

 push ax ; sauvegarde le contenu de AX sur la pile

 ;(…)

 ; instructions modifiant ax

 ;(…)

 pop ax ; récupère le contenu de AX depuis la pile

 ;(…)

Il est important de comprendre qu’on ne peut dépiler que le mot qui se trouve au sommet de la pile. La pile doit être manipulée avec une extrême précaution. Un dépilage injustifié fait planter la machine presque systématiquement. Ainsi, les empilages et les dépilages de sauvegarde doivent être équilibrés, exactement comme des parenthèses.

●
Les trois derniers registres (SI, DI et BP) sont beaucoup moins liés au fonctionnement interne du processeur. Ils sont mis à la disposition du programmeur qui peut les modifier et les utiliser à son gré. Comme ces derniers cependant, ils ont une fonction qui leur est propre : servir d’index (SI et DI) ou de base (BP).

Nous allons expliciter ces deux termes.

Dans la mémoire, les octets se suivent et forment parfois des chaînes de caractères. Pour utiliser une chaîne, le programmeur doit pouvoir accéder facilement à tous ses octets, l’un après l’autre. Or pour effectuer une opération quelconque sur un octet, il faut connaître son adresse. Cette adresse doit en général être une constante évaluable par le compilateur (adressage direct). Pourquoi une constante ? Parce que l’adresse est un opérande comme les autres, elle se trouve immédiatement après le code de l’instruction, et doit donc avoir une valeur numérique fixe !

Prenons un exemple :

 mov ah, [MonOctet]

Pas de panique ! Cette instruction en assembleur signifie « Mettre dans AH la valeur de l’octet adressé par le label MonOctet ! ». A la compilation, « MonOctet » sera remplacé par la valeur numérique qu'il représente et on obtiendra alors une instruction en langage machine telle que :

 8A260601

8A26 est l’opcode (hexa) de l’instruction « MOV AH, [constante quelconque] », et 0601 est l’offset de « MonOctet ».

Il serait pourtant fastidieux, dans le cas d’une chaîne de 112 caractères, de traiter les octets avec 112 instructions dans lesquelles seule l’adresse changerait. Il faudrait pouvoir faire une boucle sur l’adresse, mais alors celle-ci ne serait plus une constante, d’où le problème.

La seule solution est de créer de nouveaux opcodes pour chaque opération portant sur un octet en mémoire. Ces opcodes spéciaux feraient la même action que ceux dont ils seraient dérivés, mais l’adresse passée en paramètre serait alors considérée comme un décalage par rapport à un registre spécial (adressage indirect avec déplacement). Il suffirait donc de faire varier ce registre, et le processeur y ajouterait automatiquement la valeur de l’opérande pour obtenir l’adresse réelle ! C’est à cela que servent SI, DI et BP.

Par exemple :

 mov ah, [MonOctet + di]

sera codé :

 8AA50601

8AA5 est l’opcode pour l’instruction « MOV AH, [DI + constante] ».

Remarque : les registres SI et BP auraient tout aussi bien pu être employés, mais pas les registres généraux, sauf BX. En effet, BX peut jouer exactement le même rôle que BP. N’oubliez pas que BX est appelé registre de « base », et que BP signifie « Base Pointer. »

 LISTNUM \L3Le registre des indicateurs

●
Un programme se doit de pouvoir faire des choix en fonction des données dont il dispose. Il lui faut, par exemple, comparer des nombres, examiner leur signe, découvrir si une erreur a été constatée, etc. Il existe à cet effet de petits indicateurs (en anglais flag, ce qui signifie drapeau) qui sont des bits spéciaux ayant une signification très précise.
	Les indicateurs

	Nom
	Signification

	OF
	Overflow Flag
	Il est normalement à 0 et passe à 1 en cas de débordement (i.e. lorsque la capacité de stockage a été dépassée.)

Il est utile en arithmétique signée. En ce qui concerne les nombres non signés, il faut utiliser les flags ZF et SF.

	DF
	Direction Flag
	Ce flag est utilisé pour les opérations sur les chaînes de caractères.

S’il vaut 1, celles-ci seront parcourues dans le sens des adresses décroissantes, sinon les adresses seront croissantes

	IF
	Interrupt Flag
	Il sert à empêcher les appels d’interruptions lorsqu’il est positionné à 1. Cependant, toutes les interruptions ne sont pas « masquables ».

	TF
	Trap Flag
	Il est utilisé pour le déboguage d’un programme. S’il vaut 1, une routine spéciale du débuggeur est appelée après l’exécution de chaque instruction par le processeur

	SF
	Sign Flag
	SF donne tout simplement le signe du bit de poids fort. Or, le bit de poids fort donne le signe du nombre (1 si le signe est négatif, 0 s'il est positif.) Il simplifie le test du signe d'un entier relatif.

Celui-ci passe à 1 ssi le résultat d’une opération sur des nombres signés est négatif

	ZF
	Zero Flag
	Il passe à 1 ssi le résultat d’une opération est égal à zéro

	AF
	Auxiliary Carry Flag
	Peu utilisé

	PF
	Parity Flag
	Ce flag renseigne sur la parité du résultat. Il vaut 1 si le nombre de bits à 1 de ce dernier est pair

	CF
	Carry Flag.
	Le Carry Flag est l’indicateur de retenue. Il est positionné à 1 ssi l’opération précédente a produit une retenue.

De nombreuses fonctions du DOS l’utilisent comme indicateur d’erreur : CF passe alors à 1 en cas de problème.

De manière générale, les indicateurs fournissent des informations sur les résultats des opérations précédentes. Ces indicateurs sont regroupés dans un registre : le registre des indicateurs. Comprenez bien que chaque bit a un rôle qui lui est propre et que la valeur globale du registre ne signifie rien. Le programmeur peut lire chacun de ces indicateurs et parfois modifier leur valeur directement. En mode réel, certains indicateurs ne sont pas accessibles. Nous n’en parlerons pas. Nous ne commenterons que les indicateurs couramment utilisés.

Nous verrons quelle utilisation on peut faire de ces indicateurs dans la troisième partie de ce cours.

Remarque : Les abréviations utilisées couramment pour désigner les indicateurs (OF, DF, IF, etc.) ne sont pas reconnues par l’assembleur. Pour utiliser les indicateurs, il existe des instructions spécifiques que nous décrirons plus tard.

●
On note les changements d'état de la manière suivante :

	Symbole
	Signification

	!
	Changement d'état

	?
	Etat indéfini

	*
	Pas de changement d'état

	0
	Le flag est mis à nul.

	1
	Le flag est mis à 1

 LISTNUM \L2 Les instructions

 LISTNUM \L3Opérandes des instructions

● Chaque instruction a de 0 à 2 opérandes, qui sont de trois types :
Un registre du processeur, symbolisé ci-après par r (adressage inhérent.) La longueur de la donnée manipulée est alors implicite et correspond à la capacité du registre.
Une valeur numérique immédiate, symbolisée par i (adressage immédiat.)
Une adresse mémoire, symbolisée par m, il y a alors plusieurs formes possibles :
–
Une adresse simple, c’est-à-dire la valeur numérique de l’adresse (adressage direct.)
–
Un registre d’index, SI ou DI, ou de base, BX ou BP (adressage indirect.)
–
La somme d’un registre de base et d’un registre d’index.
–
Un registre de base ou d’index plus un déplacement (adressage indirect avec déplacement.)
–
La somme d’un registre de base et d’un registre d’index plus un déplacement.
Si la longueur de la donnée n’est pas implicite, par la nature de l’instruction ou la capacité du registre de l’autre opérande, l’adresse est précédée de BYTE PTR pour un octet, WORD PTR pour un mot, ou DWORD PTR pour une double mot.

Nous voyons que le segment dans lequel l’adresse représente l’offset n’est pas spécifié. S’il n’est pas déterminé par un préfixe, il est défini par défaut de la façon suivante :

–
Pour l’adressage direct et l’adressage indirect avec BX ou SI : segment DS.
–
Pour l’adressage indexé avec DI seul : segment EI.
–
Pour l’adressage indirect avec BP : segment SS.
Il doit rester une question : quelle est la différence entre une base et un index ? Et bien quand on utilise par exemple BX + DI + depl comme adresse, BX sert de base, DI est l’index qui est ensuite incrémenté ou décrémenté pour accéder la donnée suivante, dans une chaîne notamment.
 LISTNUM \L3Catégories d'instructions

●
L'ensemble des instructions qu’un processeur peut exécuter est appelé jeu d'instruction. On peut répartir celles-ci en plusieurs catégories, à savoir …

…
les instructions arithmétiques ;

…
les instructions logiques ;

…
les instructions d'affectation ;
…
les instructions de pile ;

…
les instructions de comparaison ;

… les instructions de branchement ;
… les instructions d’appel et de retour de sous programme ;

… les instructions de décalage et de rotation ;

… les instructions d’interruption logicielle ;

… les instructions diverses.

 LISTNUM \L3Les instructions arithmétiques

●
On rencontre ici les instructions d'addition et de soustraction qui ont le format suivant :

 dest = dest ± donnée(s).

●
Les voici :

	Les instructions arithmétiques

	Instructions
	Signification

	add mr1, mir2
	mr1 = mr1 + mir2

	adc mr1, mir2
	mr1 = mr1 + mir2 + CF

	sub mr1, mir2
	mr1 = mr1 - mir2

	sbb mr1, mir2
	mr1 = mr1 – (mir2 + CF)

	inc mr
	mr = mr + 1

	dec mr
	mr = mr - 1

	neg mr
	mr = - mr

	mul mr (non signé)
	(ax|dx:ax|edx:eax) = (al|ax|eax) × mr

	imul mr (signé)
	(ax|dx:ax|edx:eax) = (al|ax|eax) × mr

	imul r, mir
	r = r × mir

	imul r, mr, i
	r = mr × i

	div mr (non signé)
	(al|ax|eax) = (ax|dx:ax|edx:eax) / mr

(ah|dx|edx) = reste

	idiv mr (signé)
	(al|ax|eax) = (ax|dx:ax|edx:eax) / mr

(ah|dx|edx) = reste

 LISTNUM \L3Les instructions logiques

●
Les instructions logiques (également appelées opérations booléennes) permettent de réaliser les opérations logiques de même nom.

