Chapitre 4 

Les suites
I
Notion de suite 


A]
Définition d’une suite 

Faire des exemples

Définition :

Une suite u ou (un) est une fonction qui à tout entier n associe un nombre u(n), noté un.

Remarque :

u0 ou up est le terme initial de la suite suivant que la suite commence à 0 ou p.

Vocabulaire :

On dit que un est le terme général de la suite (un).

n est l’indice de un.

un+1 est le terme qui suit un.

un–1 est le terme qui précède un.

Exemples :


u0 = 1, u1 = 3, u2 = 5, …


v0 = – 1 , v1 = 1, v2 = – 1, v3 = 1,….


B]
Mode de génération d’une suite et représentation graphique 


1)
Génération d’une suite 

Une suite est une liste de nombres, mais on peut parfois la définir à l’aide d’une formule. Voyons deux modes de génération.

· Formule explicite : un = f(n) quand le terme est fonction de l’indice.

· Formule de récurrence : un+1 = f(un) lorsque le terme est fonction du terme précédent, il faut alors aussi préciser le terme initial.

Exemples :

· f(x) = 2x² – 1 et un = f(n).

· EQ \b\lc\{ (\a\co1( vn + 1 = 2vn  + 1 , v0 =  – 1 ))
2)
Représentation graphique 

Exemples :

Représenter graphiquement les cinq premiers termes de (un) et (vn).

Exercices 1, 2, 3 et 5p62.

C]
Sens de variation 
Définition :

Soit (un) une suite.

On dit que :

· (un) est croissante lorsque pour tout n, on a un+1 SYMBOL 179 \f "Symbol"\h un ( ou un+1 – un SYMBOL 179 \f "Symbol"\h0).

· (un) est décroissante lorsque pour tout n, on a un+1 SYMBOL 163 \f "Symbol"\h un ( ou un+1 – un SYMBOL 163 \f "Symbol"\h 0).

Exemples :

· un = n², n SYMBOL 206 \f "Symbol"\h IN.

· vn =  eq \s\do1(\f(1;n+1)), n SYMBOL 206 \f "Symbol"\h IN.
Méthodes :

· Etudier le signe de un+1 – un.

· Pour un suite du type un = f(n), on étudie les variations de f sur IR*, 

· Si f est croissante sur IR+*, alors (un) est croissante.

· Si f est décroissante sur IR+*, alors (un) est décroissante.

· Pour une suite dont tous les termes sont tous strictement positifs, on peut comparer  eq \s\do1(\f(un+1;un)) à 1 :

· Si  eq \s\do1(\f(un+1;un))  SYMBOL 179 \f "Symbol"\h 1, alors la suite est croissante.

· Si  eq \s\do1(\f(un+1;un))  SYMBOL 163 \f "Symbol"\h 1, alors la suite est décroissante.

Théorème :

Si f est une fonction croissante (respectivement décroissante) sur IR+, alors la suite de terme général f(n) est croissante (respectivement décroissante).


D]
Suite majorée, minorée, bornée

Définition :

· La suite  eq \b(un) est majorée, s’il existe un réel M tel que, pour tout n, un SYMBOL 163 \f "Symbol"\h M.

· La suite  eq \b(un) est minorée, s’il existe un réel m tel que, pour tout n, un SYMBOL 179 \f "Symbol"\h m.

· La suite  eq \b(un) est bornée, si elle est majorée et minorée.

Exemple :


*
La suite définie par un =  eq \s\do1(\f(1;1+n)) est minorée par 0.


*
La suite définie par vn = 1 +  eq \s\do1(\f(1;n + 1)) est majorée par 2.

II
Suite arithmétique 


A]
Définition 

Faire des exemples.

u0

u1
u2
u3
u4

un
un+1
Définition :

Une suite est arithmétique quand on passe d’un terme au suivant en ajoutant toujours le même nombre r appelé la raison. Donc pour tout n entier naturel on a un+1 = un + r

Exemple :


r = – 2 et u0 = 5

Méthode :

Si la différence un+1 – un est une constante, alors la suite est arithmétique de raison cette constante.


