UNIVERSITE LIBANAISE                 UNIVERSITE SAINT-JOSEPH

        (Faculté de Genie)                              (Faculté d’Ingénierie, ESIB)

Sous l’égide de l’agence des universités Francophones

AUPELF-UREF

Diplôme de télécommunications

Etude de la compléxitée des algorithmes de décodage en UMTS 

(Universal Mobile Télécommunication System)

Par

Mohammed BADRA

Encadré par : M. Clovis FRANCIS

Soutenance le 22 décembre 2000 devant le jury composé de

                                                           MM.  Samir Tohmé         

  Président

                                                                     Maroun Asmar      
  Membre

                                                                     Imad Mougharbel   

  Membre

                                                                     Mahmoud Doughan 
  Membre

                                                                     Maroun Chamoun    


  Membre

                                                                     Niolas Rouhana      


  Membre

                                                                     Clovis Francis       

      Membre

Rapport provisoire

Table des Matières

RESUME                                

 



  4

CHAPITRE I : NOTION DE BASE SUR UMTS 

               I.1. Introduction






   7

               I.2. Caractéristiques générales




   7


               I.3. Techniques d’accès multi-utilisateurs



   7

               I.4. L’étalement de spectre par séquence directe


   8

                   I.4.1 Principe






   8

                   I.4.2. Avantages et inconvenientes de l’étalement de spectre  
   10

              I.5. Le codage canal et le codage de correction d’erreur. 

   11

                   I.5.1. Principe






   11

                   I.5.2. Redondance nécessaire : Théorème de Shanon
  
   12

                   I.5.3. Le codage linéaire en bloc.




   13

                   I.5.4. Capacité de correction : Distance de Hamming

   15

                   I.5.5. Les Codages cycliques.   




   16

                      I.5.5.1. Introduction





   16

                      I.5.5.2. . Encodeur de codages cycliques.         


   17

                   I.5.6. Les codes convolutifs. 




   18

                   I.5.7. Code Arbre et Treillis  




   23

                   I.5.8. décodage: Algorithme de viterbi



   27

CHAPITRE II : TURBO-CODES ET TURBO-DECODAGE

               II.1.LE TURBO-CODAGE





   29

                 II.1.1 Principe






   29

                 II.1.2. L’encodage






   29

                    II.1.2.1. Concaténation de deux codeurs RSC


   29

                    II.1.2.2. Multiplexage de la sortie



   29

               II.2.LE TURBO-DECODAGE




   30

               II.2.1. Définition préliminaire.




   30

                 II.2.2. Structure et principe de fonctionnement d’un décodeur.
   30

                 II.2.3. Structure itérative du turbo-décodeur.


   31

                 II.2.4. Differents types de concaténation de codeurs 

   32

                       II.2.4.1. Concaténation parallèle



   32

                       II.2.4.2. Concaténation serie




   32

                       II.2.4.4. Soft-in soft-out  




   33

                       II.2.4.4. Décoder avec une boucle de la réaction 

   34

CHAPITRE III : LES DIFFERENTS ALGORITHMES DE DECODAGES
.

               III.1. Turbo-décodage [basé sur l’algorithme de Maximun à           

                     Posteriori MAP]






   36

               III.2. Le Soft Output Viterbi Algorithm (SOVA)


   38

               III.3. Comparaison entre différents algorithmes de décodages 
   

               III.4. Resultats






   42

               III.4.1. Compléxité intrinsèque




   42

               III.4.2. Discussion des resultats




   43

CHAPITRE IV : UTILISATION D’UN PROCESSEUR DE TRAITEMENT DU  

                              SIGNAL (DSP)

               IV.1. Introduction






  46

               IV.2. ArchitectureDSP



                          47

               IV.3. Applications de DSP sur les algorithmes Log-MAP et SOVA48

               IV.3.1. Log-MAP avec et sans DSP   



  50 

               IV.3.2. SOVA avec et sans DSP 




  52

Conclusion







  
   57

Bibliograhie








   58

Resumé

Au niveau des normes, les travaux se poursuivent  pour définir un système mondial, l’IMT-2000, baptisé en Europe UMTS (Universal Mobile Telecommunication System) utilisant le canal radio dans la bande de 2GHz et devant englober l’ensemble des communications mobiles dites de troisi‎‎‏‏‎ème génération et pouvant offrir une multitude de services ( parole,données,images,accès internet…) et qui permettra de transmettre la voix et les données.  

Les algorithmes de traitement du signal qui permettent d’augmenter l’efficacité spectrale de la transmission radio occupent une place privilegiée dans le developpement de ces nouvelles techniques d’accès. Cette norme devrait voir le jour dès 2001 au Japon et 2003 en Europe. Ce système fonctionnant autour de 2 GHz permettra des débits de transfert plus élevés (jusqu'à 2 Mbps et le GSM a une capacité de 9600 bits/s) et donc de concurrencer les connexions filaires. Cette norme répond à la demande croissante en matière de vitesse de transmission des données.

Du côté des terminaux, les premières années seront une sorte de transition. Les téléphones GSM fonctionneront toujours mais seront incompatibles avec UMTS, puis apparaîtront des appareils UMTS et, pourquoi pas, des appareils intégrant les deux standards.

L’avenir c’est aussi pouvoir se connecter à Internet sans limite, que ce soit au niveau des services, de la longueur des messages et surtout avec un débit qui ne sera plus trop faible, grâce une fois de plus à UMTS.

 
Les systèmes satellites vont devenir de plus en plus présents : Irridium a démarré en 1998, Globalstar devrait démarrer cette année et ICO suit le mouvement.

Nous venons d’aborder de façon succinte les derniers avancement de la nouvelle norme UMTS (Universal Mobile Telecommunication System) pour les mobiles de troisième génération. Nous venons de développer  toute la théorie du codage convolutif utilisé pour le turbo-codage ainsi que le principe de base du turbo-décodage. 

Il existe différents algorithmes pour le décodage des turbo-codes convolutifs. C’est l’algorithme SOVA ( Soft Output Viterbi Algorithm) qui semble, à priori, correspondre le mieux aux contraintes d’implémentations dans un terminal mobile; car il s’avère moins complexe en nombre d’opérations et moins couteux en ressources que l’algorithme MAP ( Maximum A Posteriori). 

L’objet de notre étude consiste à estimer de la complexité des algorithmes de décodage, c’est à dire les nombres d’additions, soustractions multiplications, accès mémoires, cases mémoires, …, et cela en fonction de:

- Taille de la trame.

- Longueur de la contrainte du codeur.

- Nombre d’itérations

Après l’étude de complexité de chacun d’eux on fait estimer du temps d’execution des algorithmes avec un DSP ( Digital Signal Processeur ).

CHAPITRE I : NOTION DE BASE SUR UMTS

I.1. Introduction

  La norme UMTS est en perpétuelle évolution visant à définir précisément les fonctionnement et protocoles des réseaux mobiles de troisème génération. Ce nouveau service large bande devra offrire des services vocaux classiques mais aussi satisfaire les demandes croissantes de transfert de données ou de vidéo hauts débits dont la première application est la visioconférence.

I.2. Caracteristiques

 La bande de frequence radio qui lui est allouée est de 5 MHz, centrée    

     sur 2 GHz.

 Il peut prendre en charge de 1 a 80 utilisateurs par station de base 

     (contre un maximum de 8 pour GSM). D’où une meilleure efficacité 

     spectrale par rapport à GSM.

 Le débit est modulable suivant les besoins, pouvant passer de 64 Kb/s  

     pour la parole à 384 Kb/s pour des données ou 2 Mb/s pour la vidéo.

 Le TEB (Taux d’Erreur Binaire) est fixe a 10^-3 pour la parole et à   

     10^-9 pour la vidéo.

 Il doit y avoir compatibilité descendante avec les réseaux mobiles de 

     deuxième génération.

Pour satisfaire ces carecteristiques, il faut élaborer de nouvelles techniques.

I.3. Techniques d’accés multi-utilisateurs.

   Deux solutions principales permettent la communication simultanée de  

plusieurs utilisateurs:

  FDMA: Frequence Division Multiple Access. La bande passante est 

divisee en sous bandes. Chacune d’elles est reservee à un utilisateur.

  TDMA: Time Division Multiple Access. La trame est divisée en

 intervalles temporels égaux appelés “slot”. A chaque intervalle peut correspondre un utilisateur différent. C’est la technique utilisée pour le GSM.

      CDMA: Code Division Multiple Access. A chaque utilisateur est associé un code (code orthogonal appelé séquence d’étalement) de longueur Q (facteur d’étalement). Ainsi les utilisateurs occupent en meme temps toute la bande de fréquence. Pour un utilisateur donné, chaque symbole est multiplié par son code avant émission. C’est la technique d’étalement de spectre, preconisée par la norme UMTS.

[image: image1.wmf]m

0,

 

 

l

      

16)

 

(1,

       

          

...

 

2

 

1,

 

0,

 

i

   

l)

-

m(i

 

gl1

1

=

=

=

å

xi

[image: image3.wmf]              MAP

                                                                                     

Toutes

 

les

 

trajectoires

                                                                           

             

sont

 

considerees

                                                                                                 

:

0

                        

                          

dj

                                            :

1

[image: image4.wmf]                                                              ML path

              Max-Log-MAP

                                                                                     deux trajectoires

   

                                                                                  sont considerees

                                                                                                 :

0

                                            

                                                  dj                                            :

1

     Fréquence                 Fréquence                                           Fréquence

[image: image5.wmf]                                                               ML path

              SOVA

                                                                                        deux trajectoires

     

                                                                                sont considerees mais

                                                                                   La trajectoire en concurrence

                                       

                                            peut pas être la meilleure

                                                                                   trajectoire en concurrence

                                                      dj

trajectoire en con

currence

que maintenant détermine                                     ici la trajectoire est éliminée

la précision (survivra pour

fondre avec la trajectoire ML)

[image: image6.wmf]0

50000

100000

150000

200000

250000

300000

350000

400000

SOVA

log_MAP

store

lookup

[image: image7.wmf]0

10000

20000

30000

40000

50000

SOVA

log_MAP

case memoire

addition

soustraction

multiplication

compare

exp

log

complement bit

valeur absolue

[image: image8.wmf]                         LL entrée                                                                          LL sortie

         La valeure à priori pour                                                                    la valeur extrinsic pour

   

       tous les bits d’information       L(u)                                       Le(û)  tous les bits d’information

                                                                         Soft-In

                                                       

                  Soft-Out

         La valeur du canal pour                         Décodeur                             la valeurs à posteriori pour

         tous les bits du code                 Lcy                                         L(û)    tous 

les bits d’information


[image: image9.wmf]0

5000

10000

15000

20000

25000

30000

35000

40000

SOVA

LogMAP

case mémoire

MAC

soustraction

multiplication

comparaison

exp

log

valeur absolue

addition

[image: image10.wmf]0

2000

4000

6000

8000

10000

12000

14000

16000

SOVA

Log-MAP

store avec || add

css

|| store et sous

shift op et sous 

|| store et mul

complement bit

add shift op à Acc

[image: image11.wmf]              MAP

                                                                                     

Toutes

 

les

 

trajectoires

                                                                           

             

sont

 

considerees

                                                                                                 

:

0

                        

                          

dj

                                            :

1

[image: image12.wmf]                                                              ML path

              Max-Log-MAP

                                                                                     deux trajectoires

   

                                                                                  sont considerees

                                                                                                 :

0

                                            

                                                  dj                                            :

1

[image: image13.wmf]                                                               ML path

              SOVA

                                                                                        deux trajectoires

     

                                                                                sont considerees mais

                                                                                   La trajectoire en concurrence

                                       

                                            peut pas être la meilleure

                                                                                   trajectoire en concurrence

                                                      dj

trajectoire en con

currence

que maintenant détermine                                     ici la trajectoire est éliminée

la précision (survivra pour

fondre avec la trajectoire ML)

[image: image14.wmf]0

10000

20000

30000

40000

50000

SOVA

log_MAP

case memoire

addition

soustraction

multiplication

compare

exp

log

complement bit

valeur absolue

[image: image15.wmf]                         LL entrée                                                                          LL sortie

         La valeure à priori pour                                                                    la valeur extrinsic pour

   

       tous les bits d’information       L(u)                                       Le(û)  tous les bits d’information

                                                                         Soft-In

                                                       

                  Soft-Out

         La valeur du canal pour                         Décodeur                             la valeurs à posteriori pour

         tous les bits du code                 Lcy                                         L(û)    tous 

les bits d’information

[image: image16.wmf]0

50000

100000

150000

200000

250000

300000

350000

400000

SOVA

log_MAP

store

lookup

[image: image17.wmf]0

2000

4000

6000

8000

10000

12000

14000

16000

SOVA

Log-MAP

store avec || add

css

|| store et sous

shift op et sous 

|| store et mul

complement bit

add shift op à Acc

    Canal 3

    Canal 2                    Canal 1Canal 2  Canal 3

    Canal 1   Temps                                                 Temps                    Temps

                                                                                     Code

                                Modes FDMA, TDMA, CDMA

Au sein meme de la catégorie CDMA on distingue deux solutions en concurrence satisfaisant les critères de l’ UMTS:

Le WB-CDMA en mode FDD ( Frequency Duplex Division) qui prévoit d’utiliser deux bandes de frequénces symétriques. L’une des bandes assure la communication en voie montante (mobile vers station de base) et l’autre la communication en voie descendante.