	Les instructions logiques

	instructions
	Signification

	and mir1, mir2
	mir1 = mir1 and mir2

	not mr
	mr = not mr

	or mir1, mir2
	mir1 = mir1 or mir2

	xor mir1, mir2
	mir1 = mir1 xor mir2

Elles agissent bit par bit. Par exemple AND va additionner les premiers bits et stocker le résultat dans le premier bit de la source. Et continuer ainsi de suite jusque au dernier.

●
Voici un exemple d'utilisation :

 mov ah,5 ; AH = 5d = 0101b
 mov al,3 ; AL = 3d = 0011b
 and ah,al ; AH = 1d = 0001b
●
Les instructions logiques ont de très nombreuses applications. En voici quelques unes :

–
Masquage : Il est possible de masquer, c'est-à-dire mettre à zéro tous les bits qui ne nous intéressent pas dans un nombre. Pour cela il faut créer une valeur masque: un nombre dont les bits de poids qui nous intéressent sont à 1, les autres à 0. Il suffit alors de faire un AND entre le nombre à masquer et le masque pour ne conserver que les bits auxquels on s'intéresse.

 Par exemple, imaginons que l'on veut masquer les 4 bits de poids faible (les 4 derniers bits) d'un nombre codé sur 8 bits (par exemple 10110101). Il suffit d'appliquer le masque 11110000, et l'on obtiendra 10110000. On ne conserve bien que les 4 premiers bits, les autres sont mis à zéro...

–
Mise à 1 : il est possible de mettre à 1 certains bits d’un nombre en faisant un OR avec une constante dont les bits correspondant valent 1 et les autres 0.

–
Inversion : Il est possible d'inverser tous les bits d'un nombre en faisant un XOR avec un nombre ne contenant que des 1.

–
Mise à 0 : enfin une petite astuce pour mettre à zéro un registre de façon économique. Il suffit de faire un XOR avec lui-même, comme dans XOR AX,AX ;

 LISTNUM \L3Les instructions d'affectation
●
Les instructions d'affectations (également appelées instructions de transfert) permettent de transférer des données entre les différents registres et la mémoire, c'est-à-dire:

–
soit une écriture (du registre vers la mémoire)

–
soit une lecture (de la mémoire vers un registre)

●
En assembleur, on note d'abord la destination, puis ensuite la source, de la manière suivante :

 mov destination, source

	Les instructions d'affectation

	instructions
	Signification

	mov mr1, mir2
	mr1 = mir2

	cmov cc, r, mr
	effectue r = mr si cc

	xchg rm1, rm2
	rm1 = rm2; rm2 = rm1 (échange)

	lahf
	ah = flags

	sahf
	flags = ah

	lds r, m
	r = [m], ds = [m + taille r]

	les r, m
	r = [m], es = [m + taille r]

	lss r, m
	r = [m], ss = [m + taille r]

	lodsb
	al = [ds:si], si = si+-1

	lodsw
	ax = [ds:si], si = si+-2

	lodsd
	eax = [ds:si], si = si+-4

	stosb (rep)
	[es:di] = al; di = di+-1

	stosw
	[es:di] = ax; di = di+-2

	stosd
	[es:di] = eax; di = di+-4

	movsb (rep)
	[ds:di] = [es:si], di = di+-1, si = si+-1

	movsw
	[ds:di] = [es:si], di = di+-2, si = si+-2

	movsd
	[ds:di] = [es:si], di = di+-4, si = si+-4

●
SI et DI sont incrémentés (décrémentés) si l’indicateur DF est à 0 (1.)
 LISTNUM \L3Les instructions de pile

●
Les instructions de pile servent à échanger des données entre la pile les registres.

●
Voir le paragraphe 2.7.3 sur les registres d’offset pour une description détaillée du rôle et du fonctionnement de la pile.

	Les instructions de pile

	instructions
	Signification

	push mir
	empile mir (taille >= 16 octets)

	pusha
	empile ax, cx, dx, bx, bp, si, di

	pushad
	empile eax, ecx, edx, ebx, ebp, esi, edi

	pushf
	empile flags

	pushfd
	empile eflags

	pop mr
	dépile mr

	popa
	dépile dans ax, cx, dx, bx, bp, si, di

	popad
	dépile dans eax, ecx, edx, ebx, ebp, esi, edi

	popf
	dépile flags

	popfd
	dépile dans eflags

 LISTNUM \L3Les instructions de comparaison

	Les instructions de comparaison

	Instructions
	Signification

	cmp mr1, mir2
	mr1 :: mir2

	test mr, ir
	mr and ir;

	cmpsb
	byte [ds:si] :: [es:di]; si = si±1; di = di±1

	cmpsw
	word [ds:si] :: [es:di]; si = si±1; di = di±1

	cmpsd
	dword [ds:si] :: [es:di]; si = si±1; di = di±1

	scasb (REPZ)
	al :: [es:di]; di = di±1

	scasw
	ax :: [es:di]; di = di+-1

	scasd
	eax :: [es:di]; di = di+-1

	bt mr, ir
	CF = bit ir de mr

	btr mr, ir
	CF = bit ir de mr; bit ir de mr = 0

	bts mr, ir
	CF = bit ir de mr; bit ir de mr = 1

	btc mr, ir
	CF = bit ir de mr; bit ir de mr complémenté.

●
L’instruction CMP, représentée symboliquement par ::, est identique à SUB, sauf que le résultat n’est pas conservé, donc aucun registre n’est modifié, sauf le registre d’indicateurs.

 LISTNUM \L3Les instructions de branchement

●
Les instructions de branchement (également appelées instructions de saut ou instructions de contrôle de flot) sont les instructions qui permettent d'aller exécuter une instruction autre que celle qui suit.

En effet, en temps normal (c'est-à-dire sans instruction contraire) le processeur exécute les instructions les unes après les autres.

Dans certaines conditions il peut être intéressant de « choisir » la prochaine instruction à effectuer. Ce type de condition peut notamment se rencontrer dans les structures conditionnelles (saut si...) ou bien dans les structures de boucle (en effet dans le cas où on désire exécuter un grand nombre de fois une instruction il peut être intéressant d'utiliser une instruction de branchement, qui indique au processeur l'adresse de la prochaine instruction à exécuter au lieu de gaspiller la mémoire en stockant plusieurs fois la même instruction en mémoire.)

C'est un registre spécial (le registre IP) qui indique l'adresse de l'instruction suivante à exécuter. Lors de l'exécution « normale » d'un programme, le processeur lit l'adresse contenue dans le registre IP, incrémente celui-ci pour qu'il pointe vers l'instruction suivante, puis exécute l'instruction contenue à l'adresse qu'il vient de lire. Lorsqu'il rencontre une instruction de saut (ou branchement), celle-ci modifie le contenu du registre IP pour qu'il pointe à l'adresse d'une autre instruction.

On distingue ces instructions de saut en deux catégories suivant que:

–
le saut est effectué quoi qu'il arrive (saut inconditionnel)

–
le saut est effectué ou non, en fonction de l'état d'un registre (saut conditionnel)

Saut inconditionnel :

L'instruction JMP permet d'effectuer un saut inconditionnel, c'est-à-dire que cette instruction va stocker dans le registre IP l’adresse de l’instruction que l'on veut exécuter après. L'opérande de cette instruction (le paramètre) est donc l'adresse de l'instruction à laquelle on veut sauter. Une fois l'instruction de branchement exécutée le processeur lit le contenu du registre IP et saute donc directement à l'adresse de l'instruction que l'on vient de définir ! La taille de l'instruction JMP est de 1 octet.

On appelle déplacement (en anglais offset) le nombre d'octets (car il s'agit d'un nombre entier relatif codé sur 8 bits) qui séparent l'instruction suivante de l'instruction visée. Voyons voir cela sur le programme suivant:
 0100 mov ax, [120h] ; copie le contenu de la case mémoire à

 ; l'adresse 0120H

 ; dans le registre AX

 0103 jmp 0100h ; saute à l'adresse 0100H

 0104 mov [120h], bx ; instruction non exécutée à cause du

 ; saut précédent...

La valeur du déplacement est ici de: 0100H - 0104H = -4

L’adresse de destination peut aussi être spécifiée sous la forme d’un pointeur FAR, constitué de la valeur du segment et d’un offset.

Saut Conditionnel :

Les instructions de saut conditionnel permettent d'effectuer un saut quand une condition est remplie. Dans ce cas, le processeur saute à l'instruction indiquée, sinon il ignore le saut et passe automatiquement à l'instruction suivante, comme s’il n'existait pas...

La (ou les) condition(s) à satisfaire s’exprime(nt) en fonction de l'état des indicateurs contenus dans un registre spécifique. Ainsi les branchements conditionnels doivent généralement être placés après une opération qui va modifier l'état d'un ou plusieurs indicateurs (une instruction CMP ou autre.)

Selon l’instruction, les conditions à satisfaire sont différentes:

JA (Jump if above, ce qui signifie saute si au-delà)
effectue un saut si ZF=0 et CF=0

JB (Jump if Below, ce qui signifie saute si en-deça)
effectue un saut si CF=1

JBE (Jump if Below or Equal, ce qui signifie saute si en-deça ou égal)
effectue un saut si ZF=1 ou CF=1

JE (Jump if Equal, ce qui signifie saute si égalité)
effectue un saut si ZF=1

JG (Jump if Greater, ce qui signifie saute si supérieur)
effectue un saut si ZF=0 et SF=OF

JLE (Jump if Lower or Equal, ce qui signifie saute si inférieur ou égal)
effectue un saut si ZF=1 ou SF≠OF

JNE (Jump if Not Equal, ce qui signifie saute si non-égalité)
effectue un saut si ZF=0

JCXZ (Jump if CX Zero, ce qui signifie saute si CX est nul)

effectue un saut si CX=0
LOOP (boucle)

décrémente CX et effectue un saut si CX=0

LOOPZ (boucle)

décrémente CX et effectue un saut si CX=0 et si ZF=1
LOOPNZ (boucle)

décrémente CX et effectue un saut si CX=0 et si ZF=0

Ces instructions n’existent pas avec un pointeur FAR. En revanche, elles existent avec un pointeur NEAR, c’est-à-dire un offset absolu dans le segment de code courant.