B]
Formule explicite en fonction de n 
Explication :

Traiter u0, u1, u2, u3, u4, pour faire deviner un = u0 + nr

Propriété :

Soit (un) une suite arithmétique de raison r et de premier terme u0.

Alors un = u0 + n r

Exemple :

Donner le terme général de la suite de l’exemple précédent.


C]
Sens de variation 
Propriété :

Soit (un) une suite arithmétique de raison r et de premier terme u0.

· Si r SYMBOL 179 \f "Symbol"\h 0, alors (un) est croissante.

· Si r SYMBOL 163 \f "Symbol"\h 0, alors (un) est décroissante.

Démonstration :

Soit n un entier naturel.

Soit (un) une suite arithmétique de raison r et de premier terme u0.

On sait que un+1 = un + r

Donc un+1 – un = r ; C’est pourquoi si r SYMBOL 179 \f "Symbol"\h 0 on a un+1 – un SYMBOL 179 \f "Symbol"\h 0, donc (un) est croissante.





C’est pourquoi si r SYMBOL 163 \f "Symbol"\h 0 on a un+1 – un SYMBOL 163 \f "Symbol"\h 0 donc (un) est décroissante.


D]
Somme des premiers termes d’une suite arithmétique 
1) Calcul de 1 + 2 + 3 + …+ n 

Propriété :


S = 1 + 2 + 3 + 4 + …+ n =  eq \s\do1(\f(n  ; 2))
 .

Démonstration :

A faire comme Gauss.

Exemples :

Calculer :

· S = 1 + 2 + 3 +…+ 500.
· S’ = 1 + 2 + 3 +…+ 1 000.
2)
Somme des premiers termes d’une suite arithmétique 

Propriété :

Soit (un) une suite arithmétique de raison r et de premier terme u0.

S = u0 + u1 + u2 + …+ un =  eq \s\do1(\f(   eq \b(u0 + un) ; 2))
.
                                         =  eq \s\do1(\f( SYMBOL 180 \f "Symbol"\h  eq \b(premier + dernier terme) ; 2))
.

Démonstration :

Soit (un) une suite arithmétique de raison r et de premier terme u0.

Pour tout k entier naturel on a : uk = u0 + kr.
Donc S = u0 + ( u0 + r) + (u0 + 2r) + … + (u0 + nr).
D’où S = (n+1)u0 + r ( 1 + 2 + 3 + …+ n).
Donc S = (n+1)u0 + r  eq \s\do1(\f(n  ; 2))
.
Ainsi S = (n+1) ( u0 +  eq \s\do1(\f(r n ; 2)) ).
D’où S =  eq \s\do1(\f(  eq \b(2u0 + r n) ; 2))
.
Or 2u0 + nr = u0 + u0 + nr = u0 + un car un = u0 + nr.
Ainsi S =   eq \s\do1(\f(   eq \b(u0 + un) ; 2))
.
Exercice 7p62.
III
Suite géométrique 


A]
Définition 

Faire des exemples.

u0

u1
u2
u3
u4

un
un+1
Définition :

Une suite est géométrique quand on passe d’un terme au suivant en multipliant toujours par le même nombre non nul q appelé raison de la suite.

Exemple :

u0 = 2 et q = 3.

B]
Formule explicite 
Explication :

Traiter avec u0, u1, u2, u3, u4, .

Propriété :

Soit (un) une suite géométrique de raison q et de premier terme u0.

Pour tout n entier naturel on a : un = u0 qn.

Exemples :

Exprimer le terme général des suites suivantes :

· u0 = 2 et q = 5.

· v0 = – 1 et q = 2.

· w0 = 3 et q = 2.


C
Sens de variations 
Propriété :


Soit une suite géométrique de raison q.