Le TD/CDMA en mode TDD (Time Duplex Division) qui ne prévoit qu’une seule voie descendante est alors mis en place dans cette bande de frequence. C’est à ce mode que nous nous intéresserons le plus puisqu’il offre l’avantage de pouvoir différencier la priorité accordée à la voie montante et à la voie descendante. En effet, pour l’exemple du transfert des données Internet, la voie montante n’a qu’une requête à transmettre tandis que la voie descendante renvoie tout un site web. Il est donc intéressant de pouvoir accorder plus de temps de transmission a la voie descendante.

On distingue généralement trois types de transmission par étalement de spectre: la transmission par sauts de frequence (FH-CDMA), la transmission par sauts temporels (TH-CDMA), et l’étalement par sequence directe.

I.4. Etalement de spectre:

I.4.1 Principe

  A chaque utilisateur est associé un code ( séquence d’étalement). Chaque symbole est multiplié par son code avant transmission. La séquence d’étalement de spectre est une séquence pseudo aléatoire de rythme très superiéur au rythme symbole (Ts) des données initiales. Ce rythme est appelé rythme chip Tc. On peut ainsi définir le facteur d’étalement Q = {1, 2, 4, 8, 16} par Q = Ts/Tc. Par cette opération on augmente la fréquence maximale du spectre du signal. Le spectre à tranmettre est alors beaucoup plus large que le spectre du message.

Cette séquence est une séquence pseudo aléatoire afin que la fonction de corrélation entre differentes séquences soit nulle. C’est pourquoi on utilise souvent des codes orthogonaux. Ainsi, si on multiplie par le code 2 une séquence étalée par le code 1 le résultat sera nul parce que ces codes sont orthogonaux. Pour l’UMTS les codes orthogonaux sont générés de la manière suivante:



                                                  message

  

                                                                        Tdata

                                          séquence

                                            étalante

                                     Tc

             

     séquence

      résultante


                          Etalement de spectre

      Chaque niveau de l’arbre définit un facteur d’étalement indiqué par la valeur Q sur la figure. Tous les codes, de longueurs differentes, contenus dans l’arbre ne peuvent pas être utilisés pendant le même interval temporel. Un code peut être utilisé pendant un interval temporel si et seulement si aucun autre code repprésentant la totalité ou une partie de la branche à laquelle appartient ce code n’est présent pendant le même interval temporel. Cela signifie que le nombre de codes disponibles dans un intervalle n’est pas fixé mais dépend du facteur d’étalement utilisé pour le canal phisique.

                       
`

             1,1,1,1

                    

   1,1

            

                        1,1,-1,-1




     

 Q =1      1,1     Q = 2      Q = 4


                                                          1,-1,1,-1

                                       1,-1

                                                           1,-1,-1,1

                     

                          Arbre de génération de codes orthogonaux   

L’application de cette méthode d’étalement aux réseaux mobiles impose la prise en compte de la répartition du réseau en cellules car deux cellules différentes ne peuvent pas utiliser les mêmes codes. En effet, si un utilisateur passait la frontiére des deux cellules, ils recevrait les communications d’un autre utilisateur de la deuxi‏ème cellule. C’est pourquoi on ajoute après l’utilisation de la séquence d’étalement c = (c1, c2, … ,cQk) une autre séquence appelée code d’embrouillage v = (v1, v2, … , QMAX), de longueur différente adaptée. Ainsi la génération de la séquence transmise passe par la multiplication par deux codes distincts comme il est développé dans l’organigramme suivant:


                           d1(k,I)              d2(k,I)              …..                dQMAX(k,j)       symbols de donnée  



                                                                  Spreading of each data symbol by channelisation code c(k)



 
      d1(k,j).(c1(k,j), …, cQk(k,j)) d 2(k,j).(c1(k,j), …, cQk(k,j))  …d (QMAX/Qk)(k,j).(c1(k,j), …, cQk(k,j))      



                                                                  Chip by chip multiplication by screambling code v sequence


 
        V1, V 2, … V Qk, vQk + 1,                 , V 2Qk,  …        , V QMAX - Qk + 1,                          V QMAX



                                                              
                   Spread and screambled data


Opération complète d’étalement.

Si on considère un signal recu au niveau du recepteur et brouillé par une interférence, on obtient par dé-étalement le mecanisme suivant:


                                       Interférence                                                 Signal restitué



                                   Signal étalé                                                Interférence

                                                                                                      étalée


                                               Dé-étalement

                                                    

Résistance aux interférence

En effet, les mécanismes d’étalement et de dé-étalement sont symétriques puisqu’ils consistent à multiplier un signal par le séquence d’étalement appropriée. Ainsi, lors de l’opération de restitution du signal étalé (faible puissance mais large bande) les interférences sont multipliées par la séquence d’étalement et, alors que le signal se retrouve avec une forte puissance sur une petite bande, les interférences sont étalées et ne gênent donc pas la restitution du signal.

I.4.2. Avantages et inconvenientes de l'étalement de spectre:

- Avantages

 C’est une solution qui résiste très bien aux interférences de bande étroite gr‏âce à l’utilisation de la séquence d’étalement.

 La possibilité de supporter un nombre important d’utilisateurs par station de base.

 Permet une grande confidentialité des informations transmises car, lors de la transmission, on a une très faible puissance par hertz. Cela rend le signal très difficile à détecter lorsque l’on ne connait pas la séquence d’étalement.

- Inconvenients

 La synchronisation pour récupérer le signal lors du dé-étalement
 Interference entre utilisateurs. 

I.5. Le codage canal et le codage de correction d’erreur.

  Le codage canal permet d'assurer une certaine fiabilité dans le transport de l'information malgré les perturbations introduites par le canal.On distingue deux familles principales de codes correcteurs d'erreurs:

-  les codes en bloc dont l’utilisation est la plus repandue.

- les codes convolutifs moins repandus mais auxquels nous allons nous intéresser dans toute la suite de ce rapport.

I.5.1. Principes du codage canal.

  Considérons la chaîne de transmission suivante. Un signal contenant une information à transmettre est envoyé au destinataire à travers un canal introduisant des perturbations.


         Signal                                    Canal                      Destinataire                 

                       

            Info                                Perturbation


Figure 1 :chaîne de transmission

Pour être retrouvée au niveau du destinataire, une information perturbée doit être répetée d’une manière où d’une autre à l’émission. Sinon cette information perturbée serait perdue. Le principe du codage est donc d’introduire de la redondance au niveau de l’information émise pour en permettre la récupération par la destinataire malgré les perturbations introduites par le canal.

I.5.2. Redondance nécéssaire : Théorème de Shannon.

      Avant d’aborder la théorie de Shannon, il est nécéssaire de rappeler qu’il n’existe pas d’opération de codage/décodage parfaite car la probabilité d’erreur n’est jamais nulle. Meme négligeable, la probabilité de se tromper existe. On ne peut donc parler que de fiabilité de l’information. Cette fiabilité a étè mise en équation par Shannon selon l’inégalité suivante :

  R’<= C’ avec R’= d*H(source)

                        C’= C*débit(canal)

                        d:débit de la source.

                        H: entropie de la source.

                        C:capacite du canal.

Avec les techniques de codage classiques, on se trouve très loin de la condition limite de ce théoreme, qui s’exprime par un rapport E0/N0 de 0db pour un TEB (taux d’erreur binaire) de 10*E-5.

I.5.3. Le codage linéaire en bloc.

  Considérons un codage linéaire en bloc (n,k) dans laquelle la prémière portion de  k bits est toujours identique à la séquence du message qui est transmis.les (n – k) bits dans la deuxième portion sont calculés des bits du message conformément à une règle de codage prescrite qui détermine la structure mathématique du code. Ces (n – k) bits sont connus sous le nom    “bits de parité” généralisé pour  les bits de la parité. Les codages en bloc dans lesquels les bits du message sont transmis sous une forme inchangée sont appelés des codages systématiques. Pour les applications qui exigent découverte de l'erreur et correction de l'erreur, l'usage de codages systématiques en bloc simplifie la mise en oeuvre du décodeur. Soit m0,m1,... ,m(k-1) un bloc de k bits du message arbitraire. Nous avons 2^k blocs du message distincts. Cette séquence de bits du message est appliquée à un encodeur en bloc linéaire, en produisant  n-bits mot de code dont les éléments sont dénotés par x0, x1, ... , x(n-1). soit b0, b1, …, b(n-k-1) dénotent le (n - k) bits de la parité dans le code. Pour le code traiter un structure systematique, le mot de code est divisé en deux parties, un qui est occupée par les bits du message et l'autres par les bits de la parité. Clairement, nous avons l'option d'envoyer les bits du message d'un mot du code avant les bits de la parité, ou reciproquement.l'option précédente est illustrée dans fig.2. D'après la représentation de fig.2, les (n - k)  bits à gauche d'un mot du code sont identiques aux bits de la parité correspondants, et les k  bits a droite du mot du code sont identiques aux bits du message correspondants.Nous pouvons écrire par conséquent:

                                                                                                

                         bi                     i = 0, 1,…, n - k - 1 

             xi =                                                                                            (1.1) 

                         m(i + k – n)     i = n - k, n - k + 1,…, n - 1

Le (n - k) bits  de parité sont de sommes linéaires des k bits comme montré par la relation généralisée:

Bi = p(i0)m0 + p(i1)m1 + …+ p(i,k-1)m(k-1)   i = 0,1,…,n – k –1         (1.2)

où les coefficients sont définis comme suit:


                         1   si bi depend de mj

            pij =

                         0   sinon


                              bo, b1, …, b(n – k – 1)      m0, m1, …, m(k – 1)

                 

                                               bits de parité                              bits du message

                                                       Figure 2  Structure du mot de code   

Les (n-1) équations réprésentées dans l’équation (1.2) sont independantes. Le système d'équations (1.1) et (1.2) définissent la structure mathématique du codage linéaire en bloc (n,k). Ce système d'équations peut être récrit dans une forme compacte en utilisant la notation matricielle. Nous définissons le vecteur du message m, le vecteur de la parité b, et le vecteur du code x, respectivement, comme suit:

                                m = [m0,m1,…,m(k-1)]                                        (1,3)

                                 b = [b0,b1,…,b(n-k-1)]                                          (1,4)

et

                                 x = [x0,x1,…,x(n-k)]                                             (1,5)

En conséquence, nous pouvons récrire l'ensemble d'équations simultanées sous une forme compacte:  

                                               b = mP                                               (1,6)      

où P est une matrice définie par:


                        p00              p10                 …           p(n – k – 1),0

                        p01              p11                 …           p(n – k – 1),1

             P =         .                 .                                     . 