 LISTNUM \L3Les instructions d’appel et de retour de sous programme

●
Un sous programme, ou procédure, est une section de code, effectuant le plus souvent une fonction autonome, qui peut être exécutée à partir de n’importe où par un appel. Il permet donc de ne pas écrire plusieurs fois la même suite d’instructions qui se trouve à plusieurs endroits différents du code. Il se termine par une instruction de retour qui redonne le contrôle à l’instruction suivant l’appel.

●
Le mécanisme est le suivant : L’instruction appelante CALL provoque la mise en pile du contenu du pointeur d’instruction, avec celui du segment de code dans le cas d’un appel FAR, et un saut est effectué à l’adresse figurant en paramètre. Quand une instruction de retour RET, ou bien RETF s’il s’agissait d’un appel FAR, est rencontrée, le pointeur d’instruction, avec le cas échéant le segment de code, sont dépilés, et l’exécution continue juste après l’appel puisque c’est cette adresse qui avait été mise en pile. Si l’instruction RET a un paramètre numérique, le pointeur de pile est incrémenté de sa valeur une fois que l’adresse de retour a été dépilée.

Les instructions d’appel de sous programme existent aussi sous forme conditionnelle.

 LISTNUM \L3Les instructions de décalage et de rotation

●
Ces instructions permettent de décaler d'un côté ou de l'autre les bits des registres accumulateurs (AX et BX, et donc AH, AL, BH, BL.) Cette opération qui semble inutile a en fait plusieurs applications très intéressantes, dont :

–
permettre de lire un à un les bits du registre (car les bits sortant à gauche positionnent l'indicateur de retenue CR)

–
permettre une multiplication par 2n (en effet le fait de décaler un nombre binaire d'un chiffre à gauche le multiplie par 2, ainsi en effectuant cette opération n fois on obtient une multiplication par 2n)

exemple :
00010 (2 en décimale)
00100 (on décale à gauche on obtient 4)
01000 (on décale à gauche à nouveau, on obtient 8)

–
permettre une division par 2n (comme précédemment mais en effectuant une rotation sur la droite)
Une opération de décalage déplace chacun des bits d'un nombre binaire sur la gauche (ou la droite), mais ceux-ci sortent, c'est-à-dire qu'ils sont définitivement perdus, lorsqu'ils arrivent au bit de poids fort (ou de poids faible.)

exemple :
0001110000
0011100000 (on décale d'un bit à gauche)
0111000000 (on décale d'un bit à gauche)
1110000000 (on décale d'un bit à gauche)
1100000000 (on décale d'un bit à gauche)
1000000000 (on décale d'un bit à gauche)
Une opération de rotation agit comme une opération de décalage à la différence près que les bits qui sortent d'un côté rentrent de l'autre...

exemple :
0001110000
0011100000 (on effectue une rotation d'un bit à gauche)
0111000000 (on effectue une rotation d'un bit à gauche)
1110000000 (on effectue une rotation d'un bit à gauche)
1100000001 (on effectue une rotation d'un bit à gauche)
1000000011 (on effectue une rotation d'un bit à gauche)
Les opérations courantes de rotation et de décalage sont les suivantes:

RCL registre, 1 (Rotate Carry Left) :

Effectue une rotation des bits sur la gauche en passant par l'indicateur de retenue CF. Le contenu de CF est introduit à droite, puis le bit de poids fort est copié dans CF.

RCR registre, 1 (Rotate Carry Right):
Effectue une rotation des bits sur la droite en passant par l'indicateur de retenue CF. Le contenu de CF est introduit à gauche, puis le bit de poids faible est copié dans CF.

ROL registre, 1 (Rotate Left):
Effectue une rotation des bits sur la gauche. Le bit de poids fort est copié dans CF et réintroduit à droite

ROR registre, 1 (Rotate Right):
Effectue une rotation des bits sur la droite. Le bit de poids faible est copié dans CF et réintroduit à gauche

SHL registre, 1 (Shift Left):
Décale les bits du registre indiqué de 1 bit vers la gauche. (Les bits sortants sont transférés dans l'indicateur de retenue CF mais ne sont pas réintroduits à droite)

SHR registre, 1 (Shift Right):
Décale les bits du registre indiqué de 1 bit vers la droite. (Les bits sortants sont transférés dans l'indicateur de retenue CF mais ne sont pas réintroduits à gauche)

Toutes ces instructions existent aussi sous la forme OP registre,CL , qui sont équivalente à CL fois l’instruction représentée par OP.

Les instructions RCL et RCR permettent de faire une lecture bit à bit du contenu du registre.
Les instructions SHL et SHR permettent de faire une multiplication par 2n sur des entiers naturels (pas sur des entiers relatifs car le bit de poids fort disparaît dès la première rotation.)
 LISTNUM \L3Les interruptions logicielles

●
Les instructions d’interruption logicielle INT permettent de simuler une interruption matérielle. Elles ont pour paramètre le numéro d’interruption allant de 0 à 255, soit un octet. Leur fonctionnement est similaire à celui des instructions d’appel sauf qu’en plus, le registre des indicateurs est sauvegardé sur la pile. L’adresse appelée est lue dans une table commençant à l’adresse 0:0, et qui contient les segments et les offsets des sous programmes correspondants aux numéros d’interruption. La même table est utilisée par les interruptions matérielles. Les sous-programmes d’interruption doivent se terminer par une instruction IRET, afin que le registre des indicateurs soit aussi restauré.

Certaines de ces interruptions sont réservées au fonctionnement du processeur et au BIOS (Basic Input Output System), c’est-à-dire les couches les plus basses du système d’exploitation.

 LISTNUM \L3Divers
NOP : ne rien faire (mon instruction préférée.)

HLT : arrêt jusqu’à la prochaine interruption.

WAIT : attente tant que la broche TEST du processeur est à 1.

ESC : appel d'une instruction en virgule flottante destinée au coprocesseur 8087, intégré au processeur depuis le 80486.

CLC : met l’indicateur de retenue à 0.

STC : met l’indicateur de retenue à 1.

CLC : met l’indicateur de retenue à 0.

CMC : change la valeur de l’indicateur de retenue.

CLD : met l’indicateur de direction à 0.

STD : met l’indicateur de direction à 1.

 LISTNUM \L2Les Préfixes

●
Des préfixes, donc placés avant une instruction, permettent de modifier provisoirement les registres utilisés par défaut, ou de répéter l’instruction. Ils sont codés sur un octet.

CS:, ES:, DS: et SS:: définit le segment à utiliser à la place du segment par défaut.

REP: : Décrémente CX après l’instruction et la répète tant que CX n’est pas nul. Elle est donc répétée CX fois.

REPZ: ou REPE: : répète l’instruction si ZF=0.

REPNZ: ou REPNE: : répète l’instruction si ZF=1.

LOCK: : réservation du bus pour l'instruction (si bus multi-maîtres.)

 LISTNUM \L1API et interruptions

 LISTNUM \L2Appel de procédure

●
J'utiliserai la convention C pour l'appel de procédure: empilage des paramètres en ordre inverse de la spécification, appel de la procédure, mise à jour de la pile (dépilage des paramètres) après le retour de la procédure

ex : appel d’une fonction ayant 3 paramètres de 4 octets chacun (mots doubles)

 push param3

 push param2

 push param1

 call proc

 add esp, 0C

●
La valeur de retour éventuelle est stockée dans le registre EAX.

NB: pour les appels à l'API Windows, c'est la convention Pascal qui est appliquée, c'est-à-dire que c'est la procédure appelée qui se charge de nettoyer la pile.

 LISTNUM \L2Les API Windows

●
L’Application Programming Interface Windows est un ensemble de procédures mises à la disposition du programmeur pour lui faciliter la tâche et lui permettre d’accéder à des services système et graphiques.

Voici, par exemple, comment appeler une Boîte de message (i.e. une MessageBox) en assembleur :

 push 00000033 ; type de MessageBox : EX : "Choix des boutons"

 push 00402028 ; titre : "APRES LE CALL MessageBox"

 push 00402000 ; contenu : "TOUT DEPEND DE EAX"

 push 00000000 ; le quatrième définit le n° de la fenêtre

 ; (handle.)

 Call User32 ! MessageBoxA ; affichage de la boîte de message.

●
Le suffixe Ex dans certaines fonctions signifie Extended (nouvelle version d'une fonction déjà existante.) Le suffixe A dans certaines fonctions indique une version 32 bits de la fonction (par ex. MessageBoxA.) Par extension, j’appellerai API toute fonction faisant partie de l’API.

 LISTNUM \L2Les services BIOS et DOS

●
Les services BIOS et DOS sont l’équivalent des API Windows et sont accessibles grâce aux interruptions logicielles en passant des paramètres dans des registres précis en fonction du service appelé. Le type de service est indiqué dans le registre AH. L’appel de ces services se fait bien sûr en assembleur. Exemple :

 mov ah,2ah ; service détermination de la date

 int 21h ; appel de l’interruption logicielle

 mov ax,cx ; année dans AX

–
Les interruptions 10h à 1Ah appellent les services du BIOS qui gèrent le matériel, comme clavier, écran, disque dur...

–
L’interruption 21h appelle les services du DOS : gestion des fichiers, de la mémoire, des programmes, entrées/sorties...
 LISTNUM \L1Les protections

 LISTNUM \L2Principe de base des protections

●
La plupart des protections consistent à vérifier la validité de l’utilisation du logiciel et à réagir en conséquence. Par exemple, si le programme doit se désactiver 30 jours après son installation, celui-ci teste la date courante à chaque exécution et empêche l’exécution si le délai est dépassé.