· Si q > 1, alors la suite est croissante.

· Si 0< q < 1, alors la suite est décroissante.

· Sinon la suite n’est pas monotone.


D]
Calcul de la somme des premiers termes d’une suite géométrique 


1)
Calcul de 1 + q + q² + …+ qn 

Propriété :


S = 1 + q + q² + …+ qn
Si q = 1, alors S = n+1.

Si q SYMBOL 185 \f "Symbol"\h 1, alors S =  eq \s\do1(\f(1 – qn + 1 ; 1 – q)) =  eq \s\do1(\f(1 – raison nombre de terme + 1 ; 1 – raison)).

Démonstration :


Si q = 1, alors S = 1 + 1 + 1 +...+ 1 = n+1.


Si q SYMBOL 185 \f "Symbol"\h 1 :
Calculons S – qS = 1 – qn+1 = ( 1 – q ) S.
Donc S =  eq \s\do1(\f(1 – qn + 1 ; 1 – q)).
Exemple :


Calculer S = 1 + 2 + 2² + …+ 263.

2)
Somme des premiers termes d’une suite géométrique 

Propriété :

Soit (un) une suite géométrique de raison q et de premier terme u0.

Si q SYMBOL 185 \f "Symbol"\h 1, alors S = u0 + u1 + u2 + …+ un = u0  eq \s\do1(\f(1 – qn + 1 ; 1 – q)) = 1er terme SYMBOL 180 \f "Symbol"\h  eq \s\do1(\f(1 – raison nombre de terme + 1 ; 1 – raison)).

Si q = 1, alors S = u0 (n+1).
Démonstration :

Si q SYMBOL 185 \f "Symbol"\h 1 :

S = u0 + u1 + u2 + .. + un.
D’où S = u0 + u0 q + u0 q² + … + u0 qn.
Donc S = u0 ( 1 + q + q² + … + qn ).
Ainsi S = u0  eq \s\do1(\f(1 – qn + 1 ; 1 – q)).
Si q = 1 :


S = u0 + u0 + u0 +… + u0 = (n+1) u0.
Exercices 8 et 9p62.
Exercice 11p63.

IV Limite de suites


A]
Limite des suites de terme générale n, n2, n3 et  eq \r(n)
Propriété :

 eq \o(lim;\s\do11(n ( +))
n =  eq \o(lim;\s\do11(n ( +))
n2 =  eq \o(lim;\s\do11(n ( +))
n3 =  eq \o(lim;\s\do11(n ( +))

 eq \r(n)
 = +SYMBOL 165 \f "Symbol"\h.
Exemples :

Donner la limite des suites suivantes :

un = n2 + n + 1.
vn = n3 + n.
Propriété :

Les théorèmes vus dans le chapitre sur les limites de fonctions sont aussi valables pour les suites.


B]
Limite des suites de terme général  eq \s\do1(\f(1;n)),  eq \s\do1(\f(1;n2)),  eq \s\do1(\f(1;n3)) et  eq \s\do1(\f(1;))

Propriété :

 eq \o(lim;\s\do11(n ( +))

 eq \s\do1(\f(1;n))
 =  eq \o(lim;\s\do11(n ( +))

 eq \s\do1(\f(1;n2))
 =  eq \o(lim;\s\do11(n ( +))

 eq \s\do1(\f(1;n3))
 =  eq \o(lim;\s\do11(n ( +))

 eq \s\do1(\f(1; eq \r(n)))
 = 0.
Exemples :

Donner les limites des suites suivantes :

un =  eq \s\do1(\f(1;n2)) +  eq \s\do1(\f(1;n)) + 1 pour n SYMBOL 206 \f "Symbol"\h

EQ \o\al(I;\d\fo2()N)*.
vn =  eq \s\do1(\f(1;n3)) +  eq \s\do1(\f(1;n)) pour n SYMBOL 206 \f "Symbol"\h

EQ \o\al(I;\d\fo2()N)*.
Propriété :

Les théorèmes vus dans le chapitre sur les limites de fonctions sont aussi valables pour les suites.