                             .                 .                                     .                             (1,7)  

                         p0,(k – 1)    p1,(k – 1)       …          p(n – k –1),(k – 1)                                                                    

De la définition donnée dans les equations (1,3)-(1,5), nous voyons que x peut être exprimé comme un vecteur de la ligne découpé des vecteurs m et b comme suit:  

                                              x = [b|m]                                              (1,8)

En substituant l'équation (1,6) dans l’équation (1,8) et compter en dehors le vecteur du message commun, nous obténons  

                                              x = m[P|Ik]                                            (1,9) 

où Ik est la matrice d’identité:  

                          1    0         ...           0

                          0    1         …          0

              Ik =      .     .                        .

                          .     .                         .                                                  (1.10)                                                                                                                                

                          0    0          …         1   

On définit la matrice de générateur:

                                        G = [P|Ik]                                                  (1,11)                     

Alors, nous pouvons simplifier Eq. (1,9) comme  

                                          x = mG                                                    (1,12)

La somme de tous deux mots du code est un autre mot du code. Cette propriété de base de codages linéaires en bloc est appelée fermeture. pour prouver sa validité, considérez une paire des vecteurs du code xi et yj qui correspondent à une paire des vecteurs du message mi et mj, respectivement, en utilisant Eq. (1,12), nous pouvons exprimer la somme de xi et xj comme   

                                                    xi + xj = miG + mjG  

                                                                = (mi + mj)G 

La somme de mi et mj représente un nouveau vecteur du message, modulo-2.egalement, la somme de xi et xj représente un nouveau vecteur du code, modulo-2. En d'autres termes, la somme de tous deux mots du code égale un autre mot du code.  

  Il y à un autre façon d'exprimer le rapport entre les bits du message et bits du parité d'un codage linéaire en bloc. Soit H dénote un matrice définit comme:  

                                                         H = [I(n - k) | t(P)]        

où t(P) est une matrice, réprésente le transpose de la matrice du coefficient P, et I(n - K) est la matrice de l'identité. En conséquence, nous pouvons exécuter la multiplication suivante de matrices découpé:  

                                                                               t(P)

                                 Ht(G) =    I(n – k)  t(P)      

                                                                                Ik                                        

                                            =    t(P) + t(P)       

où nous avons utilisés le fait que la multipliocation d'une matrice rectangulaire par une matrice de l'identité des dimensions compatibles, la matrice inchangé. Dans l’addition modulo-2, nous avons t(P) + t(P) = 0, où 0 dénote la matrice nulle. D'où,  

                                   Ht(G) = 0                                                       (1,13)

De même valeur, nous avons Gt(G) = 0. Les deux côtés d'eq. (1,12) par t(H), le transposez d'H, et utiliser Eq. alors (1,13), nous obtenons  

                                    xt(H) = mGt(H)     

                                              = 0                                                        (1.14)  

La matrice H est appelée la matrice du parité du code, et les équations ont spécifiés par Eq. (1,14) sont appelées des équations du parité.

I.5.4. Capacite de correction : Distance de Hamming.

  Le distance de Hamming d(x,y) entre une telle paire de vecteurs est définie comme le nombre d'emplacements dans lesquels leurs éléments respectifs diffèrent. Le poids  de Hamming w(x) d'un vecteur du code x est défini comme le nombre d'éléments nonzero dans le vecteur du code. La distance minimum dmin d'un code du bloc linéaire est définie comme la plus petite distance de Hamming entre toute paire de vecteurs du code.

Comme la somme (ou différence) de deux vecteurs de codes est un vecteur du code, nous pouvons affirmer que la distance minimum d'un code du bloc linéaire est le plus petit poids de Hamming du vecteur du code non nul dans le code

.

      La validité d’un code est definie par sa complexité et par sa capacité de correction.Un code est d’autant plus optimal qu’il permet de corriger un nombre important d’erreurs au prix d’une complexité réduite. Cette capacité de correction peut être calculée à partir de la distance de Hamming minimale séparant deux mots distincts du code : la différence de poids entre deux mots du code. Elle permet en effet de determiner la capacité de détection d’erreurs du code, ainsi que sa capacité de correction d’erreurs:

          -nombre d’erreurs detectées=dmin-1

          -nombre d’erreurs corrigées=int[(dmin-1)/2].

EXAMPLE

Considérez une famille de (n,k) codes du bloc linéaires qui ont les paramètres suivants:

                          Longueur du block:                    n = 2^m -1

                          Nombre de bits d’un message:   k = 2^m - m -1

                          Nombre de parity bits:                n – k = m

Avec m >=3.

Considerer,par exemple,le(7,4) Hamming code avecn = 7 et k = 4 correspond a m = 3. La matrice du générateur du code a une structure qui se conforme à Eq. (1,12).La matrice suivante représente une matrice du générateur appropriée pour le (7,4) code Hamming: 

                           

                             1   1   0     1   0   0   0

                             0   1   1     0   1   0   0

                  G =     1   1   1     0   0   1   0 

                             1   0   1     0   0   0   1


                                  P                Ik

La matrice du parité correspondante est donnée par


                            1   0   0     1   0   1   1

                H =      0   1   0     1   1   1   0   

                            0   0   1     0   1   1   1

Avec k = 4, il y en a 2^k = 16 messages distincts rédigent qui sont inscrits dans le table 1.1  

Table 1.1 Code Words of a (7,4) Hamming Code

Message                                 Weight of

Word              Code Word    Code Word
Message                                 Weight of

Word              Code Word    Code Word

0 0 0 0           0 0 0 0 0 0 0            0

0 0 0 1           1 0 1 0 0 0 1            3

0 0 1 0           1 1 1 0 0 1 0            4

0 0 1 1           0 1 0 0 0 1 1            3

0 1 0 0           0 1 1 0 1 0 0            3

0 1 0 1           1 1 0 0 1 0 1            4 

0 1 1 0           1 0 0 0 1 1 0            3 

0 1 1 1           0 0 1 0 1 1 1             4
1 0 0 0            1 1 0 1 0 0 0           3

1 0 0 1            0 1 1 1 0 0 1           4

1 0 1 0            0 0 1 1 0 1 0           3

1 0 1 1            1 0 0 1 0 1 1           4

1 1 0 0            1 0 1 1 1 0 0           4

1 1 0 1            0 0 0 1 1 0 1           3

1 1 1 0            0 1 0 1 1 1 0           4  

1 1 1 1            1 1 1 1 1 1 1           7

pour un mot du message donné, le mot du code correspondant est obtenu en utilisant Eq. (1,12). Donc, l'application de cette équation résulte les 16 mots du code inscrits dans table 1.11  

Dans table1.1 nous avons aussi inscrit les poids Hamming des 16 mots du code individuels dans le (7,4) code Hamming. Depuis le plus petit des poids Hamming pour les nonzero mots du code est 3, il suit que la distance minimum du code est 3. En effet, les codes Hamming ont la propriété que la distance minimum dmin = 3, indépendant de la valeur assignée à m.

I.5.5. Les Codages cycliques.   

I.5.5.5 introduction

  Les codages cycliques forment une sous-classe de codages linéaires en bloc.

Un avantage du codage cyclique sur la plupart des autres types de codes est qu'ils sont faciles de chiffrer. En outre, les codes cycliques possèdent une structure mathématique précise qui a mené au développement de plans du déchiffrement très effectifs pour eux.  

Un code binaire est un code cyclique s'il présente deux propriétés fondamentales:  

  1. La propriété de la linéarité:   La somme de deux mots du code est aussi un mot du code.

  2. La propriété cyclique:   Tout changement cyclique d'un mot du code est aussi un mot du code.

I.5.5.2. Encodeur de codages cycliques.

Nous avons montré que la procédure du codage pour un (n,k) codage cyclique dans une forme systématique implique trois étapes:

(1) multiplication du message polynomial m(D) par D^(n - K)

(2) division de D^(n-k)m(D) par le générateur polynomial g(D) pour obtenir le rest b(D) 

(3) addition de b(D) à D^(n-k)m(D) pour former le polynôme du mot de code désiré.

 Ces trois étapes peuvent être rendues effectifs au moyen de l'encodeur (Fig. 3) 


                                                                                                             Gate
                                                                                                             

                      g1                    g2                                             g3

 


                Flip-flop    Modulo-2                                                                                                             Parity                                                      Code

                        Adder                                                                                                                   bits                                                       word

                                                                                                                                                                                                                      

                                                                 Message bits 

                                           Figure 3   Encoder for an (n,k) cyclic code.

Les boîtes dans Fig.3 représentent des bascules ou des éléments du délai. Une bascule est un appareil qui réside en un de deux états possibles dénoté par 0 et 1. Une horloge externe contrôle l'opération de toutes les bascules. En plus des bascules, l'encodeur de Fig.3 inclut un deuxième ensemble d'elements: additionneurs qui calculent les sommes du modulo-2 de leurs entrées respectives. Finalement, les multiplieurs multiplient leur entrées respectives par les coefficients associés. En particulier, si le coefficient gi = 1, le multiplicateur est juste une " connexion direct " . Si de l'autre côté, le coefficient gi = 0, le multiplicateur est " aucune connexion ". 

EXAMPLE   ENCODER FOR THE (7,4) CYCLIC HAMMING CODE


                                                                                                          Gate                      

                                                                                                          


Received

   bits      Modulo-2   Flip-flop

                 adder             

FIGURE 4   Encoder for an (7,4) cyclic code generated by

                                                             g(D) = 1 + D + D^3

FIGURE 4 represente l'encodeur pour le  codage cyclique (7,4) produit par le genérateur polynomial g(D)  = 1 + D + D ^3. Pour illustrer l'opération de l'encodeur, considérons la séquence du message (1001). Le contenu du registre est modifié par les nouveaux bits du message comme dans le Table 1.2. Après quatre changement, le contenu du registre, et par conséquent les bits de parité sont (011). En conséquence, attacher ces bits de parité aux bits du message (1001), nous obtenons le mot du code (0111001).

                       Table 1.2 Contenu du changement 

                        Registre dans l'Encodeur de Fig.4  pour 

                        Séquence du Message (1001)

   Shift
Input
 Regiter Contents

     1

     2

     3

     4
  1

  0

  0

  1
 0 0 0  (initial state)

 1 1 0

 0 1 1

 1 1 1

 0 1 1

I.5.6. Les codes convolutifs.

  Dans le codage en bloc, l'encodeur reçoit un block de k-bits du message et produit un mot de code de n-bits. L'encodeur convolutif binaire avec taux 1/n, mesuré par les bits dans un symbole, peut être regardé comme une machine d'état fini qui consiste en  M-registres de changement d'etats  avec les connections prescrites aux n modulo-2 additionneurs, et un multiplixeur. Une séquence de L bits du message produit une séquence en  sortie codée de longueur n (L+M) bits. Le taux du code est donné par conséquent

                                                R = L/[n(L + M)]

Typiquement, nous avons L >> M. D'ou le taux du code se simplifie comme

                                                R  1/n    bits/symbole

La longueur de la contrainte d'un code convolutif, est définie comme le nombre de changements produites en sortie par un seul bit du message. Si la mémoire de l'encodeur est égale a M alors K = M + 1 le nombre de changement. D'où la longueur de la contrainte de l'encodeur est K.   