Ce qui se traduit par un code du type suivant :

 call proc_de_test ; appel de la procédure de test et stockage du

 ; résultat dans eax

 cmp eax, valeur_correcte ; comparaison du code de retour avec la

 ; valeur correcte

 jne good_by ; s’ils ne sont pas égaux, branchement sur la

 ; sortie du programme

●
Généralement, avant la sortie réelle du programme, celui-ci affiche un message indiquant le pourquoi de la sortie (par exemple : Votre période d’évaluation a expiré.) Ce type de message fait appel à des API bien connues des crackeurs (par ex. MessageBoxA) et peuvent être facilement breakpointées (c'est-à-dire que l’on peut indiquer au débogueur de prendre la main dès que la fonction est utilisée), ce qui permet d’accéder au cœur de la protection. Dans les chapitres concernant les différents types de protection, je listerai les différentes fonctions couramment utilisées par chaque protection pour vous permettre de localiser leurs points faibles. Une bonne protection doit éviter tant que faire se peut l’utilisation de ces fonctions.

En effet une fois que le crackeur aura repéré une section de programme à éviter (comme au_revoir), il s’efforcera de remonter le cours du programme pour déterminer à quel endroit se fait le choix entre la section good_guy (tout_va_bien) et la section bad_guy (au_revoir) et à forcer ce choix vers good_guy.

Dans l’exemple précédent, il est évident que l’on ne veut pas aller à au_revoir. On veut donc ne pas faire de saut et continuer l’exécution normale du programme. On peut donc remplacer l’instruction JNE au_revoir par des instructions NOP (ne rien faire.)

Ainsi, quelle que soit la valeur retournée par proc_de_test, le programme s’exécutera normalement. Une autre solution aurait été de transformer JNE (Jump if Not Equal) en JE (Jump if Equal.) Ainsi on ne se branche sur au_revoir que si proc_de_test renvoie une valeur correcte (ce qui arrive rarement si proc_de_test consiste à contrôler la validité d’un mot de passe par exemple.)

Vous vous dites certainement que ce type de protection est stupide et tellement simple à cracker, mais c’est pourtant ce à quoi se résument la plupart des protections : un test et un saut. Les présentes ont justement pour but de permettre des protections moins stupides.

Un autre moyen de rentrer au cœur d'une protection est de rechercher dans le dead listing le texte inscrit dans la boîte à message affichée par au_revoir. En effet, ce texte est stocké dans la zone data du programme et son adresse est passée en paramètre de la fonction affichant la boîte à message. Cette technique est aussi efficace qu'un breakpoint sur la fonction. Donc, si vous utilisez votre propre fonction d'affichage des messages pour éviter les breakpoints, n'écrivez pas en clair votre message. Codez-le de façon simple (le but est juste d'empêcher le repérage dans un fichier texte), décodez le grâce à une fonction et envoyez le à votre fonction d'affichage.

La science du crackeur consiste à abuser largement des faiblesses de ce type. Dans les prochains chapitres je ne décrirai pas ce type de crack (étant entendu que ce sont les premiers à tenter.)

La science du « protecteur » consiste à éviter à tout prix un accès facile à sa protection, à bien cacher ses tests, à en effectuer plusieurs à des endroits très différents ou encore mieux : ne pas utiliser de tests.

 LISTNUM \L2Saut conditionnel

Voici un schéma d'une protection utilisée presque tout le temps.

[image: image14.jpg]

JNE est un saut conditionnel. Il saute si le code est faux (saut si pas égal.)
JMP est aussi un saut. Il saute obligatoirement (saut.)

Ce qui donne à peu près en assembleur :

 :00401001 &&&& Teste si le code est bon.
 :00401002 7502 jne 00401009

 * Possible StringData Ref from Data Obj ->"Le code est bon" <= Message

 | d'une boîte de dialogue
 :00401004 68&&&& push &&&&

 :00401007 EB04 jmp 0040100C

 Referenced by a (U)nconditional or (C)onditional Jump at Address:

 |
 |:00401002(U) <= Indique que le message suivant est appelé par un saut conditionnel

 (L’adresse de celui-ci est à gauche du « (U) » : 00401002)
 * Possible StringData Ref from Data Obj ->"Le code n'est pas bon"
 |

 :00401009 68&&&& push &&&&
 :0040100C &&&& &&&&&

Après ces schémas, vous avez donc compris (du moins je l'espère) que c'est le JNE qu'il faut changer. Mais vous allez me dire : « Comment qu'on change un saut conditionnel »?

Regardez le schéma en assembleur et plus précisément la ligne 00401002 avec le JNE. Dans le code hexa, on voit 7502. Et bien le 75 c'est notre JNE. Tout comme le JMP qui correspond à EB.

Voici une petite liste de sauts conditionnels que vous pourrez trouver le plus souvent :

	Type de saut
	Valeur en hexadécimal
	Description

	jne
	75 ou 0F85
	Saut si non égal

	je
	74 ou 0F84
	Saut si égal

	jmp
	EB
	Saut

	nop
	90
	Pas d'opération

Pour modifier un saut, il suffira donc de rechercher sa valeur et de la modifier avec l'éditeur hexadécimal. Par exemple pour le schéma ci-dessus on mettra un JE (il sautera à « Code bon » si le code est mauvais) ou NOP (il ne sautera pas du tout et ira donc directement vers « Code bon ») à la place de JNE.

 LISTNUM \L2CD check

●
Les protections de ce type sont très fréquentes dans les jeux. Elles empêchent simplement l’utilisateur de lancer le programme si le CD original n’est pas dans le lecteur CD.

●
Dans beaucoup de cas toute l’information est copiée sur le disque dur à l’installation, faisant de la présence du CD une simple question de copyright et non une nécessité technique. Dans d’autres cas cependant une partie de l’information reste sur le CD rendant sa présence indispensable. Dans le premier cas, la protection consiste à vérifier la présence (et éventuellement le contenu) d’un fichier clé sur le CD, voire même pour les protections les plus simples, à contrôler uniquement la présence d’un CD.

Les techniques de crackage consistent alors à placer le fichier clé sur le disque dur et à faire croire au programme que le disque dur est un lecteur CD, ou bien à utiliser des émulateurs de CD prêts à l’emploi (comme FakeCD ou Subst.) Les API utilisées pour ce genre de tests sont classiquement :

	Fonction
	Définition

	GetDriveType
	Détermine le type du disque passé en paramètre (renvoie 5 pour un lecteur CD)

	GetLogicalDrives
	Détermine la présence de disques

	GetLogicalDriveStrings
	Renvoie les noms des disques présents

	FindFirstFile
	Recherche un fichier dans un répertoire

	GetFileAttributes
	Récupère les attributs du fichier spécifié

	GetFileSize
	Renvoie la taille en octets du fichier passé en paramètre

	ReadFile
	Lit un certain nombre d’octets à une position spécifiée dans un fichier

	GetLastError
	Détermine le type du disque passé en paramètre (renvoie 5 pour un lecteur CD)

●
On peut également utiliser les services DOS de l'interruption 21 (INT 21) :
	Service
	Définition

	3D
	open file

	3F
	read file

 LISTNUM \L3Vérification de la présence d'un CD

●
Essayer d'écrire sur le lecteur CD qu'on a détecté et activer la protection si l'écriture a été réussie (donc le lecteur n'était pas un lecteur CD) permet de piéger certains émulateurs CD qui ne désactivent pas les droits d'écriture sur le disque émulé.

●
Une technique classique pour déterminer quel est le lecteur CD et la suivante :

–
placer « C:\ » dans une variable, par exemple xrom

–
tester si xrom est un lecteur CD en utilisant GetDriveTypeA

–
si le résultat est différent de 5, incrémenter la lettre dans xrom et tester à nouveau

–
sinon utiliser xrom comme lecteur CD

Ici le crack est simple :

–
placer le nom de lecteur désiré à la place de « C:\ » (Cette chaîne se trouve normalement dans la zone data du programme et est facile à modifier)

–
remplacer l'appel à GetDriveTypeA (call GetDriveTypeA) par mov eax, 00000005 ou bien remplacer la comparaison avec 5 par une comparaison avec 3 (disque dur.)

 LISTNUM \L3Vérification de la présence d’un fichier

 push "%s\fichier_clé" ; passage de la chaîne "%s\fichier_clé"

 ; en paramètre à la variable

 ; complétion_du_chemin

 call complétion_du_chemin ; remplacement de %s par le chemin du

 ; lecteur CD

 push eax ; passage du chemin complet en paramètre

 ; à tests_sur_le_fichier_clé

 call tests_sur_le_fichier_clé ; tests quelconques;

Ici le fichier clé est clairement identifié. On peut donc le copier sur disque dans le répertoire de l'exécutable et remplacer %s par . (=> push " .\fichier_clé") ce qui indique au programme de chercher fichier_clé dans le répertoire courant c'est-à-dire le répertoire de l'exécutable.

 LISTNUM \L2Mots de passe (serial number)

●
Ici la protection consiste à autoriser l’utilisation sans restriction du logiciel à l’utilisateur si celui rentre un bon mot de passe. Celui-ci devient alors un “ utilisateur enregistré ” (registered user.)

Généralement la procédure d’enregistrement consiste à entrer son nom puis à entrer un mot de passe calculé à partir du nom. Ce mot de passe s’achète au vendeur du logiciel. Lorsqu’il est entré, il est comparé au mot calculé par le programme à partir du nom. Ou bien, seul un mot de passe est entré, et après avoir été crypté il doit être égal à un des mots de passe cryptés déjà présents dans une liste contenue dans le logiciel.

 Ici le travail du crackeur consiste soit à retrouver en mémoire le mot de passe calculé, soit à étudier la procédure de calcul du mot de passe et à réaliser un programme qui utilisera cette procédure pour générer des mots de passe à partir de n’importe quel nom (on parle de générateur de clé.)