C]
Limite des suites définies par un = f(n) où f est une fonction définie sur IR+
Théorème :

Si f admet L comme limite en +SYMBOL 165 \f "Symbol"\h, alors  eq \o(lim;\s\do11(n ( +))
un =  eq \o(lim;\s\do11(n ( +))
f(n) = L. On dit que un converge vers L.

Exemples :

Donner les limites des suites suivantes :

un =  eq \s\do1(\f(n + 1 ; n2 + n +1)).
vn = n3 – n + 2.
Propriété :

Les théorèmes vus dans le chapitre sur les limites de fonctions sont aussi valables pour les suites.


D]
Limite d’une suite géométrique

Théorème :

Soit q SYMBOL 206 \f "Symbol"\h IR.

· Si q > 1, alors  eq \o(lim;\s\do11(n ( +))
qn = +SYMBOL 165 \f "Symbol"\h.

· Si q = 1, alors  eq \o(lim;\s\do11(n ( +))
qn = 1.

· Si SYMBOL 189 \f "Symbol"\hqSYMBOL 189 \f "Symbol"\h<1, alors  eq \o(lim;\s\do11(n ( +))
qn = 0.

· Si q SYMBOL 163 \f "Symbol"\h –1, alors la limite n’existe pas.


E]
Convergence des suites monotones

Définition :

· Toute suite qui admet une limite finie est dite convergente.

· Toute suite non convergente est dite divergente.
Exemples :


*
La suite un définie par un =  eq \s\do1(\f(1;n+1)) converge vers 0.


*
La suite vn =  eq \b(–1)n est divergente.
Théorème :

· Toute suite croissante et majorée converge.

· Toute suite décroissante et minorée converge.


F]
Suites et relation d’ordre
Théorème :
· Si  eq \b(un) et  eq \b(vn) sont deux suites telles qu’à partir d’un certain rang un SYMBOL 179 \f "Symbol"\h vn et si  eq \o(lim;\s\do11(n  (  +))
vn=+SYMBOL 165 \f "Symbol"\h, alors  eq \o(lim;\s\do11(n  ( +))
 un = +SYMBOL 165 \f "Symbol"\h.

· Si  eq \b(un) et  eq \b(vn) sont deux suites telles qu’à partir d’un certain rang un SYMBOL 179 \f "Symbol"\h vn et si  eq \o(lim;\s\do11(n  (  +))
vn=l, et  eq \o(lim;\s\do11(n  ( +))
 un = l’, alors l’ SYMBOL 179 \f "Symbol"\h l.

· Si  eq \b(un) ,  eq \b(vn) et  eq \b(wn) sont trois suites telles qu’à partir d’un certain rang un SYMBOL 163 \f "Symbol"\h vn SYMBOL 163 \f "Symbol"\h wn et si  eq \o(lim;\s\do11(n  ( +))
 un =  eq \o(lim;\s\do11(n  ( +))
 wn = l, alors  eq \o(lim;\s\do11(n  ( +))
 vn = l. C’est le théorème des gendarmes.


G]
Opérations sur les suites convergentes
Propriété :

Soient  eq \b(un) et  eq \b(vn) deux suites convergeant respectivement vers l et l’. Soit k SYMBOL 206 \f "Symbol"\h IR.

· La suite  eq \b(kun) converge vers kl.

· La suite  eq \b(un + vn) converge vers l + l’.

· La suite un  eq \b(vn) converge vers ll’.

· Si en plus l’ SYMBOL 185 \f "Symbol"\h 0 et si à partir d’un certain rang les vn ne sont pas nuls, alors la suite un ; vn)) eq \b()
 converge vers  eq \s\do1(\f(l;l’)).