La Figure 1.11 représente un encodeur convolutif avec n = 2 et K = 3. d'où, le taux du code de cet encodeur est 1/2. L'encodeur de Figure 1.11 opère la séquence du message entrée (incoming), un bit à la fois.

Les codes convolutif produits par l'encodeur de Fig. 1.12 sont des codes non systematiques ( c’est a dire que l’entrée n’est pas directement disponible en sortie, ce type de codage offre de bonnes performances en termes de detection d’erreurs pour des rapports signal a bruit important). Différemment du codage du block, l'usage de codes non systematiques est ordinairement préféré sur les codes systématiques dans l’encodeur convolutif 

Nous utiliserons l'encodeur de Fg. 1.11 pour illustrer la théorie d'encodeur convolutif. Deus approches seront considérées: approche temporel, et approche spectrale.

FIGURE 5 longueur  

de la contrainte -3,                              Modulo-2                               

 rate-1/2 conv.encoder                             adder




                                  Flip-flop  

                                                                                                            




(1) Time Domaine approche  

L'encodeur simple de Fig.5 a un taux de code de 1/2, nous avons besoin de deux réponses impulsionnelles pour caractériser son comportement dans le domaine temporel. Soit les séquences (g01, g02, ..., gm1) et  (g02, g12, ..., gm2) qui dénotent les réponses impulsionnels des deux encodeurs (haut et bas de la figure 5). Ces deux séquences de sortie (output sequences) de l'encodeur sont produites en réponse à la séquence de l'entrée (1, 0, 0, . . . ). Les réponses impulsionnels définis sont appelés les séquences du générateur des codes.  

Un encodeur convolutif opère en exécutant des convolutions sur la séquence d’entrée. Soit (m0. m1. . . ) la séquence du message qui entre dans l'encodeur de la Fig. 5, un bit à la fois. L'encodeur produit les deux sequences de sortie, a dénoté par {xi1} et {xi2}, la séquence de sortie sera définie comme:

           
[image: image18.wmf]0

5000

10000

15000

20000

25000

30000

35000

40000

SOVA

LogMAP

case mémoire

MAC

soustraction

multiplication

comparaison

exp

log

valeur absolue

addition


où m(i - l) = 0 pour tout  l > i. Egalement, la séquence de la partie inférieure de l'encodeur est décrite par:  

                          
[image: image2.wmf]m

0,

 

 

l

      

17)

 

(1,

       

          

...

 

2

 

1,

 

0,

 

i

   

l)

-

m(i

 

gl2

2

=

=

=

å

xi


les deux séquences {xi1} et {xi2} sont combinés par le multiplexeur pour produire la séquence de la sortie de l'encodeur {xi}, comme montré par:

                   {xi} = {x01, x02, x11, x12, x21, x22,. . . }  

Cette séquence est alors fournie en entrée du canal.   

EXAMPLE A

Soit la séquence du message entrée définie comme suit:  

                                    (m0, m1, m2, m3, m4) = (10011)  

Alors, l'usage de (1.16) donne les valeurs suivantes pour les éléments qui constituent la séquence de  sortie:  

                                   x01 = g01m0  

                                         = 1 * 1 = 1  

                                   x11 = g01m1 + g11m0  

                                         = 1 * 0 + 1*1 = 1

                                  x21 = g01m2 + g11m1 + g21mo  

                                         = 1 * 0 + 1* 0 + 1*1 = 1

                                  x31 = g01m3 + g11m2 + g21m1  

                                         = 1 * 1 + 1* 0 + 1*0 = 1

                                  x41 = g01m4 + g11m3 + g21m2  

                                         = 1 * 1 + 1* 1 + 1* 0 = 0

                                  x51 = g11m4 + g21m3  

                                         = 1 * 1 + 1* 1 = 0

                                  x61 = g21m4  

                                         = 1 * 1 = 1

D'où, la sortie est (1111001).  

                                  x02 = g02m0  

                                         = 1 * 1 = 1  

                                  x12 = g02m1 + g12m0  

                                         = 1 * 0 + 0*1 = 0

                                  x22 = g02m2 + g12m1 + g22mo  

                                         = 1 * 0 + 0* 0 + 1*1 = 1

                                  x32 = g02m3 + g12m2 + g22m1  

                                         = 1 * 1 + 0* 0 + 1*0 = 1

                                  x42 = g02m4 + g12m3 + g22m2  

                                         = 1 * 1 + 0* 1 + 1* 0 = 1

                                  x52 = g12m4 + g22m3  

                                         = 0 * 1 + 1* 1 = 1

                                  x62 = g22m4  

                                         = 1 * 1 = 1 

D'où, la séquence de est (1011111). Finalement, par multiplexage des deux séquences en  sortie, nous obtenons la séquence de l'encodeur  

                                   {xi} = (11,10,11,11,01,01,11) 

(2) Transform-domain Approach

De l'étude de la theorie du filtrage linéaire, nous savons que l'intégrale du convolutif qui décrit l'opération du filtrage linéaire dans le domaine du temps, est remplacée par la multiplication de transformation de Fourier dans le domaine de la fréquence. Un encodeur convolutif est un système linéaire invariant dans le temps, nous pouvons simplifier le calcul des sorties de l'additionneur en appliquant la transformation appropriée. 

                                  g1(D) = g01 + g11 D +... + gm1 D^m.  

où g01, g11. . . , gm1 sont les éléments de la réponse impulsionnelle du système. La variable D dénote un opérateur de retard d’une unité, avec la puissance de D qui définie le nombre d'unités de temps par le bit associé dans la réponse de l'impulsion. De la même façon , nous définissons le polynôme correspondant:  

                                  g2(D) = g02 + g12 D +... + gm2 D^m  

où  g02, g12, ... ,gm2 sont les éléments de la réponse de l'impulsion de la deuxième trajectoire. Les coeficients de D^i est égale à 1 s’il y à une “connection” de l’iéme étape de la changement du registre a l’entrée de l'additionneur d'intérêt, et 0 s’il y à “non connection,” où i = 0, 1, . . . , K-1. Notons que i = 0 correspond a l’étape la plus à gauche et que i = K - 1 correspond à l’étape la plus à droite.

Considérons la séquence du message suivante {m0, m1, m2. . . , m(L-1)}, on definit le polynôme du mssage:    

                                     m(D) = m0 + m1 D + m2 D +. . . + m(L-1) D^(L-1) 

où L est la longueur de la séquence du message. En conséquence, l'additionne  convolutif des Eqs (1.16) et(1.17) est remplacée par les multiplications polynomiales, comme montré par les deux rélations de l'entrée - sortie suivantes, respectivement,:    

                                  x1(D) = g1(D)m(D)                               (1.18)

                 et    

                                  x2(D) = g2(D)m(D)                               (1.19)

Ayant déterminé les deux polynômes de la sortie x1(D ) et x2(D), nous pouvons obtenir les séquences de la sortie correspondantes en lisant rapidement leurs coefficients individuels simplement, comme illustré dans l'exemple suivant.

Exemple

Les polynômes du générateur correspondant sont donnés par : 

                                  G1(D) = 1 +D + D^2  

et

                                  G2(D) = 1 + D^2  

Pour la séquence du message (10011), nous avons la représentation polynomiale  

                                  M(D) = 1 + D^3 + D^4  

Les polynomes de sorties seront:

                                  X1(D) = (1+ D + D^2)(1 + D^3 + D^4)  

                                             = 1 + D + D^2 + D^3 +D^6  

et  

                                  X2(D) = (1+ D^2)(1 + D^3 + D^4)    

                                             = 1+ D^2 + D^3 + D^4 + D^5 + D^6  

La séquence de sortie n'est autre que le multiplexage temporel de X1 et de X2.

I.5.7. Code Arbre et Treillis  

                                                                                                                   00

                                                                                                 00               

                                                                                                                    11

                                                                                    00        a                    

                                                                                                                   10

                                                                                                  11                 

                                                           00                                                      01

                                                                            a

                                                                                                                    11

                                                                                                   10

                                                                                                                    00

                                                                                    11        b

                                                                                                                    01

                                                                                                   01

                                                                                                                    10

                                       00


                                                                                                                   00

                                                                                                 00               

                                                                                                                    11

                                                                                    10        c                    

                                                                                                                   10

                                                                                                  11                 

                                                                                                                     01

                                                             11           b

                                                                                                                    11

                                                                                                   10

                                                                                                                    00

                                                                                    01        d

                                                                                                                    01

                                                                                                   01

                                                                                                                    10

                 0

              



                 1            Fig.6  Code arbre pour l’encodeur convolutif de la Fig. 5

Nous commençons cette discussion avec l'arbre de la Fig. 6. Chaque branche de l'arbre représente un symbole de l'entrée. Une entrée 0 spécifie la branche supérieure d'une bifurcation, pendant que l'entrée 1 spécifie la branche inférieure. Une trajectoire spécifiée dans l'arbre est tracée de gauche a droite conformément à la séquence d'entrée (message). Les symboles codés correspondants sur les branches de cette trajectoire constituent la séquence fournie par l'encodeur à l'entrée du canal. Par exemple, considérons la séquence du message (10011) appliqué à l'entrée de l'encodeur de la Fig. 4. En suivant la procédure décrite plus haut, nous trouvons que la séquence codée correspondante est (11,10,11,11,01) qui coincident avec les 5 premières paires de bits de la séquence codée {xi} dérivée plus haut. A partir du diagramme de la Fig. 6, nous observons que l'arbre devient répétitif après les premières trois branches. 

           00           00           00         00            00              00        00         00

 a            

          11            11           11         11           11                11     

b                                        11          11           11               11         11       11 

                                            00          00           00                00

                            10           10          10           10                            10 

c

                            01            01          01           01           01         01

d                                     10           10          10

Depth j =     1            2            3             4             5    L-1      L        L+1   L+2

                             Fig. 7 Treillis pour l’encodeur convolutif de la Fig. 5

La séquence de sortie correspond à une trajectoire spécifique à travers le treillis, qui est déterminée par les bits d'entrée. Par exemple, nous voyons sur la Fig. 7 que la séquence du message (10011) produit la séquence de la sortie codée (11, 10, 11, 11, 01) qui vérifie notre résultat antérieur. Nous définissons l'état d'un encodeur convolutif de taux 1/n comme les (K - 1) bits du message les plus récents qui se sont déplacés dans le registre de l'encodeur. Au temps j, la portion 

State
Binary description

   a                   

   b

   c

   d 
             00

             10 

             01 

             11 

                     Table 1.5 Table de state pour l’encodeur convolutif de Fig. 5

de la séquence du message qui contient les K bits les plus récents est écrite comme (m(j-k+1), m(j-k+2). . . , m(j-1), mj), où mj est le bit courant. Dans le cas de l'encodeur convolutif simple de la Fig. 5, nous avons (K - 1) = 2. D'où l'état de cet encodeur peut comporter l'un de quatre valeurs possibles, comme décrit dans le Table 1.5. Le treillis contient (L + K) niveaux où L est la longueur de la séquence du message entrée, et K est la longueur de la contrainte du code. Les niveaux du treillis dans Fig. 7 sont étiquetés comme j = 0, 1, . . . , L + K - 1 avec K = 3.
I.5.8. Décodage-Algorithme de viterbi.

 Considérons le diagramme du treillis de la Fig. 7 pour un code convolutif avec un taux r = 1/2 et la longueur de la contrainte K = 3. Nous observons qu' à j = 3 par exemple, il y à deux trajectoires qui entrent chacune des quatre noeuds dans le treillis. De plus, ces deux trajectoires seront identiques en ce point pour la partie d'avant.  Clairement, un décodeur de la distance minimale peut prendre une décision en ce point comme sur la trajectoire à retenir, sans toute perte de performance. Une semblable décision peut être prise à j égal = 4, et ainsi de suite.  