Le deuxième cas ne sera pas étudié puisque les procédures de calcul peuvent être très différentes et qu’elles impliquent une analyse mathématique. Le crackeur pourrait contourner la procédure d’enregistrement, et c’est l’occasion de l’avoir au virage en incluant des procédures supplémentaires de vérification à des endroits stratégiques.

En général les programmeurs utilisent des API standards pour effectuer la saisie des informations : une boîte de dialogue apparaît contenant un ou plusieurs champs de saisie de texte, un bouton OK et un bouton Annuler.

La récupération du texte se fait avec GetDlgItemTextA ou GetWindowTextA et de toute façon avec Hmemcpy qui est une primitive noyau pour écrire en mémoire. La récupération des caractères peut se faire un par un (privilégiez cette technique, c’est très énervant pour le crackeur) ou en bloc après la validation de la saisie.

La technique de crackage consiste à repérer les informations saisies dans la mémoire et à suivre les traitements qui leur sont appliqués jusqu’au test final (pour les protections les plus simples.) Pour cela il faut placer un breakpoint sur une des fonctions précédentes, chercher dans la mémoire la chaîne qui vient d’être saisie, placer un breakpoint sur la lecture ou l’écriture dans cette zone de mémoire et se lancer dans l’analyse de toutes les sections de code manipulant la chaîne (ce qui peut être très long et fastidieux si la chaîne a été copiée en plusieurs endroits et est traitée par de nombreuses procédures, d’ailleurs ici rien n’empêche de créer des procédures bidon juste pour énerver.)

Pour que cette protection soit efficace, une bonne procédure de cryptage est nécessaire et la validation du mot de passe ne doit pas se faire sur de simples comparaisons. Il vaut mieux utiliser les résultats de traitements sur les différentes chaînes pour activer ou non les bonnes procédures, placer certaines valeurs en mémoire et les réutiliser plus tard comme condition au bon déroulement du programme.

D’une manière générale, il faut lier étroitement le résultat des calculs et les fonctions vitales du programme quitte à planter le programme si une valeur n’est pas correcte. De plus il faut différer au maximum les conséquences de la saisie d’un mauvais mot de passe voire même ne pas prévenir l’utilisateur qui a entré un mauvais mot de passe.

Mais toutes ces précautions seront inutiles si le crackeur trouve directement le mot de passe en mémoire ou dans un registre, juste avant qu’il soit comparé avec celui entré lors de la procédure d’enregistrement. Il est préférable de réaliser aussi un calcul sur le nom avant la comparaison.
Nous allons maintenant étudier une section de code classique (saisie du nom puis du mot de passe.) Ici, c’est un breakpoint sur GetDlgItemTextA qui nous fait rentrer dans le code.

Les paramètres de cette API sont :

–
un pointeur sur la zone de saisie du texte

–
l’adresse où devra être stockée la chaîne

–
le nombre maximal de caractères à lire

Valeur de retour : le nombre de caractères de la chaîne ou 0 si l’opération échoue. Rappel : les paramètres sont empilés en sens inverse

 push 0000000F ; empilage du nombre maximal de caractères

 ; à lire

 lea eax, [ebp-2C] ; on charge eax avec l’adresse ebp-2C

 push eax ; empilage de l’adresse de stockage

 ; de la chaîne

 push 00000404 ; empilage du paramètre de contrôle

 push [ebp+08] ; empilage du pointeur sur la zone de saisie

 ; du texte

 Call [USER32!GetDlgItemTextA] ; un breakpoint sur GetDlgItemTextA

 ; nous amène ici

 mov edi, eax ; eax contient la valeur de retour (longueur

 ; de la chaîne) qu’on stocke dans edi
A ce niveau, si on visualise le contenu de [EBP-2C], on peut voir le nom que l’on a entré.
Il faut placer un breakpoint en lecture sur la zone mémoire [EBP-2C] ([EBP-2C+EDI] pour surveiller les traitements effectués sur le nom.

 push 0000000B

 lea ecx, [ebp-18]

 push ecx

 push 0000042A

 push [ebp+08]

 call [USER32!GetDlgItemTextA]

 mov ebx, eax

La même procédure est utilisée pour lire le mot de passe :

 test edi, edi ; le programme teste si le nombre de

 ; caractères dans le nom est égal à 0

 jne 00402FBF ; s’il n’est pas égal à 0, on continue à

 ; l’adresse 00402FBF

 :00402FBF cmp ebx, 0000000A ; comparaison du nombre de caractères du

 ; mot de passe avec 10

 je 00402FDE ; si égal, saut vers 00402FDE

Ici on sait que le mot de passe doit faire 10 caractères.

 :00402FDE xor esi, esi ; on met esi à 0

 :00402FE0 xor eax, eax ; idem pour eax

 :00402FE2 test edi, edi ; souvenez-vous que edi contient

 ; la longueur du nom (ce test

 ; est superflu)

 :00402FE4 jle 00402FF2

 :00402FE6 movsx byte ptr ecx,[ebp-2C+eax] ; ebp-2C contient l’adresse du

 ; nom. On place donc dans ecx le

 ; eaxième caractère du nom. Le

 ; breakpoint sur l’adresse du nom

 ; nous aurait amené ici.

 :00402FEB add esi, ecx ; on ajoute ecx à esi

 :00402FED inc eax ; on incrémente eax pour passer à

 ; la lettre suivante

 :00402FEE cmp eax, edi ; on compare eax à la longueur du

 ; nom (i.e. est-on est au dernier

 ; caractère du nom)

 :00402FF0 jl 00402FE6 ; si eax est inférieur à edi on

 ; reboucle sur 00402FE6

Cette section de code additionne les caractères du nom et le résultat se trouve dans ESI. Nous allons maintenant voir ce qui est fait avec cette valeur.

 :00402FF2 push 0000000A ; empilage de paramètres pour la fonction

 ; suivante. Ici on empile 10 (ce qui n’est

 ; probablement pas sans rapport avec la

 ; longueur attendue pour le mot de passe)

 :00402FF4 lea eax, [ebp-18] ; souvenez-vous que ebp-18 contient

 ; l’adresse du mot de passe

 :00402FF7 push 00000000 ; un autre paramètre

 :00402FF9 push eax ; empilage de l’adresse du mot de passe

 :00402FFA call 00403870 ; mais que fait donc cette fonction ?

 :00402FFF add esp, 0000000C ; mise à jour de la pile (nettoyage

 ; des paramètres)

 :00403002 je 00403020 ; on compare la valeur de retour de la

 ; fonction avec la somme des caractères

 ; du nom !!!!

 :00403004 cmp eax, esi ; LE TEST

Si on visualise EAX, on constate qu’il contient la valeur numérique du mot de passe entré (il fallait entrer des chiffres.) La fonction 00403870 convertissait juste le nombre codé en ASCII en valeur numérique.

Ici le crack est évident : le programme a effectué un calcul sur le nom, puis un calcul sur le mot de passe et enfin il compare les deux valeurs. Il suffit donc de transformer le JE 00403020 en JMP 00403020 et quel que soit le résultat de la comparaison, on se branchera sur la bonne section. Il ne faut pas oublier que le mot de passe doit contenir 10 caractères.

Dans ce cas-là il est même facile de faire un générateur de clé puisque pour n’importe quel nom, le mot de passe est la somme de ses caractères ASCII.

Cet exemple est tiré d’un programme existant. Dans ce cas-là l’algorithme de cryptage était très simple mais même dans le cas d’algorithmes plus compliqués la protection se termine souvent sur un test. Vous avez vu à quel point il est facile de cracker cette protection, donc évitez les tests de ce type, c’est-à-dire :

 if (nom_crypté == mot_de_passe)

 good_guy() ;

 else

 bad_guy() ;

Time check

Ce type de protection est utilisé par les versions d’évaluation de logiciels qui autorisent l’utilisation du logiciel pendant un certain nombre de jours après l’installation (en général entre 15 et 90 jours) ou même pendant un certain laps de temps après le lancement de l’application (15 minutes par exemple.) Cette protection est généralement couplée à un mot de passe qui permet de désactiver la protection.

Les API couramment utilisées sont :

	Fonction
	Définition

	GetCurrentTime
	Retourne le temps écoulé depuis le démarrage de Windows

	GetFileTime
	Retourne les dates de création, de dernière modification et de dernière lecture d’un fichier

	GetLocalTime
	Retourne l’heure et la date locales

	GetSystemTime
	Retourne l’heure et la date système

	GetTickCount
	cf. GetCurrentTime

	GetTimeZoneInformation
	Renvoie les informations nécessaires pour convertir l’heure universelle en heure locale

	SetTimer
	Initialise une horloge qui envoie un message Windows ou appelle une fonction TimerProc associée à l’horloge à intervalles réguliers

	KillTimer
	Désactive un timer

	TimerProc
	Fonction associée à une horloge

Les protections qui désactivent le logiciel peu de temps après son lancement utilisent la fonction SetTimer.

Les programmes qui utilisent la date d’installation doivent stocker cette date. Ils le font généralement dans la base de registre ou dans un fichier qu’ils créent dans leur répertoire. Cette date est normalement cryptée. Ils peuvent également modifier un fichier lors de leur premier lancement et contrôler la date associée à ce fichier. A chaque lancement du programme, celui-ci récupère la date courante (grâce à GetLocalTime ou une fonction de même type) et la compare à la date d’installation.

Les points d’entrée dans cette protection se situent au niveau des fonctions manipulant des dates et des fonctions de lecture de fichiers ou de base de registre.