V
Comparaison des suites


A]
Suites équivalentes

Définition :

Les suites  eq \b(un) et  eq \b(vn) sont équivalentes SSI  eq \o(lim;\s\do11(x ( n, +))
 eq \s\do1(\f(un ; vn)) = 1. On note un ~ vn.

Exemple :

un =  eq \s\do1(\f(n2 ; n3 + 1)) et vn =  eq \s\do1(\f(1;n + 1)). Ces deux suites sont équivalentes.


B]
Suite négligeable devant une autre

Définition :

La suite  eq \b(un) est négligeable devant la suite  eq \b(vn) SSI  eq \o(lim;\s\do11(n  ( +))
 eq \s\do1(\f(un ; vn)) = 0.

Exemple :
La suite un =  eq \s\do1(\f(1;n2 + 1)) et négligeable devant la suite vn = n + 1) eq \s\do1(\f(1;))
.


C]
Croissance comparée des suites  eq \b(an) ;  eq \b(n() ,  eq \b(ln n)


1)
Comportement comparé des suites  eq \b(ln n) et  eq \b(n()
Propriété :

Si ( > 0, alors  eq \o(lim;\s\do11(n  (  +))
  eq \s\do1(\f(ln n ; n()) = 0. Donc la suite  eq \b(ln n) est négligeable devant  eq \b(n().



2)
Comportement comparé des suites  eq \b(an) et  eq \b(n()
Propriété :
Si a > 1 et si ( > 0, alors  eq \o(lim;\s\do11(n  (  +))
  eq \s\do1(\f(an ; n()) = +SYMBOL 165 \f "Symbol"\h. Donc la suite  eq \b(n() est négligeable devant la suite  eq \b(an).



3)
Comportement comparé des suites  eq \b(an) et  eq \b(ln n)
Propriété :

Si a > 1, alors on a  eq \o(lim;\s\do11(n  ( +))
  eq \s\do1(\f(ln n ; an)) = 0. Donc la suite  eq \b(ln n) est négligeable devant la suite  eq \b(an).

Exercice 12p63.
VI

Suites récurrentes linéaires


A]
Suite récurrentes linéaires d’ordre 1



1)
Définition

Définition :

La suite  eq \b(un) est définie par une relation de récurrence linéaire d’ordre 1, si pour tout n SYMBOL 206 \f "Symbol"\h IN on a un+1 = aun + b, avec a et b deux réels. Ces suites sont dites arithmético-géométriques.

Remarques :

· Si b = 0, alors on a une suite géométrique de raison a.

· Si a = 1, alors on a une suite arithmétique de raison b.



2)
Méthode par récurrence

Remarque :

Le raisonnement par récurrence est constitué de deux étapes :

· On établit la propriété au rang p. Souvent p = 0. On initialise le raisonnement.
· On suppose que pour tout n ( n SYMBOL 179 \f "Symbol"\h p ), la propriété est vraie et on la démontre au rang n + 1.
Calcul de un en fonction de n :
Observons les premiers termes :

u1 = au0 + b.


u2 = au1 + b = a eq \b(au0 + b) + b = a2u0 + b  eq \b(1 + a).


u3 = au2 + b = a  eq \b(a2u0 + b )
 + b = a3u0 + b eq \b(1 + a + a2).
On pense alors que un = an u0 + b eq \b(1 + a + a2 + … + an–1). Il reste alors à le démontrer par récurrence.
On l’a déjà vérifié au rang n = 1.

Supposons la propriété vraie jusqu’au rang n SYMBOL 179 \f "Symbol"\h 1.

Démontrer la propriété au rang n+1.

un+1 = aun + b. On utilise alors l’hypothèse de récurrence un = an u0 + b eq \b(1 + a + a2 + … + an–1).
Ainsi un+1 = a an u0 + ab  eq \b(1 + a + a2 + … + an–1) + b.

Donc un+1 = an+1 u0 + b eq \b(1 + a + a2 + … + an).