Cette séquence de décisions que l'algorithme de viterbi entreprend fait exactement traverser le treillis. L'algorithme opère en calculant un " métrique " pour chaque trajectoire possible dans le treillis. Le métrique pour une trajectoire particulière est défini comme le distance de Hamming entre la séquence codée représentée par cette trajectoire et la séquence reçue. Donc, pour chaque noeud (état) dans le treillis de la Fig. 7, l'algorithme compare les deux trajectoires qui entrent le noeud. La trajectoire avec la métrique inférieure est retenue, et l'autre trajectoire est abandonnée. Ce calcul est répété pour chaque niveau j du treillis dans la gamme M <= j <= L où M = K – 1 est la mémoire de l'encodeur et L est la longueur de la nouvelle séquence du message. Les trajectoires qui sont retenues par l'algorithme sont appelées des survivants. Pour un codage convolutif de longueur de contrainte K = 3, il n'y à plus de 2^(K-1) = 4 trajectoires survivants et leur métrique seront entreposées. Cette petite liste de trajectoires est toujours garantie pour contenir le choix de probabilité maximale.  

Exemple  

Supposez que l'encodeur de Fig. 5 produit une séquence de zéro qui est envoyée sur un canal symétrique binaire, et que la séquence reçue est (0100010000. . . ). Il y a deux erreurs dans la séquence reçue dues au bruit dans le canal: un dans le deuxième emplacement et l'autre dans le sixième emplacement. Nous souhaitons que ce modèle d'erreur-double soit corrigé à travers l'application de l'algorithme de Viterbi.  

Dans Fig. 8.a, nous montrons le résultat obtenu en étape1 de l'algorithme pour j = 2. Il y a quatre trajectoires (survivantes), une pour chacun des quatre états de l'encodeur. Le chiffre inclut aussi le métrique de chaque trajectoire.  

Dans le côté gauche de Fig. 8.b, nous montrons les deux trajectoires qui entrent chacune des quatre états à j = 3, avec leur métrique individuelle. Dans le côté droit de ce chiffre, nous montrons les quatre survivants qui résultent de l'étape2 de l'algorithme pour j = 3. Dans les Figs. 8.c et 8.d, nous montrons les résultats correspondants obtenus par application de l'étape2 de l'algorithme pour j = 4 et j = 5, respectivement.  

En examinant les quatre survivants dans Fig. 8.d, nous voyons que la trajectoire du zéro a le plus petit métrique. Cela montre clairement que la séquence de zéro est le choix de la probabilité maximale d' algorithme de Viterbi qui est en accord avec la séquence transmise exactement.  

  Received

  sequence        01     1    00    

                                                   1

                                  1               

                                                   3 

                                                   2

                                                   2 

 étape1 :                  j = 1                       (8.a) 

Received

Sequence          01     1    00    1    01      2                          1         1          2 

                                                                 3 

                                  1            3              2                          1          3         2

                                                                 3

                                                2              5                                                 2

                                                                 2    

                                                2              3                                      2         3

                                                                 4

étape 2 :                j = 3                       (8.b)                                      Survivants 

Received         01     00     01      00 

Sequence              1       1        2         2                          1       1        2       2

                                                            4  

                             1        3       2         4                          1                 2        2 

                                                            2

                                                2          3                                            2        3   

                                                            4    

                                       2        3         3                                  2                  3             

                                                              4

étape 2 :                 j = 4                       (8.c)                                   Survivants 

 Received         01     00     01      00      00

 sequence              1       1        2        2        2              1       1        2       2      2

                                                                     5

                             1                 2        2         4                                2        2     3

                                                                      3

                                                2        3         3                                2        3     3  

                                                                      4

                                       2                 3         3                                                 3             

                                                                      4

 étape2 :                 j = 5                       (8.d)                                     Survivants

                           Figure 8 Illustration des étapes de l'algorithme de viterbi

CHAPITRE II : TURBO-CODES ET TURBO-DECODAGE

II.1. LE TURBO-CODE

  II.1.1. Principe

   Le turbo-code répose sur un principe simple qui a souvant fait ses preuves: il est souvent plus avantageux de scinder un problème complexe en deux plus simples, mais dont l’éfficacité combinée est souvent bien plus importante. Comme exemple, on peut comparer le message à coder à une grille de mots croisés. Les même lettres sont codées de deux maniéres différentes, par les définitions horizontales et verticales. Ces lettres sont codées dans un certain ordre par les définitions horizontales, et dans un ordre différent et decorrélé par les définitions verticales. On possède ainsi deux fois plus d’informations pour retrouver la grille complète.

  II.1.2. L’encodage

        II.1.2.1. Concaténation de codeurs RSC.

             La Concaténation de deux codeurs récursifs systématiques sert à générer deux codages de la même information. Il s’agit en fait de deux codeurs de structures strictement équivalentes, c.a.d qu’ils possèdent les même polynomes générateurs. Ainsi leur diagramme en treillis est commun. Tout l’intérêt réside en fait dans l’insertion d’un entrelaceur entre l’entrée du prémier codeur et l’entrée du second codeur. Son role est de mélonger les bits de la séquense à coder afin d’en obtenir une deuxième contenant la mçme information mais se trouvant ainsi décorrélée du message original. Il faut noter que deux informations corrélées d’un même message reviendraient à une même information. D’ou l’importance de la structure et de la taille de cet entrelaceur pseudo-aléatoire. Ainsi, si on considere un message binaire {X}, constitué par la suite des données xk, il est codé deux fois par notre turbo-codeur: la prémière fois suivant son ordre naturel par le codeur du haut, la séconde fois dans son ordre bouleversé par celui du bas. Les séquences redondantes {Y} et {Y’} forment deus messages synonymes de la séquence d’entrée {X}, qui est également transmise. Elles permettent donc régénérer la séquence d’origine. Il est à noter que la longueur de la séquence à transmettre est égale à celle de la mémoire de l’entrelaceur: N.

        II.1.2.2. Multiplexage de la sortie.

             Pour un bit en entrée, on obtient quatre bits fournis en sortie du codeur. Cependant tous ne sont pas transmis. En effet, la sortie {X’} n’est jamais transmise. Ilexiste en fait deux options pour le choix des bits à envoyer:

             Soit on envoie systématiquement les trois bits de sortie en les multiplixant, c’est à dire qu’on transmet [X(t) Y(t) Y’(t) X(t+1) Y(t+1) Y’(t+1) X(t+2) …]. Le rendement du codeur est alors de 1/3. Célà impose donc plus des données à transmettre mais assure aussi un décodage plus facile. On transmet dans ce cas 3N bits par séquence.

         Soit on utilise une opération dite de “poinçonnage” (puncturing) qui consiste à n’envoyer qu’une fois sur deux les bits de parité (sorties des codeurs RSC) en alternant la sortie sélectionnée. On transmet alors [X(t) Y(t) X(t+1) Y’(t+1) X(t+2) Y(t+2) …]. Le rendement du codeur n’est alors que ½ mais le décodage est moins éfficace. On transmet 2N bits.

II.2. LES TURBO-DECODEURS

II.2.1. Définition préliminaire.

Logarithme du Rapport de Vraisemblance (LRV). Si on appelle R la                                                                                    

séquence reçue par le décodeur, le LRV est donnée par l’expression suivant:

(uk) = Ln [ Pr(uk = 1/R)/ Pr(uk =-1/R)]
       C’est ce facteur qui nous permet de prendre une décision quant à la valeur de uk. En effet, si le LRV est positif, alors uk vaut 1, et s’il est strictement négatif uk vaut –1. De plus la fiabilité de l’information obtenue sur uk est donnée par le module du LRV. Plus celui-ci est élevé, plus l’estimation qui est faite a des chances d’être juste.

II.2.2. Structure et principe de fonctionnement d’un décodeur.  

L’élèment de base du turbo- décodage est le décodeur qui utilise plusieurs informations pour décoder la séquence reçue. Il reçoit bien évidemment les bits xk et yk fournis en sortie du codeur et auxquels s’est ajouté un bruit quelconque pendant la transmission à travers le canal. Il utilise également une information dite “ a priori ” sur le bit à décoder et qui peut s’exprimer classiquement par l’expression:

                        zk = Ln [ Pr(uk = 1)/Pr(uk = -1)]

 En sortie il fournit non seulement le logarithme du rapport de vraisemblance que nous avons vu plus haut mais aussi l’information extrinsèque (W(uk)) sur le bit à évaluer.  

           

                       Info a                                              Information

                       priori                                               extrinsèque

                          xk                  Décodeur

                          yk                                                   (uk)                                                   

                                  Entrées-sorties des décodeurs

Le LRV peut s’exprimer par la relation suivante, Lc(R) étant une mesure de la valeur  de confiance du canal:

                 (uk) = Lc(R) + zk + W(uk)

                 Lc(R) = Ln [Pr(R/uk = 1)/Pr(R/uk = -1)]

 Il est à noter que  l’information extrinséque est entièrement décorrélée des entrées de décodeur. Elle représente le surplus d’information rapporté uniquement par ce dernier.

III.2.3. Structure itérative du turbo-décodeur.

    Le fonctionnement général d’un turbo-décodeur repose sur le bouclage de deux décodeurs identiques à celui que nous venons de voir. L’un sert à décoder les bits de parité fournis par le premier codeur tandis que l’autre utilise ceux fournis par le deuxième.


                                                                                                             W2(uk)

           zk                                                                            déentre-

                                W1(uk)      (uk)                                laceur 

xk            décodeur            entre-          décodeur

                  DEC1              laceur            DEC2

                                                                                           déentre-   (uk)
                            y1k                                                           laceur               


                                                          y2k  

yk                     

                               ligne à retard

                                                                                                                   ûk 



  démultiplexage

    et insertion

                              Fonctionnement d’un turbo-décodeur.

La particularité de cette structure  réside dans les données que se transmettent les deux décodeurs. En effet, l’information extrinsèque disponible en sortie d’un décodeur est fournie é l’autre sous forme d’information a priori sur le bit à identifier. L’expression de l’information extrinsèque du décodeur 2 devient alors:

                       W2(uk) = (uk) – Lc(R) – W1(uk).
Remarques:

- Le turbo-décodeur présenté fonctionne pour un codeur de rendement ½, c-à-dire qu’il tient en compte l’opération de poinçonnage qui est effectuée au moment du multiplexage. Célà apparaît dans l’opération de démultiplexage qui remplace le bit poinçonné manquant par un zéro en ramenant l’entrée concernée à la masse.

- Il faut rappeler que les deux décodeurs doivent considérer des séquences don’t l’ordre est different é cause de l’entrelaceur utilisé pendant la phase de codage. C’est pourquoi des entrelaceurs et dé-entrelaceurs sont ajoutés entre les deux décodeurs pour permettre la transmission des données entre eux.

II.2.4 Differents types de concatenation de codeurs

II.2.4.1 La concaténation en parallèle de deux codeurs RSC

   Les deux codeurs C1 et C2 utilisent la meme entrée dk, mais avec une sequence différente à cause de la présence d’un entrelaceur. Les sorties Xk et Yk sont respectivement égales dk et la sortie Y1k de l’encodeur C1, ou la sortie Y2k de l’encodeur C2

dk                                                                                                       Xk




                                       T       T       T       T         C1 codeur

                                                                              Recursif systèmatique

 entrelaceur


                                                           Y1k                           Yk
                                                           Y2k


                                                                               C2 codeur                                   

                                       T       T       T       T       recursif systèmatique

                                                                                  



II.2.4.2 La concaténation en série de deux codeurs RSC

  Les erreurs en sortie de DEC1 sont dispéres par l’entrelaceur. Il faut que le prémièr décodeur DEC1 donne au deuxiéme décodeur DEC2 une décision douce. Le LLR, V1[k] associé à chaque bit dk du DEC1 sont des entrées au DEC2.

