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Les moteurs asynchrones
I) Introduction :

I.1) Place industrielle :

Les moteurs asynchrones sont les moteurs électriques les plus utilisés. 

Les moteurs triphasés entraînent de nombreuses machines industrielles (machines-outils); les moteurs monophasés sont très répandus en faible puissance ( électroménager, etc.. )

Ils ont l'avantage d'être très robustes, peu onéreux, et d'être alimentés directement par le réseau EDF.

I.2) Principe :

Les bobinages du stator alimentés en triphasé créent un champ tournant. 

Ce champ induit dans le rotor des courants de Foucault qui s’opposent à la cause qui les a engendrés c’est à dire la variation du champ magnétique. 

Les enroulements du rotor du moteur asynchrone étant court circuités (en étoile ou triangle) ils sont donc le siège de courants induits. Ces courants créent un champ magnétique dans le rotor qui tend à s’aligner avec celui du stator (tournant à la vitesse dite de synchronisme).

Si le rotor tournait à la même vitesse que le champ tournant créé par le stator, le rotor ne verrait pas de variation de champ magnétique et les courants induits disparaîtraient. C’est pourquoi le rotor tourne forcément à une vitesse différente du champ tournant d’où le nom de moteur asynchrone (asynchrone : différence de vitesse).

Le coefficient de glissement g quantifie cette différence de vitesse mise en rapport de la vitesse de synchronisme.
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Figure 1
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Figure 2



II) Constitution du moteur asynchrone triphasé :

II.1) Stator

C'est l' inducteur de la machine. Son rôle est de créer un champ tournant dans le rotor . Il comporte donc trois enroulements alimentés par un réseau triphasé de fréquence f. 

Chaque enroulement comprend p bobines en série pour faire apparaître 2p pôles.
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Figure 3
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Figure 4



Le champ magnétique tourne à  ns = f/p  

ns : vitesse de synchronisme (en tr/s).vitesse de rotation du champ tournant 

f   : fréquence du réseau ( courants inducteurs)

Pour limiter les pertes magnétiques le circuit magnétique du stator est feuilleté.
Couplage sur un réseau : Les enroulements statoriques sont conçus pour fonctionner sous une tension déterminée. De ce fait, en fonction du réseau disponible, on choisira le  couplage étoile ou triangle de ces enroulements.

Une tension trop faible entraînerait :

L’arrêt du moteur ou le non démarrage ( couple magnétique trop faible)

Une tension trop forte entraînerait :

Des pertes Joules excessives ( destruction des enroulements ( baisse du (
II.2) Le rotor

C'est l' induit de la machine. Le rotor n'est relié à aucune source de tension extérieure ( en fonctionnement normal, il est court-circuité )
Il doit être parcouru par des courants de Foucault: il doit donc être en matériau conducteur.

II.2.1) Rotor bobiné ( fig. 1 )

Il s'agit d'un enroulement triphasé, logé dans des encoches à la périphérie du rotor, dont le nombre de pôles 2p est le même que celui du stator, et dont les phases sont couplées en étoile. Les extrémités de l'étoile sont reliées à trois bagues en cuivre calées sur l'arbre. Ces bagues frottent sur des balais fixes ce qui permet l'insertion d'un rhéostat triphasé en série avec le rotor.

Avantage : possibilité de modifier la résistance des enroulements rotoriques, donc la caractéristique mécanique

Inconvénient: fragilité des contacts glissants ( balais frottant sur des bagues ); coût élevé.

En fonctionnement normal, ces enroulements sont court-circuités.
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Figure 5
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Figure 6
II.2.2)  Rotor à cage d'écureuil ( fig. 2 )

Il est constitué de barres conductrices parallèles entre elles et réunies par deux couronnes également conductrices.

Avantage : robuste et peu coûteux
Inconvénient : pas de possibilité d'agir sur la caractéristique mécanique.
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Figure 8
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Figure 9
II.3) Plaque signalétique

Sur un plaque signalétique de moteur asynchrone deux tensions sont présentes : la plus petite des deux est celle à laquelle doit être soumis un enroulement du moteur asynchrone.