On a ainsi bien démontrée l’hypothèse au rang n+1.
Donc pour tout n SYMBOL 206 \f "Symbol"\h IN*, on a un = an u0 + b eq \b(1 + a + a2 + … + an–1).

Cependant on reconnaît la somme d’une suite géométrique et donc 1 + a + a2 + … + an–1 =  eq \s\do1(\f(1 – an ; 1 – a)) pour a SYMBOL 185 \f "Symbol"\h 1. On obtient alors l’expression de un pour a SYMBOL 185 \f "Symbol"\h 1, un = an u0 + b  eq \s\do1(\f(1 – an ; 1 – a)).
Propriété :

Si a = 1, alors la suite est arithmétique.

Si a SYMBOL 185 \f "Symbol"\h 1 et u0 =  eq \s\do1(\f(b ; 1 – a)), alors la suite est stationnaire.


Si a SYMBOL 185 \f "Symbol"\h 1 et u0 SYMBOL 185 \f "Symbol"\h

 eq \s\do1(\f(b ; 1 – a)), alors la suite converge vers  eq \s\do1(\f(b ; 1 – a)) si SYMBOL 189 \f "Symbol"\haSYMBOL 189 \f "Symbol"\h<1 et elle diverge si SYMBOL 189 \f "Symbol"\haSYMBOL 189 \f "Symbol"\h>1.


3)
Méthode graphique 
On se place dans un repère orthonormal et on construit la 1ère bissectrice (, d’équation y = x, et la droite D d’équation y = ax + b. Les droites ne sont pas parallèles et se coupent au point d’abscisse  eq \s\do1(\f(b ; 1 – a)).
Cette méthode permet de conjecturer sur la limite de cette suite.
Exemple :
un+1 =  eq \s\do1(\f(1;2)) un – 3 et u0 = –1.

On conjecture que l = –6.

4) Utilisation d’une suite auxiliaire

On va procéder à l’aide d’un exemple.

un+1 =  eq \s\do1(\f(1;2)) un – 3 et u0 = –1.

Avec ce qui précède, on suppose que l = –6.
On pose alors vn = un + 6.
Ainsi v0 = u0 + 6 = 5.

vn+1 = un+1 + 6 =  eq \s\do1(\f(1;2)) un – 3 + 6 =  eq \s\do1(\f(1;2)) un + 3=  eq \s\do1(\f(1;2))  eq \b(un + 6) =  eq \s\do1(\f(1;2)) vn.

Donc la suite  eq \b(vn) est géométrique de raison  eq \s\do1(\f(1;2)) et de premier terme 5. Ainsi  eq \o(lim;\s\do11(n  ( +))
vn = 0 =  eq \o(lim;\s\do11(n  ( +))
un + 6. Donc  eq \o(lim;\s\do11(n  ( +))
un = –6.
Exercice 14p63.

Exercices 15 et 16p64.

Exercice 22p65.


B]
Suites récurrentes linéaires d’ordre 2


1)
Définition

Définition :

La suite  eq \b(un) est définie par une relation de récurrence linéaire d’ordre 2, si pour tout n SYMBOL 206 \f "Symbol"\h IN on a un+2 = Aun+1 + Bun, avec A et B deux réels non nuls.

Définition :

On appelle équation caractéristique de cette suite l’équation r2 – Ar – B = 0.

On note (, le discriminant qui a pour valeur ( = A2 – 4B.
2) Théorème

Théorème :

· Si ( > 0, alors l’équation caractéristique admet deux solutions réelles distinctes r1 et r2 et un = C1 r1n + C2 r2n, où C1 et C2 sont deux réels.
· Si ( = 0, alors l’équation caractéristique admet une solution double r et 



un = rn  eq \b(C1n + C2), où C1 et C2 sont deux réels.
· Si ( < 0, alors l’équation caractéristique admet deux solutions complexes conjugués rei( et re–i( et un = rn  eq \b(C1 cos n( + C2 sin n(), où C1 et C2 sont deux réels.