1[dk] = log[ P{dk=1/ observation}/ P{dk=0/ observation}]

Où {dk=i/ observation}, I = 0, 1 est la probabilité a posteriori du bit dk.

                                                       1(dk)                    1(dn)                         d(n-L2)


 Xk                                      Decoder                     entrelaceur                   Decoder

                                             DEC1                                                              DEC2


                                         L1 : latence                                                      L2 : latence

                                           

                                      Y1k                                                                  Y2k


Yk




       Démultiplexage

         Et insertion

L’entrée de décodeur est (xk, yk). L’information de redandance, yk, est démultiplixée et envoyée à décodeur DEC1 comme y1k quand le bit uk = u1k, et comme y2k à décodeur DEC2 quand uk = u2k. Quand l’information de redandance n’est pas  envoyée, l’entrée de décodeur est 0.

II.2.4.3. Le codeur Soft-In-Soft-Out
Cet algorithme est available pour décoder les composants du code. Le codeur utilise L[U] pour tous les bits d’information u et Lc.y pour tous les bits codés. Il délivre L(û) sur tous les bits de l’information et Le(û) qui contient l’information de la production douce de tous les autres bits codés dans la séquence du code. Pour un code systématique, le production douce pour u est:

      L(û) = Lc.y + L[u] +Le[û].

Le signe de L[û] dénote la décision dure (hard); c’est, pour une valeur positive de L[û]  décide +1,  pour une valeur négative dénote –1. La magnitude de L[û] dénote la précision de la décision.

Dans cette méthode nous avons trois estimations independantent pour le log-likelihood ratio pour les bits d’information : La valeur du canal Lc.y, la valeur a priori L[u] et la valeur Le(û).

II.2.4.4. Décoder avec une boucle de la réaction (feedback loop)

Le principe de “ feedback loop ”  est de ne nourrit jamais à un décodeur la meme information qu’il la contient. Il entrelace la sorti du DEC2 et la résultat est prend comme une entrée pour le décodeur DEC1 . Il est semblable à la concaténation en serie mais il y a un déentrelaceur qui entrelace la sortie du DEC2 avant l’utilisée comme entrée pour le prémier decodeur DEC1. 

                                                                                    déentrelaceur

                                                       1(dk)                    1(dn)                             W2k

                          Zk

 Xk                                      Decoder                     entrelaceur                   Decoder

                                             DEC1                                                              DEC2


                                         L1 : latence                                                      L2 : latence

                                           

                                      Y1k                                                                  Y2k


Yk



                                                                                                                     déentrelaceur

       Démultiplexage

         Et insertion                                                                                                   output

CHAPITRE III : LES DIFFERENTS ALGORITHMES DE DECODAGES.

III.1 Turbo-décodage [basé sur l’algorithme de Maximun à Posteriori MAP]

      On définit:

- E1, D1 sont de notation de l’encodeur 1 

- E2, D2 sont de notation de l’encodeur 2

- S = ensemble de states

- Xs = (x1s, x2s, …, xNs) = (u1,u2,…, uN ) est le mot d’entrée d’un encodeur

- Xp = (x1p,x2p,…, xNp) est le mot de parité

- Y = Y1N = (y1,y2,…, yN) est le noisy received codeword

  Dans le decodeur MAP, le décodeur décide uk = +1 si P[uk = +1/y] > P[uk = -1/y], et uk = -1 dans le cas contraire. La décision uk est donnée par: ûk = signe[L(uk)] avec L(uk) = Log ( P[uk = +1/y]/ P[uk = -1/y]).

Incorporer le code de treillis, nous obténons:

 L(uk) = Log[ S+P(sk-1 = s’, sk = s, Y)/P(Y)/  S-P(sk-1 = s’, sk = s, Y)/P(Y)]
Avec sk appartient à S est la state de l’encodeur à temps k, S+ est l’ensemble de couples (s, s’) correspond à toutes les transitions (sk-1 = s’)          (sk = s) causées par le donnée d’entrée uk = +1, et S- est de meme définition pour uk = -1.

              P(s’, s, Y) = k-1(s’).k(s’,s).k(s) 

La recursion avant k(s) = P(sk = s, Y1k) = s’ dans S)  k-1(s’).k(s’,s) 

                            avec 0(0) = 1 et0(s<>0) = 0

La probabilité k(s’,s) est définie par : k(s’,s) = P(sk = s, yk|sk-1 = s’)

La recursion arrièrek-1(s’) = (s dans S)   k(s).k(s’,s)

                            avec N(0) = 1 et N(s<>0) = 0.

On définit: ’k(s)  = k(s)/P(Y1k) et ’k(s) = k(s)/P(Yk+1,N|Y1k)

On divise P(s, s’, Y) par P(Y)/P(yk), on obtient: 

                     P(s, s’|Y).P(yk) = ’k-1(s’) .k(s’,s) .’k(s) 

Notons que quand P(Y1k) = (s dans S) k(s), la valeur ’k(s) peut etre compté de { k(s) : s appartient à S} comme suit:

                     ’k(s) = k(s)/(s dans S) k(s)

                                 = s’  k-1(s’) .k(s’,s)/ s s’  k-1(s’).k(s’,s)

                      = s’  ’k-1(s’) .k(s’,s)/ s s’  ’k-1(s’).k(s’,s)

La recursion pour ’k(s) peut etre obtenue par :

           P(YkN |Y1,k-1) = P(Y1k) .P(Yk+1,N|Y1k)/P(Y1,k-1)

                                  = s s’  k-1(s’).k(s’,s) .P(Yk+1,N|Y1k)/P(Y1,k-1)

                                  = s s’  ’k-1(s’).k(s’,s) .P(Yk+1,N|Y1k)

       et donc ’k-1(s’) =  s ’k(s) .k(s’,s) /s s’  ’k-1(s’).k(s’,s) 

et parsuite on fournit le logarithme du rapport d’une probabilité posteriori [APP] que le bit d’information dk soit 0 ou 1 par :

 L(uk) = Log(S+ ’k-1(s’).k(s’,s).’k(s) /S- ’k-1(s’).k(s’,s)’k(s))

   Algorithme:

    ===== Initialisation =====

    D1:

- ’01(s)  = 1  pour s = 0 

                = 0  pour s <> 0. C’est la recursion avant.

- ’N1(s) = 1  pour s = 0

                = 0  pour s <> 0. C’est la recursion arrière

- L21e (uk) = 0 pour k = 1, 2, …, N. C’est l’information extrinsic de D1 à D2.

  D2:

      -   ’02(s)  = 1  pour s = 0 

                      = 0  pour s <> 0

- ’N2(s) = ’N2(s) pour toute s 

- L12e (uk) était determiné de D1 aprés la prémière demi-iteration et donc pas bésoin d’être initialiser  

===== La niéme iteration =====                                   

 D1:

pour k = 1 : N

- yk = (yks, yk,1p) avec yk,1p est la version bruyant.

- Calculer k(s’,s) pour toute transition de s à s’

      -  Calculer ’k1(s) pour toutes les states s utilisées  

end

pour k = N : -1 :2

     -   Calculer ’k-1,1(s) pour toutes les states s utilisées  

end 

pour k = 1 : N

- Calculer L12e(uk) en utilisant

L12e(uk) = Log(S+ ’k-1,1(s’).ke(s’,s).’k1(s) /S- ’k-1,1(s’).ke(s’,s)’k1(s))
End

D2:

pour k = 1 : N

-  yk = (yp(k)s, yk,2p), avec yp(k)s est la valeur systèmatique permutée.

- Calculer k(s’,s) pour toute transition de s à s’

- Calculer ’k2(s) pour toutes les states s utilisées

end

pour k = N : -1 : 2

- Calculer L21e(uk) en utilisant

L21e(uk) = Log(S+ ’k-1,2(s’).ke(s’,s).’k2(s) /S- ’k-1,2(s’).ke(s’,s)’k2(s))
end

===== Après la derniére iteration =====

pour k = 1 : N

- Calculer 

              L1(uk) = Lc.yks + L21e(upinv[k]) + L12e(uk)

          avec    L21e(upinv[k]) = LAAP du DEC2

                     L12e(uk) = LAPP du DEC1

- si L1(uk) > 0

           decide uk = +1

     sinon

          decide uk = -1

end

Remarques: 

    - cet algorithme pose des difficultés techniques à cause de problèmes de la représentation numériques, la néssecité de fonction non linéaire et un haut nombre d’additions et multiplications. L’algorithme sera considéré trop complexe pour mise en oeuvre dans un système réel.

- Le log-MAP algorithme est déduit du  MAP par application de 

l’approximation Ln[e^x + e^y] = max[x,y].

III.2 Le SOVA [Soft Output Viterbi Algorithm]
Cet algorithme sert à calculer la path metric du chemin optimal obtenue par l’algorithme de viterbi classique. Il sert aussi à calculer la path metric pour les chemins concurrents ( qui auraient abouti à une décision différente sur le bit) et on retient le concurrent le plus proche de l’optimal. La confiance sera la différence des deux. Si la confiance est grande, c’est que les concurrents sont peu ressemblants à ce que nous avons trouvé, alors que s’ils l’étaient la confiance serait petite. C’est pour ça qu’on prend le delta minimun.

En effet, pour le metric de l’iéme chemin à temps k on obtient:

Mk(s(I)) = Mk-1(s’(I)) + 0.5L(uk) uk(I) + 0.5(v =1: n)Lc yk,v xk,v(I)  formule A

Avec s(I) denote la state de chemin I à temps k, uk(I) est le bit d’information, et xk,v(I) sont les bits décodés de chemin I à temps k. Pour les codes systèmatiques nous avons:

Mk(s(I)) = Mk-1(s’(I)) + 0.5Lc yk,1 uk(I) + 0.5L(uk) uk(I) + 0.5(v =2: n)Lc yk,v xk,v(I) 

Comme il est décrit dans la figure, on souhaite obtenir la sortie douce pour le bit ûk, lequel le VA le décide après le délai . Le VA continue dans le chemin habituel en calculant la métrique pour la iéme trajectoire. Pour tout état il selectionne le chemin avec le plus grand métrique Mk(s(I)). Au temps k + le VA a sélectionné le chemin de probabilité maximale (ML) avec un index iet a abandonné l'autre chemin avec un index i’ qui termine à cet état
On définit la difference de métrique  comme:

   

                           (k,l) = Mk+l(s(i1)) – Mk+l(s(i’1))

la probabilité P(correct) que la décision du chemin survivant donné yj<= k + l était correct à temps k + l, est de:

    P(correct) = P(chemin i1, yj<= k + l)/[P(chemin i1, yj<= k + l) + P(chemin i’1, yj<= k + l)]

exp(Mk+l(s(i1)))/ [exp(Mk+l(s(i1))) + exp(Mk+l(s(i’1)))]

                = exp(     (k,l))/[1 + exp(     (k,l))]

Le rapport de probabilité ou valeur douce  de cette décision de la trajectoire binaire est      (k,l), car


                                 Log P(correct)/[1 – P(correct)] =       (k,l)   

Pour le code convolutif systèmatique on a :

         

                                     (k, l) = (Mj<k,1 – Mj<k,2) + (Mk<j<k+l,1 – Mk<j<k+l,2)

                                               + 0.5(v =1: n)Lc yk,v [xk,v(1) - xk,v(2)]

                                               + 0.5 Lc yk,1 (ûk – (-ûk))

                                               + 0.5 L(uk)(ûk – (-ûk))

           M1,j<k                 ûk                  M1, k<j<k+l                                     Path i
                                                                      

                                            ûk.L(uk)                (k, l)

                                                                        Path i’                   Path i’
                             -ûk                          M2, k<j<k+l
          M2,j<k                   
                                      -ûk.L(uk)                            

            j< k         j= k        k < j < k+l                  k+ l                        k+   
                          l = 0                                                  l                         l =    

La sortie du SOVA a le format suivant:

  LSOVA(ûk) =  Lc yk,1 + L(uk) + ûk.{3 prémièrs termes du formule A)
On diminue les valeurs d’entrées de la sortie douce du SOVA , on obtenue l’information extrinsic pour être utiliser dans la métrique du décodeur suivant.