Si sur la plaque du moteur on trouve 220/380 V, un enroulement du moteur doit être soumis à 220 V. 

Donc 

	pour un réseau 127/220 V

Il faut appliquer une tension de 220 V à chaque enroulement donc une tension composée donc procéder à un couplage triangle
	pour un réseau 220/380 V

Il faut appliquer une tension de 220 V à chaque enroulement donc une tension simple donc procéder à un couplage étoile
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Figure 10
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Figure 11



II.4) Symboles
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Figure 12
III) Principe de fonctionnement :

III.1) Le glissement

III.1.1) Nécessité du glissement

Le stator crée un champ magnétique tournant à la vitesse (S=(/p avec ( = pulsation des courants statoriques.

(fréquence ns = f/p)

Les fem induites au rotor provoquent la circulation de courants induits qui s’opposent à la cause qui leur donne naissance c’est à dire la rotation du champ tournant.

Le rotor tourne à  une vitesse ( inférieure à la vitesse de synchronisme. (fréquence n proche de ns   : n < nS)

Il y a donc mouvement relatif  du rotor par rapport au champ magnétique tournant statorique, à la fréquence de glissement notée ng:  ng = nS-n
On appelle glissement g d'un MAS le rapport g =
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g n'a pas d'unité. Il s'exprime en général en %.

Relation entre n et g : n = (1 – g ) nS 
(ng =g nS = nS – n )

III.1.2) Ordre de grandeur de g

Au démarrage :
n = 0
[image: image19.wmf]Þ

 g = 1   A vide : 
n ( ns 
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 g = 0

	Puissance du MAS
	< 1kW
	> 1 kW
	> 150 kW

	g nominal
	10 à 20 %
	3 à 8 %
	1 à 3 %


III.1.3) Fréquence des courants rotoriques ( rotor bobiné )

Le rotor, à p paires de pôles, voit le champ statorique tourner par rapport à lui à la fréquence  ng =g nS .  Ces enroulements voit donc apparaître à leurs bornes des fem de fréquences 

fR = png =  p g nS et de pulsations (R=(g= p(g=p((S -() =pg(S=g(.  La fréquence des courants rotoriques est fR : png = pgnS = gf.

D'où une nouvelle définition du glissement :


g = fR/f

Exemple : f = 50 Hz ; g = 3%  
[image: image21.wmf]Þ

  fR = 1,5 Hz

Conséquence : le rotor produit un champ magnétique tournant appelé champ magnétique de réaction d'induit
Sa fréquence de rotation par rapport au rotor =fR/p=gf/p=gnS=ng ((g=(R/p)   . La fréquence de rotation du champ rotorique par rapport au stator =ng+n = gnS+n =nS. (vitesse du champ tournant rotorique par rapport au stator=(+(g=(S ) .  Ce champ se superpose à celui dû au stator et se déplace à même fréquence ns . On a bien deux champs tournants synchrones.

III.2) Fem induite :

III.2.1) Fem théorique dans un enroulement :

Si 
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III.2.2) Facteur de bobinage (ou d’enroulement) :

La fem pratique est légèrement différente de la fem théorique. Elle est multipliée (entre autres) par un facteur Kb. 

Kb=KdKrKi  < 1

III.2.2.1) Facteur d’inclinaison Ki

Les encoches sont inclinées de manière  à diminuer les harmoniques de denture.

III.2.2.2) Facteur de raccourcissement Kr :

Pour le calcul de la fem théorique ,on a considéré 2 conducteurs situés à ( /p. Cela n’ est possible que si le nombre d’encoches est un multiple de 2p. Sinon, on place le 2ème conducteur dans l’encoche la plus proche de la position  ( /p, d’où un modification de la fem.