Démonstration :

ADMIS

Exemple :

 eq \b(un) est définie par un+2 = 3un+1 – 2un et u0 = 1 et u1 = 2.

Etudions l’équation caractéristique. r2 – 3r + 2 = 0.Les solutions de l’équation caractéristique sont 1 et 2. Ainsi d’après le théorème un = C1 1n + C2 2n. 
Donc un = C1 + C2 2n.

Déterminons C1 et C2.

On a u0 = C1 + C2 = 1 et u1 = C1 + C2 2 = 2.

On résout le système et on obtient C2 = 1 et C1 = 0.
Donc un = 2n. 

Exercices 21, 17 et 19p64.
VII
Utilisation des suites

A]
Résolution numérique d’équation f(x) = 0


1)
La dichotomie

Théorème :

Si la fonction f est définie continue strictement monotone sur l’intervalle  eq \b\bc\[(a , b) et si le produit f(a) SYMBOL 180 \f "Symbol"\h f(b) est négatif, alors l’équation f(x) = 0 admet une unique solution ( dans  eq \b\bc\[(a , b).
Faire une figure.

Démonstration :
ADMIS

La dichotomie :

Définition :

Dichotomie signifie « couper en deux ».

Soit m le centre de l’intervalle  eq \b\bc\[(a , b).

Si f(a) f(m) < 0 alors ( SYMBOL 206 \f "Symbol"\h  eq \b\bc\[(a , m) sinon ( SYMBOL 206 \f "Symbol"\h  eq \b\bc\[(m , b).

Soit  eq \b\bc\[(a1 , b1) l’intervalle de longueur  eq \s\do1(\f(b – a ; 2)) auquel appartient (.

On réitère le procédé sur  eq \b\bc\[(a1 , b1), on continue jusqu’à ce que la longueur de l’intervalle soit inférieur à la longueur de l’encadrement demandé pour (.

Exemple :

Soit f(x) = x2 – 2 sur  eq \b\bc\[(0 , 2). Donner une valeur approchée de  eq \r(2) à 10–4.

On constate bien que f est définie et continue sur  eq \b\bc\[(0 , 2). En outre f(0) f(2) = –2 SYMBOL 180 \f "Symbol"\h 2 = –4 < 0.
Ainsi il existe bien une unique solution sur cet intervalle à l’équation f(x) = 0.

On a donc u1 = 1. f(1) = –1. Donc ( SYMBOL 206 \f "Symbol"\h  eq \b\bc\[(1 , 2). On pose u2 =  eq \s\do1(\f(3;2)).
On a f( eq \s\do1(\f(3;2))) =  eq \s\do1(\f(1;4)). Donc ( SYMBOL 206 \f "Symbol"\h  eq \b\bc\[(1 , )
. On pose u3 =  eq \s\do1(\f(1 +  ; 2))
 =  eq \s\do1(\f(5;4)).

On a f( eq \s\do1(\f(5;4))) = –  eq \s\do1(\f(7;16)). Donc ( SYMBOL 206 \f "Symbol"\h  eq \b\bc\[( ,  eq \s\do1(\f(3;2)))
. On pose u4 =  eq \s\do1(\f( +  eq \s\do1(\f(3;2)) ; 2))
 =  eq \s\do1(\f(11;8)).

On a f( eq \s\do1(\f(11;8))) = –  eq \s\do1(\f(7;64)). Donc ( SYMBOL 206 \f "Symbol"\h  eq \b\bc\[( ,  eq \s\do1(\f(3;2)))
. On pose u5 =  eq \s\do1(\f( +  eq \s\do1(\f(3;2)) ; 2))
 =  eq \s\do1(\f(23 ; 16)).
On continue ainsi.


2)
Méthode de Newton

Théorème :

Soit f une fonction définie sur  eq \b\bc\[(a , b), deux fois dérivable telle que f ‘ et f ