Travaux Dirigés d'Estimation

· Exercice 5

Soit à estimer la valeur d’une constante C noyée dans un bruit blanc centré 
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de variance 
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, mais de densité de probabilité inconnue. Le modèle de mesure utilisé est:
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1. Montrer que les hypothèses du problème se prêtent à la recherche d’un estimateur linéaire sans biais à variance minimale.

2. Déterminer cet estimateur.

· Exercice 6

Soit le modèle de mesure 
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 avec C un paramètre à estimer. 
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 est un bruit blanc gaussien de moyenne nulle et de variance C. Déterminer l'estimateur de C par la méthode du maximum de vraisemblance.

· Exercice 7

Soit un vecteur de mesures 
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 avec N le nombre de mesures. On suppose que les composantes du vecteur de mesures x sont des variables aléatoires indépendantes qui suivent une loi normale de moyenne 
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 et de variance 
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 par la méthode du maximum de vraisemblance.

· Exercice 8

Soit le modèle de mesures 
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 avec A et B deux constantes et 
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 un bruit de statistique inconnue. On cherche à estimer le vecteur de paramètres 
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 sachant que l'on a effectué N mesures.

3. Quelle est la méthode d'estimation adaptée à ce problème?

4. Déterminer l'estimateur correspondant de 
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· Exercice 9

On cherche à estimer la valeur d’une constante C noyée dans un bruit blanc 
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 de moyenne nulle, sachant que l'on a effectué N mesures. Le modèle de mesure utilisé est 
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 et que le bruit de mesure possède une variance 
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 est totalement indépendant de C.

1. Déterminer le filtre de Wiener d'ordre 1 qui permet l'estimation de la constante C à partir des mesures 
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2. En utilisant le théorème de projection orthogonale, déterminer le filtre de Wiener d'ordre 2 qui permet l'estimation de la constante C à partir des mesures 
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· Exercice 10

Soit un signal échantillonné 
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 dont les premières valeurs de la fonction d'autocorrélation sont données dans le Tableau 1:

Tableau 1 : Cinq premières valeurs de la fonction d’autocorrélation

	n
	0
	1
	2
	3
	4
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1. En utilisant la méthode directe qui la résolution de l'équation normale, déterminer les prédicteurs d'ordre 1, 2, 3 et 4 du signal x.

2. Calculer les variances des erreurs de prédiction pour chacun des prédicteurs déterminés à la question précédente.

3. A partir des questions précédentes, déterminer une expression de 
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 en fonction d'un nombre limité et minimum des échantillons précédents et d'une variable aléatoire 
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 à déterminer.

4. En supposant que l'on dispose d'un enregistrement suffisamment long de mesure 
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 d'un estimateur de la moyenne et d'un estimateur de la fonction d’autocorrélation d'une variable aléatoire, comment peut-on vérifier que la variable aléatoire 
[image: image29.wmf])

(

n

u

 de la question précédente est un bruit blanc gaussien?

5. En utilisant l'algorithme de Levinson, déterminer les prédicteurs d'ordre 1, 2, 3 et 4 du signal x. 
6. Pour le prédicteur d'ordre 4 de la question précédente, évaluer le gain en terme d'opérations lorsqu'on utilise l'algorithme de Levinson par rapport à la méthode directe. Si on utilise la méthode de Gauss pour résoudre l'équation normale d'ordre l, on effectue:
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additions et le même nombre de multiplications.

7. Le système échantillonné que l'on cherche à identifier possède une fonction de transfert 
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 ne possède qu’un seul zéro égal à zéro. L’ordre de multiplicité de ce zéro reste à déterminer. Ecrire 
[image: image34.wmf])

(

1

-

z

G

.

8. Afin d'identifier les paramètres de la fonction de transfert, le système est soumis à une entrée 
[image: image35.wmf])

(

n

u

 qui est un bruit blanc gaussien de moyenne nulle et de variance 
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 du système est mesurée et la fonction de corrélation de y est estimée. Les résultats de cette estimation sont donnés dans le Tableau 2. Dans ces conditions, déterminer une estimation de la fonction de transfert 
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Tableau 2 : Cinq premières valeurs de la fonction d’autocorrélation

	n
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	1
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	3
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Travaux Dirigés d'Estimation

· Exercice 11

Soit l'équation différentielle modélisant l'altitude z d'un corps en chute libre dans un champ gravitationnel constant:
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 la véritable position du corps ainsi que sa vitesse de chute, à partir de la mesure bruitée de l'altitude du corps tous les 
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. La mesure est entachée d'un bruit blanc additif de moyenne nulle et de variance 1.

1. Déterminer le modèle d'état discret permettant l'utilisation d'un filtre de Kalman pour résoudre ce problème.

2. Quelle origine pourrait avoir l'introduction d'un bruit sur l'état dans le modèle déterminé à la question précédente?

Dans la suite du problème, il n'y a pas de bruit sur l'état. Les résultats de mesures sont donnés dans le Tableau 3:

Tableau 3 : Premières mesures de l’altitude

	n
	1
	2
	3
	4
	5
	6
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	979.9
	943.4
	925.7
	873.1
	820.1


Le filtre de Kalman est initialisé avec les valeurs suivantes:
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3. Calculer les 3 premières estimations du vecteur d'état, ainsi que les matrices d’autocorrélation associées avec 
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Les résultats de l'estimation pour les 6 mesures du tableau précédent sont tracés sur la Figure 1. Les variables 
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Figure 1 : Evolution des variances d’estimation

· Exercice 12

Soit le processus décrit par le modèle d'état discret suivant:
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le vecteur d'état du système. 
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 est un bruit blanc gaussien de moyenne nulle et de matrice d’autocorrélation :
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est un bruit blanc gaussien de moyenne nulle et de matrice d’autocorrélation :
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Le problème consiste à réaliser une estimation de l'état du processus à l'aide du filtre de Kalman. Le filtre est initialisé avec les valeurs suivantes:
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1. En supposant que la première mesure est égale à 
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2. Donner une évaluation de la précision de l'estimation déterminée à la question précédente en terme d'une probabilité sur l'amplitude de l'erreur d'estimation.

3. Donner une interprétation de la valeur de la matrice :
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4. Soit :
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La Figure 2 représente l’évolution de
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 lorsqu’on poursuit l’estimation. Expliquer le comportement des deux composantes 
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5. En supposant que l'ordre de grandeur des variables que l'on cherche à estimer est le même que précédemment, et que l'on initialise la matrice de covariance avec la valeur:


[image: image72.wmf]ú

û

ù

ê

ë

é

=

=

1

0

0

100

)

0

0

(

)

0

(

P

P

.

Expliquer la signification d'une telle initialisation.
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Figure 2: Evolution des composantes du gain de Kalman
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