III.2.2.3) Facteur de distribution Kd :

On a considéré les N /2  conducteurs placés dans une même encoche ; en fait , ils sont placés dans un certain nombre d’encoches voisines (facilité de construction et réductions d’harmoniques).Les fem créées ne sont donc pas en phase.

III.2.3) Facteur de forme Kf :

Le champ magnétique dans l’entrefer n’est pas sinusoïdal.

Facteur correctif KF . Kf >1

III.2.4) Coefficient de Kapp :

 K=2 ,22 KbKf                     
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Kb=KdKrKi  < 1

La fem induite par un champ tournant à la vitesse (S a une pulsation w=p(S et est égale à :  E=K.f.N.(max

K coefficient de Kapp, f fréquence des fem f=pn, p nombre de paires de pôles, N nombre de conducteurs par phase , (max : flux maximun sortant d’un pôle, E fem induite dans un enroulement.

III.2.5) Valeurs efficaces des fem :

Fem dans les enroulements du stator : 
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Fem dans les enroulements du rotor : 
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IV) Caractéristiques d'un moteur asynchrone

Les principales caractéristiques sont fournies ci-contre.

IV.1) Plaque signalétique
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Figure 13
IV.2) Fonctionnement à vide

	Le courant à vide Io est relativement important ( 20% du courant nominal ); le facteur de puissance cos (o est faible. Ce courant à vide est donc essentiellement réactif, et correspond à la magnétisation du circuit magnétique. D'autre part, la fréquence de rotation no est pratiquement égale à la fréquence de synchronisme ns
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Figure 14


IV.3) Fonctionnement en charge

	· la fréquence de rotation n diminue peu quand la charge augmente,

· le moteur peut démarrer seul même en charge,
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Figure 15


IV.4) Caractéristique mécanique

	Dans sa partie utile (partie linéaire), la caractéristique mécanique est pratiquement rectiligne, Tu est une fonction 

affine de n et le moment du couple utile est proportionnel à g. 

Tu=k.g ou Tu =an+b , a,b et k étant des constantes.

Le moment du couple Tem est proportionnel à V². Avec V tension simple d’une tension d’alimentation.

Si le point de fonctionnement dépasse le maximum de la caractéristique mécanique, le moteur décroche .
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Figure 16
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Figure 17
V) Modèle d'un moteur asynchrone a rotor bobiné :

V.1) Relation des fem :

Il doit permettre de décrire le fonctionnement d'un moteur dans sa plage d'utilisation pratique.

Ce modèle est établi pour un enroulement d'un moteur à rotor bobiné.

A l’arrêt (g=1) , le moteur asynchrone se comporte comme un transformateur.

Pour un moteur en rotation, le modèle est encore utilisable, à condition de tenir compte du fait que g n’est plus égal à l’unité.

Les tensions primaires et secondaires n’ont plus la même fréquence.

Pulsation statorique :(
Pulsation rotorique : (R.      (R=g . (
V1 tension d’alimentation d’un enroulement primaire

K1,K2 coefficient de Kapp d’un enroulement primaire et secondaire. 

N1, N2 nombre de brins de conducteurs de ces enroulements.

n’1 et n’2 les nombres de spires corrigés par les coefficients de Kapp
r1,r2 : résistances de ces enroulements.

l1,l2 :inductances de fuites de ces enroulements.

Les fem induites dans les enroulements primaire et secondaire ont pour expression :
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Où m est l’équivalent d’un rapport de transformation.(rapport de transformation à l’arrêt)

V.2) Relation des fmm :

Pour l’étude des intensités, on peut remplacer le rotor réel par un rotor fictif à l’arrêt parcouru par des courants de pulsation (. (g=1, (R=() .
Le théorème d’ampère permet d’écrire: 
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On retrouve la même relation pour les intensités que pour un transformateur.

L’écriture du théorème d’Ampère n’est pas impactée par la fréquence des courants considérés.
On n’a pas le même rapport de transformation pour les tensions (gm) et pour les courants (m).

V.3) Modèle équivalent :

V.3.1) Modèle du transformateur :

Comme l’analogie est faite avec un transformateur le modèle équivalent est donc le suivant :
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Figure 18
On divise par g coté rotor
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Figure 19
V.3.2) Modèle simplifié pertes négligées :

Souvent, on néglige les pertes par rapport à r1 et (1(. 
On peut donc ramener les pertes à la tension V1
Le modèle équivalent simplifié est alors le suivant :
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Figure 20
V.3.3) Modèle simplifié ramené au stator :
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Figure 21
Comme 
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 ce qui fait apparaitre 
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Soit en ramenant l’impédance secondaire au stator, cela donne le schéma suivant :
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Figure 22
La pulsation est ( pour tout le schéma.

Remarque : les tensions et courants considérés sont ceux d’un enroulement.

Couplage étoile : tension simple et courant de ligne.

Couplage triangle : tension composée et courant dans un enroulement.

V.4) Parallèle entre modèle et bilan de puissances :

La puissance électromagnétique transmise est 
[image: image54.wmf]1

1/

3cos

u

emuEI

PEI

j

=


Cette puissance part en pertes et en puissance mécanique.

Les pertes sont la puissance électrique perdue au rotor est (pertes joules rotoriques si rotor en court circuit)  
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 donc 
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La puissance mécanique résulte du bilan donc 
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Figure 23
V.5) Détermination des éléments du modèle simplifié:
V.5.1) Essai à vide 

En effectuant un essai à vide (g=0), le modèle d’une phase revient à ceci
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Figure 24
on mesure P10, I10 et le cos(0 consommés par le moteur et on en déduit Rf et Lm.
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V.5.2) Essai en court-circuit :
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En effectuant un essai à l’arrêt (g=1 rotor bloqué) dit essai en court-circuit par analogie avec le transformateur triphasé, sous tension V1 réduite, on mesure P1CC , I1CC , cos(1CC
Par un bilan des puissances active et réactive (théorème de Boucherot), on  détermine les puissances active et réactive dissipées dans R et X 
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et comme V1CC est une tension réduite 
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et on en déduit :
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V.5.3) Essai en charge :
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Grâce à l’essai en charge on peut aussi déterminer R et X .

Par un bilan des puissances active et réactive (théorème de Boucherot), on  détermine les puissances active et réactive dissipées dans R et X mais cette fois on ne peut négliger P10 et Q10 que l’on connait grâce à l’essai à vide.
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et on en déduit :
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On peut aussi déterminer Iµ.

construction de Fresnel.
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Figure 25
VI) Etude du couple électromagnétique :

VI.1) Expression du couple:

D’après le modèle équivalent de la Figure 23 en régime permanent :
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Figure 26
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Comme
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En combinant les deux équations 
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Et comme 
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De plus comme 
[image: image82.wmf](1)(1)

MecaememSem

PgPgTT

=-=-W=W


VI.2) Evolution du couple:

VI.2.1) Influence du glissement:

L’évolution du couple en fonction de g  donne une courbe représentée sur la Figure 27
· Il apparait la symétrie de la courbe

· Le début de la courbe est quasiment rectiligne et d’équation  
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 : proche de la fréquence de synchronisme la courbe peut donc être assimilée à une droite
· Un maximum 
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· Le couple de démarrage (g=0) 
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Figure 28


· La machine asynchrone est réversible. Elle peut fonctionner en génératrice couplée au réseau.

· Bilan de puissance pour une génératrice:
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VI.2.2) Influence de la résistance rotorique:

Voir la variation de vitesse
VI.2.3) Influence du rapport V/f pour le réglage du couple
V1(KfN(    

Si on veut garder ( constant ou Tmax constant, il faut travailler à 
[image: image91.wmf]cte

f

V

=

.

si V1/f=cte  
[image: image92.wmf]22

11

max

222

22

3.3.