III.3 Comparaison entre différentes algorithme de décodage



l'algorithme MAP utilise toutes les trajectoires dans le treillis pour déterminer d'une maniére optimalle la précision de bit dj. Le Max-Log-Map prend sa décision (et production douce) basé sur les meilleures deux trajectoires avec différents dj. Le SOVA prend aussi deux trajectoires, mais pas nécessairement les même deux comme pour le Max-Log – Map.

III.4. Résultats:

Les résultats que nous allons exposer concernent l'estimation de la complexité des deux algorithmes de turbo-décodage Log Map et SOVA. Cette estimation consiste à ramener le calcul en  des opérations élémentaires tel que les additions et les multiplications, sauvegarde et accès mémoire.

Dans un premier temps nous avons estimer la complexité intrinsèque de chacun de ces algorithmes, ensuite nous avons regarder la simplification de des algorithmes suite à l'usage d'un processeur de traitement du signal DSP.

III.4.1.Complexité intrinsèque:

Soit la boucle suivante ( écrite en C++) extraite de l'algorithme Log-MAP : 

for (k=0; k<interleaver_size; k++)

   {

      for (state=0; state<state_number; state++)

        {

          gamma0[k][state] = -dec_s[k] + dec_r[k] * last_out[state][1] ;

          gamma1[k][state] = dec_s[k] + dec_r[k] * last_out[state][1] + L_a[k] ;

        }

}

cette instruction fait la création du tableau pour sauvegarder gamma.

Complexité :


 accès mémoire pour  chercher dec_s[k] et ceci se fait interleaver_size fois

  accès mémoire pour chercher dec_r[k] et ceci se fait interleaver_size fois

  accès mémoire pour chercher last_out[state][1] et ceci se fait state_number fois

 store dec_s[k] dans gamma0[k][state]  et ceci se fait interleaver_size   

          fois

 complement bit de dec_s[k] et ceci se fait interleaver_size fois

 multiplier dec_r[k]*last_out[state][k] et ceci se fait interleaver_size * state_number fois

 additionner dec_r[k]*last_out[state][k] à gamma0[k][state] et ceci se     fait interleaver_size*state_number fois

le tableau 1 regroupe l'ensemble des opérations à effectuer afin d'executer les algorithmes Log-Map et SOVA:

Opération
SOVA
Log MAP

Case memoire



Look up



Store



Addition



Soustraction



Multiplication



Comparaison



Exp



Log



Valeur absolue



Complement bit



Opération
SOVA
Log MAP

Case memoire
29 kbytes(29000)
40 kbytes(40000)

Look up
350286
39368

Store
324017
32328

Addition
12800
46400

Soustraction
5440
15680

Multiplication
11520
05120

Comparaison
12336
25601

Exp
0
10240

Log
0
10240

Valeur absolue
0
10240

Complement bit
0
10240

III.4.2. Discussion des résultats:

On remarque clairement que le Log Map est plus complexe que le SOVA en termes d'opérations mathématiques. Il est aussi plus gourmand en termes de mémoire. Cependant SOVA nécessite des opérations d'accès mémoire beaucoup plus que le Log Map. Ceci étant il sera avantageux d'augmenter l'espace mémoire sur la puce du processeur (on chip memory) afin de réduire au minimum les accès de la mémoire externe.

Il sera plus avantageux d'augmenter le nombre de registres internes (Memory Like Register or Register File) afin de s'en servir pour les stockages temporaires.



Chapitre IV :Utilisation d'un processeur de traitement du signal (DSP).

IV.1. Introduction

        Le DSP est un processeur de traitement du signal ( Digital Signal Processeur ). Son architecture et son utilisation sont semblables à celles d’un microprocesseur standard. Sa particularité est qu’il est conçu pour effectuer des calculs en temps réel. Son jeu d'instruction est adapté aux opérations de traitement numérique du signal.Ses domaines d’applications sont très divers et s’orientent vers les télécommunications, l’électronique, le contrôle…         

Le processeur que nous avons choisi pour réestimer, en fonction de son architecture et de son jeu d'instruction, la complexité des algorithmes de turbo décodage est le TMS320C541 de Texas Instruments.

Texas Instruments est le leadership mondial dans le domaine des DSP. Le premier DSP a été mis sur le marché par cette entreprise en 1980. Il a été classé comme le composant de l'année.

Depuis les fonderies de circuits intégrés se sont précipités à ce nouveau domaine qui vient de naître, et des nouveaux composants sont mis sur le marché tous les jours.

Le TMS 320 C541 utilise une architecture qui maximise le pouvoir de traitement en maintenant deux structures de bus séparées pour la mémoire de données, pour la mémoire de programme. Ceci permettre un accès simultané aux instructions et aux données d'un programme, en fournissant un haut degré de parallélisme. Par exemple, deux lectures et une écriture peuvent être exécutées dans un seul cycle d'horloge. Un tel parallélisme autorise un ensemble puissant d'opérations arithmétiques, logiques,  

et  manipulation de bits en conservant le fait que toutes soient exécutées dans un seul cycle. Notons que ce processeur es

Dans ce qui suit nous décrivons les ressources interne du TMS320C541:

 Unité arithmétique et logique ALU de 40 bits

 Deux accumulateurs de 40 bits

 Une unité de multiplication/addition de 17 bits

 Une unité de comparaison de selection et de stockage.

 Une unité de calcul de l'exponentiel en un seul cycle horloge

 64kwords pour le programme et 64 kwords pour les données

 40 MIPS (25 ns de cycle horloge)

IV.2. Architecture DSP

Du point de vue jeu d'instruction, le DSP permet l'execution de plusieurs intructions de haut niveau en une seule et ceci en un cycle horloge. Un exemple frappant est celui du calcul de l'exponentiel.

Dans ce qui suit nous trouvons une liste des instructions les plus importantes qui vont simplifier énormément le calcul:

 MAC: Multiply and Accumulate. Multiplier deux nombres et ajouter le resultats au résultat de la multiplication précédente

 CMPS: Compare, select and store maximum.compare deux valeurs, en choisie le maximum et le range dans une variable ou une case mémoire.

 RPTB: Repeat Block. Repéter le bloc d'instructions qui suit un certain nombre de fois.

 ST src Ymem SUB Xmem, dst: Parallel store and subtract. Retranche le contenu de Xmem de celui de Ymem et sauvegarde de résultat ds Xmem ou Ymem en fonction du bit dst.

IV.3 Applications de DSP sur les algorithmes Log-MAP et SOVA

Considérons la boucle shoisie auparavant et réestimons sa complexité en fonction de l'architecture du processeur choisi.

for (k=0; k<interleaver_size; k++)

   {

      for (state=0; state<state_number; state++)

        {

          gamma0[k][state] = -dec_s[k] + dec_r[k] * last_out[state][1] ;

          gamma1[k][state] = dec_s[k] + dec_r[k] * last_out[state][1] + L_a[k] ;

        }

}

On peut premièrement sauvegarder dec_s[k], dec_r[k] et last_out[state][1] dans le On_chip DRAM (5k mots) et par cette méthode on économise 2*interleaver_size + state_number accès mémoires. De plus, il existe une opération pour multiplier et accumuler dec_r[k]*last_out[state][k] à gamma0[k][state] en une seule cycle d’instruction. Il reste donc:

               complément bit de dec_s[k] et ceci se fait interleaver_size fois

               store dec_s[k] dans gamma0[k][state]  et ceci se fait interleaver_size fois

               MAC de dec_r[k]*last_out[state][1] à gamma0[k][state]

En total, on a:


Addition
multiplication
MAC
Store
lookup
cbit
En cycle

Sans DSP
x*y
x*y
0
X
2x + y
x
2xy + 4x +y

Avec DSP
0
0
x*y
X
0
x
xy + 2x

Où x= interleaver_size et y = state_number

On prend une boucle de l’algorithme SOVA :

for (k=0; k<interleaver_size; k++)

   {

     temp_s = dec_s[k];

     temp_r = dec_r[k];

      for (state=0; state<state_number; state++)

        {

           M0 = temp_s[k]*last_out[state][0] + temp_r[k]*last_out[state][1]  

                     - 0.5L_a[k] + path_metric[last_state[state][0]][k];

           M1 = temp_s[k]*last_out[state][2] + temp_r[k]*last_out[state][3]  

                     + 0.5L_a[k] + path_metric[last_state[state][1]][k];

           …..

          }

}

Cette boucle fait compter les path_metriques.

Sans DSP:

 accés mémoire de dec_s[k] et ceci se fait interleaver_size fois

 accés mémoire de dec_r[k] et ceci se fait interleaver_size fois

 Calcule de M0:

1. accès mémoire de path_metric[last_state[state][0]][k] et ceci se fait  interleaver_size*state_number fois

2. accès mémoire de last_state[state][0] et ceci se fait state_number fois

3. accés mémoire de last_out[state][0] et ceci se fait state_number  fois

4. accés mémoire de last_out[state][1] et ceci se fait state_number  fois

5. store path_metric[last_state[state][0]][k] dans M0 et ceci se fait        interleaver_size*state-number fois

6. multiplier temp_s*last_out[state][0] et ceci se fait interleaver_size *state-number fois, et l’additionner à M0 et ceci se 

              fait interleaver_size*state-number fois

7. multiplier temp_r*last_out[state][1] et ceci se fait interleaver_size *state-number fois, et l’additionner à M0 et ceci se 

              fait interleaver_size*state-number fois

8. décalage à gauche une seule fois de L-a[k] et ceci se fait   interleaver_size fois

9. diminuer L-a[k] de M0 et ceci se fait interleaver_size*state-number  fois

Avec DSP:

On peut sauvegarder  path_metric[last_state[state][0]][k] dans le On_chip DRAM (5k mots) et par cette méthode on économise interleaver_size*state_number accés mémoires. De plus, on peut  sauvegarder last_out[state][0], last_out[state][1] et last_state[state][0] et on économise 3state_number accés mémoires. Il reste donc:

 store path_metric[last_state[state][0]][k] dans M0 et ceci se fait          interleaver_size*state-number fois

 MAC de temp_s*last_out[state][0] à M0 et ceci se fait  interleaver_size*state-number fois

 MAC de temp_r*last_out[state][1] à M0 et ceci se fait     interleaver_size*state-number fois

 En parallèle décalage à gauche une seule fois de L-a[k] et diminuer de  M0 et ceci se fait interleaver_size fois.


Add
Multipl.
MAC
Sous.
Store
lookup
Shift
En cycle

Sans DSP
2x*y
2x*y
0
x*y
x*y
xy +3y
x
7xy + x +3y

Avec DSP
0
0
2 x*y
0
x*y
0
x*y
4x*y

IV.3.1. Log_MAP avec et sans DSP

Dans la première boucle de Log_MAP qui calcule le tableau de gamma on a : 


Addition
multiplication
MAC
Store
lookup
cbit
En cycle

 Sans DSP
x*y
x*y
0
X
2x + y
x
2xy + 4x +y

Avec DSP
0
0
x*y
X
0
x
xy + 2x

Où x= interleaver_size et y = state_number.

Dans la deuxième boucle de Log_MAP:

For (state = 1 ; state < state_number; state++) 

{

Alpha[0][state] = -infty;  

}

On initialise les valeurs des alphas, on a : state_number store
Dans la troisième boucle de Log_MAP:

For (state = 1 ; state < state_number; state++) 

{

Beta[0][state] = -infty;  

}

On initialise les valeurs des betas, on a : state_number store

Dans la quatrième boucle de Log_MAP:

for (k=0; k<interleaver_size; k++)

{

    tempmax = -infty;

for (state = 1 ; state < state_number; state++) 

{

 x =   gammao[k-1][state] + alpha[k-1][last_state[state][0]];

 y =   gamma1[k-1][state] + alpha[k-1][last_state[state][1]];

 …

  if (alpha[k][state] > tempmax)

  {

    tempmax = alpha[k][state];

    }

for (state = 1 ; state < state_number; state++)

 alpha[k][state] = alpha[k][state] - tempmax;

}

on a déjà calculer et sauvegarder gamma0 et gamma1( Gamma0 a une capacité de mémoire égale à 10kbytes), donc il n'est pas nécessaire de faire des accés mémoires pour les retrouver. On économise donc interleaver_size*state_number looc up.

On peut aussi remarque que last_state et last_out ne varient pas lors de l'execution, on économise donc 2*state_number looc up.

 Dans la boucle alpha[k][state] = alpha[k][state] - tempmax :

Sans DSP nous obligeons de faire soustraction puis store ( 2 cycles). Avec DSP il existe une instruction qui fait la soustraction et store en parallele (une cycle).


Add
|| add et store
Sous.
Store
lookup
soustraction et store en parallele
En cycle

Sans DSP
2x*y
0
x*y
5x*y + x
2x*y + 2y
0
10xy + x +2y

Avec DSP
0
2x*y
0
x + x*y
x*y
x*y
5x*y + x

Dans la cinquième boucle de Log_MAP:

for (k = interleaver_size - 2; k >= 0; k--)

{

  tempmax = -infty;

   for (state = 1 ; state < state_number; state++) 

   {

     x =   gammao[k+1][next_state[state][0] + beta[k-1][ next_state[state][0];

     y = gammao[k+1][next_state[state][1] + beta[k-1][ next_state[state][1];

…

if (beta[k][state] > tempmax)

  {

    tempmax = alpha[k][state];

    }

for (state = 1 ; state < state_number; state++)

 beta[k][state] = beta[k][state] - tempmax;

}


Add
|| add et store
Sous.
Store
lookup
soustraction et store en parallele
En cycle

Sans DSP
2x*y
0
x*y
5x*y + x
2x*y + 2y
0
10xy + x +2y

Avec DSP
0
2x*y
0
x + x*y
x*y
x*y
5x*y + x

Dans la dernière boucle, on a:

for (k=0; k<interleaver_size; k++)

{

    tempmax = -infty;

for (state = 1 ; state < state_number; state++) 

{

 x =   gammao[k][state] + alpha[k][last_state[state][0]] + beta[k][state];

 y =   gamma1[k][state] + alpha[k][last_state[state][1]] + beta[k][state];

 …

LLR[k] = temp1 - temp0;

}


Add
|| add et store
Sous.
Store
lookup
soustraction et store en parallele
En cycle

Sans DSP
4x*y
0
x*y
2x*y + 2x
5x*y 
0
12xy + 2x

Avec DSP
2x*y
2x*y
2x
2x
0
x*y
6x*y + 4x

IV.3.2. SOVA avec et sans DSP

La prmière boucle:

for (k=0; k<interleaver_size; k++)

   {

           for (state=0; state<state_number; state++)

        {

           path_metric[state][k]  = - infty

          }

}

on initialise le path_metrique, on a interleaver_size* state_number stores.

La deuxième boucle est déjà étudiée.

La troisième boucle :

for (k=0; k<interleaver_size; k++)

   {

         reliability = -infty;  

         for (i=0; i<delta1; delta1++)

          {

             if ( k + i < interleaver_size)

             {

               bit = 1 - Ml_bit[k + i];

         for (j = i - 1; j>= 0; j--)

            {

             bit = store_bit[temp_state][k + i +1];

             temp_state = last_state[temp-srate][bit];

               }

if (bit != ML_bit[k])

    {

       if (reliability > store_DELTA[ML_path[k + i + 1]][k + i + 1])

         {    

           reliability = store_DELTA[ML_path[k + i + 1]][k + i + 1]);

          }

  }

        }

}

LLR[k] = ( 2*ML_bit[k] - 1)* reliability;

}

Le nombre des couples (k, i) qui verifient la condition ( k + i < interleaver_size) est 9455.

Dans l'instruction "bit = 1 - Ml_bit[k + i]" on a:

Sans DSP : on diminue les deux valeurs puis les store (deux cycles).

Avec DSP : on diminue et store en parallele(une cycle).

La boucle  for (j = i - 1; j>= 0; j--) est repetée 139345 fois.Dans cette boucle on économise 2*139345 looc up si on utilise DSP.

Dans l'instruction:

if (reliability > store_DELTA[ML_path[k + i + 1]][k + i + 1])

         {    

           reliability = store_DELTA[ML_path[k + i + 1]][k + i + 1]);

Sans DSP: on compare deux valeurs, puis on sauvegarde ( store) la maximum ( deux cycles).

Avec DSP: on compare deux valeurs, selecte et store lea maximum (une cycle).


Sous.
Store
mul
Compare, selecte et store le max
compare
soustraction et store en parallele
En cycle

Sans DSP
x + 9455
x + 2*139345 + 3*9455
3x
0
x*y + x + 9455
0
6x + x*y + 2*139345 + 5*9455

Avec DSP
x
x + 2*139345 + 9455
3x
9455
x*y + 9455
9455
5x +  2*139345 + 4*9455

le tableau 1 regroupe l'ensemble des opérations à effectuer afin d'executer les algorithmes Log-Map et SOVA sous l’architecture DSP:
(on prend x = interleaver_size et y = state_number)

Opération
SOVA
Log MAP

Look up
3x
x*y

Store
4x*y +5x +9455 + 2*139345
8x*y + 3x

Mul et accumuler
4x*y
2x*y

Soustraction
x


Multiplication
x
0

Comparaison
x*y + 9455
4x*y

Exp
0
4x*y

Log
0
4x*y

Valeur absolue
0
4x*y

Store avec parallele add
0
3x*y + 4x

Compare selecte et store le maximun
x*y + 9455
6x*y

Parallele store et sous
x*y + 9455
x

Addition
0
0

Shift operand et sous d’un accumulateur
x*y
0

Add shift operand à un Acc
x*y
0

Parallele store et mul
2x
0

Complement bit
0
4x + x

A.N. x =320; y = 8; delta = 30.

Opération
SOVA
Log MAP

Case memoire
29 kbytes(29000)
40 kbytes(40000)

Look up
960
2560

Store
299985
21440

Mul et accumuler
10240
5120

Soustraction
320
5120

Multiplication
320
0

Comparaison
12015
10240

Exp
0
10240

Log
0
10240

Valeur absolue
0
10240

Store avec parallele add
0
8960

Compare selecte et store le maximun
12015
15360

Parallele store et sous
12015
320

addition
0
10240

Shift operand et sous d’un accumulateur
2560
0

Add shift operand à un Acc
2560
0

Parallele store et mul
640
0

Complement bit
0
10520

Compaison SOVA et log-MAP


Comparaison SOVA ET log-MAP

Conclusion

Conclusion

On remarque clairement que le Log Map est plus complexe que le SOVA en termes d'opérations mathématiques. Il est aussi plus gourmand en termes de mémoire. Cependant SOVA nécessite des opérations d'accès mémoire beaucoup plus que le Log Map. Ceci étant il sera avantageux d'augmenter l'espace mémoire sur la puce du processeur (on chip memory) afin de réduire au minimum les accès de la mémoire externe.

Il sera plus avantageux d'augmenter le nombre de registres internes (Memory Like Register or Register File) afin de s'en servir pour les stockages temporaires.

Si de plus on calcule le temps d’execution de chacun de deux algorithmes avec:  interleaver_size = 320, une mémoire de taille 3 ( state_number = 2^3 = 8 ) et un delta = 30, alors on trouve que SOVA prend 1.3 ms tandis que Log_MAP prend 2.4 ms. On resulte que SOVA est deux fois plus mieus que le Log-MAP en temps d’execution dans notre DSP.

Bbliographie

1. [Robeston Patric] Illuminating the strcuture of code and decoder of parallel concatenated recursive systematic (turbo) codes.

2. [Sklar Bernard] A prime on turbo code concepts

3. [Ryan William] A turbo code tutorial

4. [Berrou Claude]  Near SHANNON limit Error-correcting coding and decoding : Turbo-codes

5. [Hoeher Peter] A Viterbi algorithm with soft-decision outputs and its application

6. [Hoeher Peter] Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoder

7. [Battail Gerard ] Ponderation des symboles decodes par l'argorithme de viterbi

8. [Hagenauer Joachim] Iterative decoding of binary block and convolution codes

9. [3GPP] TS 25.223 V2.3.0 Techinal specification

10. [3GPP] TS 25.222 V2.2.0 Techinal specification

11. [TEXAS instruments] TMS 320LC54X, TMS320VC54X : Fixed-point Digital Signal Processors

WEB GRAPHIE

1. FTP:// FTP.3GPP.ORG/SPECS DOCUMENT SUR LA NORME UMTS

2. HTTP://WWW.TI.COM   : DOCUMENT SUR LE DSP

3. HTTP://WWW.NMSU.EDU : DOCUMENT SUR LE TURBO CODE

4. HTTP://WWW.ENST.FR  SITE DE L'ENST EN FRANCE














































� EMBED Word.Document.8 \s ���





� EMBED Word.Document.8 \s ���





� EMBED Word.Document.8 \s ���





� EMBED MSGraph.Chart.8 \s ���





� EMBED MSGraph.Chart.8 \s ���





� EMBED Word.Document.8 \s ���





� EMBED MSGraph.Chart.8 \s ���





� EMBED MSGraph.Chart.8 \s ���











PAGE  
2
Mouhammed BADRA

Rapport de stage de DEA en télécommunication et Réseaux.

_1038258316.doc
                                                              ML path


              Max-Log-MAP


              


                                                                                     deux trajectoires


                                                                                     sont considerees


                                                                                                 :0


                                                  dj                                            :1



_1038259970

_1038442174.doc
                         LL entrée                                                                          LL sortie






         La valeure à priori pour                                                                    la valeur extrinsic pour


          tous les bits d’information       L(u)                                       Le(û)  tous les bits d’information 


                                                                         Soft-In


                                                                         Soft-Out


         La valeur du canal pour                         Décodeur                             la valeurs à posteriori pour


         tous les bits du code                 Lcy                                         L(û)    tous les bits d’information



_1038445930

_1038445947

_1038260006

_1038258363.doc
                                                               ML path


              SOVA


              


                                                                                        deux trajectoires


                                                                                     sont considerees mais


                                                                                   La trajectoire en concurrence


                                                                                   peut pas être la meilleure


                                                                                   trajectoire en concurrence


                                                      dj


trajectoire en concurrence                                     


que maintenant détermine                                     ici la trajectoire est éliminée 


la précision (survivra pour                                   


fondre avec la trajectoire ML) 



_1035931087.unknown

_1038258270.doc
              MAP


              


                                                                                     Toutes les trajectoires


                                                                                        sont considerees


                                                                                                 :0


                                                  dj                                            :1



_1035930912.unknown