Pour comparer la date d’installation et la date courante, ne décryptez pas la date stockée pour la comparer avec la date renvoyée par une API. Cryptez plutôt la date courante et effectuez ensuite la comparaison.
Clé électronique

Les clés électroniques ou « bouchons » sont des composants que l’on branche généralement sur le port parallèle et qui offrent des services liés à la protection (décryptage de mots de passe, time check...) De plus, la plupart du temps le programme se désactive si la clé n’est pas branchée. Ces clés ne font que fournir des services : elles sont l’équivalent de fonctions que vous auriez pu créer. A ce titre elles ne suffisent pas à garantir la sécurité de vos applications comme peuvent le prétendre les vendeurs de ces clés. L’implémentation de ces services dans votre programme est la véritable clé de la réussite comme pour toute autre protection. De plus la communication avec le port parallèle se fait sur le port 0x378 (quasiment tout le temps) ou 0x3BC ou 0x278, donc tout appel de service peut être repéré et propulse le crackeur en plein cœur de votre protection.

	
Deuxième partie - La pratique

	[image: image15.png]R
(i

 LISTNUM \L1Utilisation des outils

 LISTNUM \L2 WinDasm

●
WinDasm est un désassembleur/débuggeur (nous allons au départ nous intéresser qu'au mode du désassemblage.) Il sert à voir les instructions d'un exécutable (*.exe en général.)

●
Ci-dessous les commandes de WinDasm :

	Boutons
	Usage

	[image: image16.bmp]
	Ouvre un exécutable.

	[image: image17.bmp]
	Sauvegarde les pages du programme désassemblé, permettant ainsi de le rouvrir plus rapidement par la suite. Pour l'ouvrir cliquez sur "Project" >>> "Open Project File...".

	[image: image18.bmp]
	Recherche de texte ou de nombre.

	[image: image19.bmp]
	Permet de copier le texte une ligne, mais il faut d'abord cliquez à gauche de la ligne afin d'obtenir un point rouge.

[image: image20.jpg]00405ECD 8B4EZ8 mov ecx, dword ptr [esi+Z8.
®:00405ED0 GBES nov ebp, eax
0040SBD2 8B4624 AP AN o DEE [RRLLZAL

	[image: image21.bmp]
	Va directement au début du code (il y a avant des informations qui n'en font pas partie)

	[image: image22.bmp]
	Va au point d’entrée du code, c’est-à-dire la première instruction exécutée.

	[image: image23.bmp]
	Va à la page choisie (le numéro de page étant inscrit en bas à gauche).

[image: image24.jpg]' Line: 336634 Pg003of 6181 Code Data @ 004B1BBE

	[image: image25.bmp]
	Va à l'offset choisi.

	[image: image26.bmp]
	Permet d'allez là où le saut arrive (voir paragraphe sur les sauts, plus bas.)

	[image: image27.bmp]
	Permet, après avoir utilisé la commande précédente, de revenir au saut.

	[image: image28.bmp]
	Permet d'allez là où le call arrive.

	[image: image29.bmp]
	Permet, après avoir utilisé la commande précédente, de revenir au call.

	[image: image30.bmp]
	Pour trouver les fonctions et modules importés des fichiers de bibliothèque dynamique *.dll (ex : ouvrir une boîte de dialogue, supprimer un menu...)

	[image: image31.bmp]
	Pour trouver les fonctions exportées.

	[image: image32.bmp]
	Affiche en hexadécimal et ASCII le contenu du segment de données.

	[image: image33.bmp]
	Affiche en hexadécimal et ASCII le contenu du segment de code à partir de la ligne courante.

	[image: image34.bmp]
	Permet de trouver les références aux commandes des menus (ex : copier, coller, nouveau...)

	[image: image35.bmp]
	Permet de trouver les références aux boîtes de dialogues (ex : "Code invalide")

	[image: image36.bmp]
	Un des plus importants. Il permet de trouver référence aux messages des boîtes de dialogues (ex : "Code invalide")

	[image: image37.bmp]
	Permet d'imprimer des pages.

Au fait, la version de WinDasm est la 8.9. Si vous trouvez la 8.5, c’est mieux car vous aurez alors plus de StringData References paraît-il. WinDasm ne sert pas seulement à lire, on peut aussi exécuter un programme pas à pas avec.

Après l'avoir téléchargé, lancez-le. J'entends déjà des personnes s'exclamer : « oh non! C'est en anglais ». Ne vous inquiétez pas, n'importe quelle personne ne parlant pas anglais peut l'utiliser facilement. N’importe quelle personne parlant l’anglais aussi, d’ailleurs.

Tout d'abord cliquez sur Disassembler/Font.../Select Font et choisissez la police que vous voulez, cliquez sur « Ok », puis cliquez de nouveau sur Disassembler/Font.../Save Default Font pour, vous l'aurez compris, sauvegarder la police. Ensuite cliquez sur Disassembler/Disassembler Options et cochez les 3 cases.

Maintenant ouvrez n'importe quel fichier exe pas trop lourd, car c'est un peu long à charger, en cliquant sur Disassembler/Open file to disassemble… Et là vous allez me dire : « mais qu'est-ce que c'est ce machin? J'comprends rien ». Mais c'est normal. Le langage que vous voyez dans WinDasm est de l'assembleur.

Voici un exemple de ce qu’on peut voir :

 :004265CD 394424243C cmp dword ptr [esp+3c],eax

 :004265D1 7D0A jge 004265dd

 :004265D3 8B44243C mov eax, dword ptr [esp+3c]

 :004265D7 89442414 mov dword ptr[esp+14],eax

 :004265DB EB08 jmp 004265B5

 | |

 |___ Langage assembleur

 | |

 | |_____________ Langage machine

 |

 |_______________________ On s’en fiche (c’est des adresses comme

 les lignes 10,20,30… En basic) = les offsets

Cliquez sur Refs/String data references, puis double cliquez sur un des messages dans la fenêtre qui apparaît.

Vous pouvez avoir par exemple le listing suivant :

 * possible string data ref from data obj -> ‘’ receiver regenerated’’

 |

 :00470046 685C5B4A push 004A5B5C

 :0047004B EB05 jmp 00470052

Supposons qu’on veuille changer ce saut JMP en un saut JE. On double-clique sur la ligne qui le contient, on voit alors dans la barre d’état un texte qui se termine par :

 @Offset &&&&&&&& in File:filename.exe

Ce qui donne l’offset dans le fichier *.exe de l’octet qu’on veut modifier. Pour écrire dans le programme, il faut utiliser un éditeur hexadécimal. Mais avec lui on ne voit que le langage machine et pas présenté de la même manière. Pour ce programme on verrait :

 .. 39 44 24 24 3C 7D 0A 8B 44 24 3C 89 44 24 14 EB 08

JMP est codé par EB en langage machine. Quant à JE, son code est 74 en langage machine. Voilà ce qu’on sait, on veut changer un JMP en JE donc un EB en 74 en langage machine.

 LISTNUM \L2 Editeur hexadécimal

Un éditeur hexadécimal (HexWorkShop pour l'exemple, mais ils sont tous presque pareils) est un outil avec lequel on peut modifier des octets de n'importe quel fichier. C'est pour ça qu'il vous en faut un avec WinDasm si vous voulez cracker. Ce dernier sert à voir où et quoi modifier et l'éditeur permet de modifier.

On peut normalement cracker seulement avec un éditeur hexadécimal (ex : pour enlever les nag-screens, boîtes de dialogue avec écrit le plus souvent : « Vous n'êtes pas enregistré », ou pour pouvoir utiliser une commande de menu qui ne peut normalement pas être utilisé.) On peut également se servir que de WinDasm mais juste pour trouver les bons serials en utilisant le mode débuggeur (je vous expliquerai ça plus tard.)

Ouvrez HexWorkShop. Chargez le programme en faisant File/Open. Vous voyez alors sa liste mais uniquement en langage machine.

Dans notre exemple précédent, faites : Edit/Goto, vérifiez que Hex et Beginning of File sont sélectionnés, tapez l’offset de l’octet à modifier, et cliquez sur Go.

Quand vous avez repéré EB, vous mettez un 74 à la place. Et sauvegardez simplement avec Save as… en changeant le nom.

Juste pour voir, vérifiez donc que EB est devenu un 74 donc JMP un JE avec WinDasm.

 LISTNUM \L2 SoftICE
●
SofICE est un débuggeur, comme le fait aussi WinDasm, mais en bien plus avancé. Il s’installe en mémoire au démarrage et peut être appelé à n’importe quel moment avec la hot key Ctrl-D.
L’écran de SoftICE est divisée en plusieurs fenêtres montrant les données et permettant de les modifier : le contenu des registres et indicateurs, le code désassemblé, le contenu de la mémoire, les variables stockées dans la pile, pour les principales, et une fenêtre pour entrer les commandes et afficher des informations. Il apparaît dès qu’on tape sur Ctrl-D, tous les programmes en cours sont alors suspendus. C’est à ce moment là qu’il est possible de poser des breakpoints sur des adresses de programme ou des emplacements mémoire, d’exécuter une application pas à pas, et tout ce qui fait le charme d’un débuggeur.
SoftICE a une multitude de commandes, avec des syntaxes parfois très complexes. Tout cela est utile pour débuggeur tout ce qui est susceptible de tourner sur un PC, opération très délicate. Mais pour notre usage, nous allons donner seulement les commandes principales.
H (ou F1) : (Help) aide en ligne, la commande qui fait tout !
BPX (ou F9) : pose un breakpoint, ou l’efface s’il y en a déjà un.
BC : efface tous les breakpoints.

BPMD : pose un breakpoint mémoire. Le registre de débuggage du processeur est utilisé pour stopper l’exécution lors d’un accès mémoire à cet emplacement, qui doit être l’adresse d’un double mot (multiple de 4.)
? : évalue l’expression qui suit.

D : (Dump) affiche une zone mémoire dans la fenêtre de données.
T (ou F8) : Trace une instruction, c’est-à-dire l’exécute, et si c’est un appel de sous-programme, va à l’adresse appelée.
P (ou F10) : exécution pas-à-pas, c’est-à-dire que si l’instruction est un appel de sous-programme, ce dernier est exécuté en entier et le programme s’arrête après l’instruction d’appel.
G (F11) : (Goto) exécute le programme jusqu’à l’adresse indiquée.
X (ou F5) : (eXit) comme G, mais sans indiquer d’adresse. SoftICE perd alors le contrôle et l’application continue son exécution jusqu’au prochain breakpoint rencontré, s’il y en a un.
Les fonctions plus avancées sont par exemple les macros, les breakpoints conditionnels, l’interception des erreurs, l’affichage du code source...