2'.2'.4

te

pVpV

Tc

f

wp

===

ll


A fréquence et tension élevée, le modèle équivalent correspond assez bien, et on peut donc régler correctement le couple.

 A fréquence et tension basse, les résistances et inductance de fuite statoriques ne sont plus négligeables et l’expression du couple n’est plus valable.

VII) Bilan énergétique

VII.1) Schéma traduisant le bilan énergétique en fonctionnement moteur
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Figure 29
VII.2) Inventaire des puissances 

VII.2.1) Puissance absorbée Pabs:
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quelque soit le couplage

VII.2.2) Pertes dans le stator : PjS  

	Couplage étoile :
	Couplage triangle :
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	Si on mesure la résistance entre 2 phases on mesure
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Si on exprime Pjs en fonction de Rb on obtient
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	Si on mesure la résistance entre 2 phases on mesure
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Si on exprime Pjs en fonction de Rb on obtient
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Quelque soit le couplage :  
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r : résistance du bobinage et      R : résistance mesurée entre deux phases du stator couplé.

VII.2.3) pertes fer pfS: 

Elles dépendent de U et f.

VII.2.4) Puissance transmise au rotor. Ptr Moment du couple électromagnétique. 
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La puissance est transmise au rotor par l'action du champ magnétique tournant dans l'entrefer à la fréquence (S Il lui correspond un couple électromagnétique Tem  tel que:
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VII.2.5) Puissance mécanique au rotor : PM
Le couple électromagnétique est responsable de la rotation du rotor à la fréquence n.
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VII.2.6) Pertes joules dans le rotor pjR . 

Si on néglige les pertes magnétiques dans le rotor (faibles fréquences),
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VII.2.7) Puissance utile PU . 

Du fait des pertes mécaniques (frottements mécaniques, ventilation du moteur), la puissance utilisable est :
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VII.3) Rendement
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Remarque : Si on néglige les pertes autres que rotoriques 
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 rendement optimum du moteur asynchrone et 
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VII.4) Détermination des pertes constantes :
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Elles sont déterminées par un essai à vide.

En effet :
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Équation 1
VIII) Contrôle de vitesse d’une machine asynchrone:

VIII.1) Démarrage par action sur le rotor: modification du glissement

[image: image120.wmf](1)
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VIII.1.1) Sur un rotor bobiné ou à bagues:

	En modifiant la résistance rotorique, on agit sur le glissement tout en conservant un couple maximal constant. Cela implique d ’avoir une machine à rotor bobiné


	[image: image121.jpg]




	* Le démarrage se fait par insertion en série avec les enroulements du rotor, un rhéostat à plots triphasé monté en étoile.

* Sur le premier plot, la résistance R2 est telle que le couple est maximum pour g = 1, et ensuite quand la vitesse augmente on change le plot de façon que le couple varie toujours entre le couple nominal et le couple maximal.

* Une autre solution électronique, c'est à partir de montage à thyristor : c'est un hacheur rotorique donnant une "résistance" variable "R2" réglable par thyristor.
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VIII.1.2) Sur un rotor à double cage d'écureuil ou à encoches profondes:

	* Ces moteurs sont plus faciles à démarrer que pour le rotor bobiné.

* Le rotor est constitué de deux cages de résistances Ra et Rb (Rb << Ra).

* Au démarrage presque tout le courant passe dans la cage (Ra), la plus proche de l'entrefer. La résistance du rotor correspond donc à la section de la barre extérieure au moment du démarrage et à la somme des deux sections lorsque la période de démarrage est achevée. Tout se passe comme si la résistance du rotor diminuant au cours du démarrage ; donc même effet qu'avec l'utilisation d'un rhéostat
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	Remarque : 

On peut aussi remplacer les deux barres par une barre unique s'enfonçant profondément dans le fer. C'est ce qu'on appelle : le moteur à encoches profondes.
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VIII.1.3) Nombre depôles variable : moteur Dalhander ou moteur part winding
Le couplage Dahlander permet un rapport de nombre de paires de pôles de 1 : 2. 
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Commutation des raccordements des moteurs Dahlander : raccordement en série (petite vitesse), raccordement en parallèle (grande vitesse). 
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http://www.netprof.fr/Voir-le-cours-en-video-flash/Electricite/Electrotechnique/Variateur-de-vitesse-2.-Moteur-Dalhander-et-cablage-avec-API,29,186,2154,1.aspx
VIII.1.4) Conclusion

Utilisable pour le démarrage des moteurs asynchrones car les pertes importantes ne sont que transitoires
VIII.2) Démarrage par action sur le stator:


* S'applique à tous les types de moteur mais plus particulièrement au moteur à simple cage d'écureuil.


* Méthode qui consiste à réduire le courant par diminution de la tension d'alimentation.

VIII.2.1) Rhéostat de démarrage du stator:

	Méthode peu intéressante, car le couple est affaibli très considérablement (on n'est plus à flux forcé).

( Si on divise le courant par 2, on divise le couple par 4.
( Si on divise le courant par 3, on divise le couple par 9.
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VIII.2.2) Transformateur abaisseur:

	* Meilleur solution que précédemment, la machine travaillant à flux forcé ; utilisé pour la petite  puissance.

* Pour cette méthode, le couple et le courant sont réduits dans le même rapport.

* Pour le cas de forte puissance, on utilise un transformateur en V.
	
[image: image133.wmf]2

STATOR

1

3




VIII.2.3) Démarrage Etoile-Triangle:

	
* La machine est utilisé à flux forcé.


* On considère un moteur dont les phases du stator sont couplées successivement en étoile puis en triangle, à glissement égal, chaque phase sera parcourue par un courant 
[image: image134.wmf]3
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 fois moins élevé lors du couplage en étoile que lors du couplage en triangle.
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* Donc, lorsque le moteur a atteint la vitesse convenable, on revient au couplage en triangle. La figure suivante montre une réalisation de ce dispositif :



( couplage étoile : les contacts A, B et C à (.



( couplage triangle : les contacts A, B et C à (.


* On sait que le couple est proportionnel au carré du courant et donc, il est trois fois plus petit dans un cas que dans l'autre.
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VIII.2.4) Démarrage par gradateur alternatif
	Les thyristors sont montés en tête-bêche ou à triacs, il permet de faire varier "V1" efficace à fréquence constante : ne convient qu'a des charges mécaniquement de types Tr = K0 (2.
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VIII.3) Freinage de la vitesse d’une machine asynchrone:

VIII.3.1) Freinage par injection de continu dans le rotor : 

En coupant l'alimentation du stator : peu intéressant sauf pour le blocage des machines-outils : frein magnétique.

VIII.3.2) Freinage à contre-courant : 

On inverse deux phases, le champ tournant est inversé, donc, il y a un freinage hyper synchrone, le moteur ralenti. Si on n’arrête pas le moteur, alors il repart dans l'autre sens.

VIII.3.3)  Freinage avec rhéostat rotorique : 

La même méthode qui est utilisée pour le démarrage est utilisée pour le freinage mais, dans le sens inverse.

Pour : f = 100 Hz, alors le couple s'annule tous les 10 ms.

VIII.4) Contrôle de vitesse d’une machine asynchrone:

Pour faire varier n de manière significative, il faut faire varier ns et donc f. V=KNf(max
(max=V/KNf=K’.V/f

T dépend du champ magnétique donc du flux. Pour garder le même T quand f varie , il faut garder le même flux et donc travailler à V/f = cte. Ceci est réalisé en utilisant un onduleur autonome.
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Caractéristique couple vitesse


A ce moment-là, (n=ns-n = cte, les caractéristiques se déplacent parallèlement à elles-mêmes. On peut avoir variation de vitesse sur une large plage.

Ceci correspond à une alimentation sous fréquence et tension variable.
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On suppose la chute de tension dans r1 et (1( très faible
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