Maintenant passons aux choses sérieuses et crackons un crackme pour de bon.

 LISTNUM \L1Quelques tutoriaux
 LISTNUM \L2Cracker un crack-me

●
Objectif : Cracker un crack-me en modifiant un saut conditionnel.

●
Le but est de cracker le crack-me pour arriver sur un bon message quand on clique sur OK. Il faut donc modifier un saut.

On lance le cracke-me pour voir comment il se présente et on relève le titre du message d'erreur et son contenu.

On désassemble ce crack-me avec WinDasm et on clique sur [image: image38.bmp] pour trouver le message d'erreur. On double-clique sur ce message (« Ahhh! Tu n'as pas réussi » ou « FATAL ERROR !! ») On vérifie qu'il n'y en a qu'un seul en double-cliquant encore une fois (dans certains programmes le message peut apparaître plusieurs fois.)

On remonte un peu, et là on aperçoit juste avant le message :

 * Referenced by a (U)nconditional or (C)onditional Jump at Address:

 |:00401016(U)

Il est donc appelé par un saut à l'adresse 00401016. On va donc à cette adresse soit en remontant les lignes ou en la recherchant (avec MAJ+F12 ou Goto/Goto Code Location.)

Arrivé à cette ligne, on voit un JMP :

 :00401016 EB1A jmp 00401032

Pour voir où il saute, on double-clique sur cette ligne pour la rendre verte et on clique sur [image: image39.bmp] pour arriver à la ligne où il va. Pour revenir au JMP on clique sur [image: image40.bmp]. Il arrive juste avant le mauvais message. Si on regarde un peu en dessous du JMP, on voit un message qu'il saute et qui à l'air d'être le bon message :

 * Possible StringData Ref from Data Obj -> "Ok d’accord!"

Vous l'avez donc sûrement compris, il faut donc changer ce vilain JMP et le remplacer par un NOP (pas d'opération = pas de saut.) On relève donc l’offset de l’instruction JMP. On ouvre le crack-me avec l'éditeur hexadécimal et on va à cet offset. Arrivé là, on remplacera EB1A par 9090 (NOP). On enregistre, on le lance, et là... ça marche !

J'espère que vous avez tout compris. Si vous ne comprenez pas ou si je ne suis pas clair dans mes explications, n'hésitez pas à m'écrire à : pierre.equey@gmx.net

 LISTNUM \L2Contourner la protection

●
Objectif : Cracker un crack-me pour qu'il dise que le code est bon, quand on tape un faux code.

●
Tout d'abord on lance le logiciel. Il demande de taper le serial. On tape un nombre et on clique sur Check, il dira « Essaye encore!! ». On note le message, puis on désassemble le programme avec WinDasm. On regarde les « StringsData References ». On double-clique sur le message qu’on a noté (on regarde s'il n'y en a pas plusieurs en double-cliquant une autre fois dessus.)

On arrive là :

 :0040158D FF1500204000 call dword ptr [00402000]

 :00401593 85C0 test eax, eax <= Compare votre serial

 avec le vrai

 :00401595 7516 jne 004015A4 <= Saute vers « Incorrect... » s'il

 est faux sinon continue à « Correct... »
 * Possible StringData Ref from Data Obj ->"Serial correct!" <= Message bon
 |
 :00401597 6858304000 push 00403058

 :0040159D E853050000 call 00401AFE

 :004015A2 EB14 jmp 004015C1 <= Saute au-dessus de

 Incorrect... »

 * Referenced by a (U)nconditional or (C)onditional Jump at Address:

 |:00401595(C)

 |

 * Possible StringData Ref from Data Obj ->"Essaye encore!!" <=
 | Message d’erreur

 :004015A4 6874304000 push 00403074

Donc vous l'aurez compris, il faut remplacer le saut JNE en JE, mais quand on tapera le bon code, il dira que le code est faux. Il faut donc mieux mettre un NOP (pas d'opération) et donc il pourra continuer vers « Serial correct! ».

On ouvre le crack-me avec l'éditeur hexadécimal et on remplace 75 par 74 (pour un JE) ou par 90 (pour un NOP.) On enregistre, on le lance, on tape n'importe quel nombre et là : « Serial correct! »

 LISTNUM \l 2 Trouver le bon serial

●
Objectif : Trouver le bon serial d'un crack-me.

●
Ici, nous allons nous intéresser de près au débuggeur de WinDasm, ce qui permettra de trouver le bon mot de passe pour ce crack-me.

Pour commencer on le désassemble et on regarde un peu au-dessus du bon message :

 * Reference To: KERNEL32.lstrcmpA, Ord:02FCh

 |

 :0040158D FF1500204000 call dword ptr [00402000] <= Intéressant !!!

 :00401593 85C0 test eax, eax

 :00401595 7516 jne 004015AD

 * Possible StringData Ref from Data Obj ->"Voilà un code qu’il est bon!"
Il faudra faire un breakpoint en 0040158D (c'est-à-dire que le programme s'arrêtera ici) car il est juste avant la comparaison TEST EAX, EAX. Donc on retient l'adresse précédente et on lance le débuggeur en tapant CTRL+L ou en cliquant sur Load Process du menu Debug. Là un message demande de donner une commande (ne sert pratiquement jamais.) On ne tape rien et on clique sur Load.

On a maintenant trois fenêtres : l'écran principal de WinDasm (en haut), une pour les DLL, EAX, EBX... (qui ne nous servira pas ici) et une autre avec les adresses et les APIs (à droite.) On Vérifie que dans cette dernière, les 5 cases sont cochées.

Dans l'écran principal on clique sur Goto/Goto Code Location et on tape l'adresse qu’on a tapée (0040158D pour ceux qui n'avaient pas de quoi écrire.) Arrivé à cette ligne, on pose un Break Point Toggle avec F2 ou en cliquant dans le menu Debug (la ligne deviendra jaune ou avec un carré jaune à sa gauche.) Dans la 3ème fenêtre, on clique sur Debug/Run Process ou F9 pour lancer le crack-me. On Tape un serial bidon (ex : 123456789) et on appuie sur Check. Là, normalement, le programme va s’interrompre et une fenêtre va s'ouvrir :

 API int Arg00 = lstrcmp(Arg01,Arg02)

 API Address=0040158D, API Return Address=00401593

 Arg01 = (LPCTSTR) 0063f810 -> "123456789" <= Tiens! Ce serait pas le serial

 qu'on a tapé ???
 Arg02 = (LPCTSTR) 0063f800 -> "<BrD-SoB>" <= Mais qu'est-ce que c'est ???
Vous l'aurez compris, le « <BrD-SoB> » est le véritable code. En effet, lstrcmp est une fonction qui compare deux chaînes de caractères (string en anglais.)

Pour vérifier, on ferme d'abord le débuggeur en cliquant sur Terminate (au-dessus de run) et on lance le crack-me. On tape le code qu’on a trouvé, et là... « Voilà un code qu’il est bon! »

Mission accomplie !

 LISTNUM \l 2 A bas le crackme !

●
Objectif : Trouver le bon serial du crack-me et faire un keygen.

●
Dans cet exemple, il va falloir cracker ce crack-me pour qu'il dise que le code est bon même s’il est faux et il va falloir aussi trouver le serial (comme dans le cours précédent) avec WinDasm et faire un keygen en Basic.

Qu'est-ce qu'un keygen ?

C'est le plus souvent un *.exe qui vous demande votre nom et vous donne le mot de passe du programme correspondant à votre nom. On en trouve très peu, car il faut trouver comment le programme donne un serial en fonction du nom. Le keygen va être programmé en Basic : c'est un langage très simple, mais nous ne donneront pas plus d’explication car, rappelons-le, ce livre est destiné aux programmeurs, qui savent déjà tout ça très bien.
Comme d'habitude on exécute le crack-me pour voir de quoi il a l'air. Il demande un nom et un serial, on tape n'importe quoi et il dit « Erreur – Mauvais code! ». Donc on ouvre WinDasm et on désassemble le crack-me.

On clique sur [image: image41.bmp], on recherche le message d'erreur (« Mauvais code ») et on voit ça :

 :0044175A E8E523FCFF call 00403B44

 :0044175F 7517 jne 0044176D <= Intéressant !!!
* Possible StringData Ref from Code Obj ->"Bon Code" <= Message bon
 |

 :00441761 B8E4174400 mov eax, 004417E4

 :00441766 E802FBFFFF call 00441278

 :0044176B EB15 jmp 0044178D <= Si le code est bon il saute au-
 dessus du message d'erreur.

 * Referenced by a (U)nconditional or (C)onditional Jump at Address:

 |:0044175F(C) <= On arrive au message d'erreur par un saut qui est à cette adresse.

 |

 * Possible StringData Ref from Code Obj ->"Mauvais code!" <= Message d'erreur
 |

 :0044176D B8F8174400 mov eax, 004417F8

 :00441772 E8EBFAFFFF call 00441278

Il y a un JNE avant le bon message qui saute au message d'erreur si le code est faux, donc il faut l'empêcher de sauter. On peut mettre un JE à la place de JNE mais si le code est juste il dira qu'il est faux (vous suivez ?) : en clair il fera l'inverse. Donc il vaut mieux mettre un NOP (pas d'opération) et donc il ne sautera pas et passera alors par le bon message.

Bon, on ouvre le crack-me avec l'éditeur hexadécimal et on va à 7517 et on le remplace par 9090.

Trouver le bon serial !

Si vous avez lu et compris l’exemple précédent, vous ne devriez pas avoir de problème pour trouver le bon serial.

On désassemble le programme avec WinDasm, on recherche le message d'erreur et on regarde bien :

 :0044175A E8E523FCFF call 00403B44 <= C'est ici qu'il faudra breaker
 :0044175F 7517 jne 0044176D <= Saut vers bon ou

 mauvais message
 * Possible StringData Ref from Code Obj ->"Bon Code"

 |
 :00441761 B8E4174400 mov eax, 004417E4

 :00441766 E802FBFFFF call 00441278

 :0044176B EB15 jmp 0044178D

 * Referenced by a (U)nconditional or (C)onditional Jump at Address:
 |:0044175F(C)
 |
 * Possible StringData Ref from Code Obj ->"Mauvais code!"
Comme vous avez vu, il faudra poser un breakpoint sur le CALL qui est juste avant le JNE qui va vers le bon ou le mauvais message. Donc on retient l'adresse du CALL (0044175A). On lance le mode débuggeur en cliquant sur Load Process du menu Debug ou en faisant CTRL+L. On clique ensuite sur Load. Dans la fenêtre de droite on vérifie que toutes les cases sont cochées. On va à l'adresse du CALL en faisant Goto Code Location, et on pose un breakpoint en double-cliquant sur la ligne voulue (celle du CALL) et en appuyant sur F2 ou en cliquant à gauche de la ligne avec le bouton CTRL enfoncé. Il doit y avoir désormais un carré jaune à gauche de la ligne.

On lancez le crack-me en cliquant sur Run (fenêtre de droite) ou en appuyant sur F9. On tape son nom (Toto pour l’exemple) et un serial bidon (ex : 123456789), et on clique sur Ok. Il va biper car il s'est arrêté au CALL et une fenêtre apparaît où l’on peut voir le nom qu'on a entré (Toto), le serial bidon en bas (123456789) et entre les deux ... le serial : TotoToto625g72. On clique sur Terminate pour fermer le débuggeur et on réessaye la même opération avec un autre nom, par exemple Foo (le même en anglais). On trouve alors par exemple FooFoo625g72. En fait le crack-me met 2 fois votre nom et rajoute « 625g72 ». Donc ça sera facile de faire un keygen.

Faire un keygen en Basic :
Voici le code source à taper :

 CLS

 PRINT "Keygen pour le crack-me"

 PRINT

 INPUT "Quel est votre nom"; A$

 PRINT "Salut "; A$; " ! Ton serial est : "; A$; A$; "625g72 !"

 LISTNUM \l 2 Trouvez ce serial

●
Objectif : Trouver le bon serial du crack-me avec SoftICE.

●
Dans ce dernier tutorial, nous allons nous contenter de trouver le serial calculé à partir du nom. Nous utiliserons SoftICE pour tracer le calcul jusqu’à le trouver quelque part. Ce sera l’occasion de donner un exemple d’utilisation de SoftICE.

C’est maintenant la routine, on exécute le crack-me, et une boîte s’affiche annonçant qu’il ne reste plus que six jours d’essai, avec deux boutons : Enregistrer et Continuer. Oui, c’est cela, on clique sans complexe sur le bouton Enregistrer, et une autre boîte apparaît avec deux champs : nom et code. Maintenant qu’on est un vétéran, on tape son code habituel, Toto pour le nom et 123456789 pour le serial. Décidément, ces crack-me on tous mauvais caractère, « Vas en enfer ! » qu’il dit. Qu’à cela ne tienne, on note le message offensant et on sort du programme la tête haute.
On va passer par l’entrée des artistes, c’est la consécration ! Donc on relance le programme, on clique sur Enregistrer, on tape Ctrl-D et la fenêtre de SoftICE apparaît (s’il est installé bien sûr). On entre BPX GetDlgItemTextA dans la fenêtre de commande (F6 si on n’y est pas déjà), puis BPX GetWindowText afin de poser des breakpoints sur les fonctions qui vont lire le serial. Ensuite on entre X ou on tape F5 pour relancer le crack-me dont l’exécution avait été suspendue par SoftICE. On se retrouve donc dans la boîte d’enregistrement où l’on tape son nom et son serial bidon, et on clique sur Ok. Comme le programme atteint un breakpoint, l’écran de SoftICE s’ouvre à nouveau. On tape encore une fois F5 puisqu’il y a deux chaînes à lire. Dans l’écran SoftIce on presse F11, ce qui a pour effet d’exécuter le programme jusqu’à l’instruction juste après l’appel de la fonction où on se trouve (= G @SS:SP), en l’occurrence GetDlgItemTextA. De là, on exécute le crack-me pas à pas en tapant plusieurs fois de suite F10, jusqu’à ce que le message d’erreur apparaisse. On sait alors que tout ce passe dans le CALL qu’on vient d’exécuter. On recommence donc toute la procédure jusqu’à ce CALL et on tape alors F8 pour y rentrer, puis plusieurs fois F10, et par un beau jour ensoleillé apparaît dans la fenêtre de code :
 0028:0031ABBA LEA EAX,[EPB-10]
 0028:0031ABBD LEA ECX,[EPB-12]
 0028:0031ABC0 CALL 0040ECBA
 0028:0031ABC3 JE 0031C982
 0028:0031ABC6 PUSH 00425FFE
Et si... On tape D ECX, et on peut lire dans la partie droite de la fenêtre de données :

 987654321.

N’en croyant pas ses yeux, on tape D 00425FFE :

 Vas en enfer !.

Banco ! On entre BD*, puisqu’on n’a plus besoin des breakpoints, on tape F5, on sort du crack-me et on le relance en vitesse, on s’enregistre avec ce serial et là... tada... « Vas à l’enfer des crackeurs ! » l’enfer est pavé de bonnes protections, le développeur du crack-me avait lu ce livre. Il n’y a rien de plus déconcertant pour un craker que de croire avoir trouvé la faiblesse, mais de ne pas y arriver.
Conclusion

Et voilà ! Ça parait simple, non ? Répétons le une dernière fois, la plupart des programmes peuvent être facilement crackés par n’importe quel crackeur expérimenté. On trouve beaucoup de tutoriaux de ce genre sur Internet, par exemple aux adresses suivantes :

– http://www.exetools.com/

– http://www.deamoncrack.host.sk/

Peut-être y découvrirez-vous comment cracker vos propres shareware. Alors un peu d’imagination. La course entre les développeurs et les crackeurs est certes sans fin, mais il ne faut pas oublier pas que rien ne sert de courir...
	
Annexe

	[image: image42.png]R
(i

●
Voici une liste d’url où des outils sont téléchargeables :

1. http://membres.lycos.fr/maulnier/download-hack 20cracks.htm
2. http://the.konqueror.free.fr/sgg/cours_cracking/cours_cracking.htm
3. http://www.bpsoft.com/
4. http://www.geocities.com/SiliconValley/Lab/1563/tools.html
5. http://www.filelibrary.com/Contents/DOS/80/9.html
6. http://membres.lycos.fr/arsenelapin/programmation.php3
7. http://www.chiphead.de/pages/haview.htm
8. http://www.serje.net/sen/
9. http://www.woodmann.com/fravia/

10. http://protools.anticrack.de/utilities.htm

11. http://www.woodmann.com/crackz/Tools.htm

●
Voici sur quels sites sont les outils dont nous avons parlé :

WinDasm : 1, 2, 4, 6, 11

IDA : 4

SoftICE : 2, 4, 6, 11

HexWorkShop : 3, 5, 6, 11

Hacker’s View : 4, 5, 7, 8, 10, 11

WinHex : 2, 4

IceDump : 4

Revirgin : 9, 10

FrogsIce : 11

●
Voir aussi les grands sites de téléchargement de logiciel, mais il faut bien chercher. Le mieux est de passer par un moteur de recherche, notamment http://google.com/

Table des matières

2Introduction

Première partie - La théorie
4
Leçon N° 1 - Notions de base
5
1.1 - Principe
5
1.2 - Les connaissances nécessaires
5
1.3 - Terminologie
5
1.4 - Les outils nécessaires
6
1.5 - Les outils disponibles
7
1.6 - Les méthodes
8
Leçon N° 2 - L'assembleur
9
2.1 - Fonctionnement d’un processeur
9
2.2 - Les systèmes de numération
9
2.3 - Les types de base
12
2.4 - L'hexadécimal
13
2.5 - Représentation de la mémoire
14
2.6 - Les registres
15
2.7 - Les instructions
22
2.8 - Les Préfixes
33
Leçon N° 3 - API et interruptions
34
3.1 - Appel de procédure
34
3.2 - Les API Windows
34
3.3 - Les services BIOS et DOS
35
Leçon N° 4 - Les protections
36
4.1 - Principe de base des protections
36
4.2 - Saut conditionnel
37
4.3 - CD check
38
4.4 - Mots de passe (serial number)
40
Deuxième partie - La pratique
46
Leçon N° 5 - Utilisation des outils
47
5.1 - WinDasm
47
5.2 - Editeur hexadécimal
49
5.3 - SoftICE
49
Leçon N° 6 - Quelques tutoriaux
51
6.1 - Cracker un crack-me
51
6.2 - Contourner la protection
52
6.3 - Trouver le bon serial
52
6.4 - A bas le crackme !
53
6.5 - Trouvez ce serial
55
Conclusion
57
Annexe
58

_1118953386.doc
[image: image1.png]00000000
- 01000110

=11011010

_1127765250.doc
[image: image1.png]

_1114232144.vsd
Bit�

Byte (Nibble)�

Octet�

Double Word�

Word�

Quad Word�

Paragraph�

�

�

�

�

�

�

�

�

�

_1111795597.vsd
31�

16 15�

Registres sur 16 bits�

8 7�

�

0�

EAX�

EBX�

AH�

AL�

�

ECX�

EDX�

AX�

BX�

CX�

DX�

BP�

SI�

DI�

SP�

EBP�

ESI�

EDI�

ESP�

�

BH�

�

�

�

�

�

�

�

�

�

�

�

�

�

BL�

�

�

CH�

CL�

DH�

DL�

�

�

�

�

Registres sur 32 bits�

�

�

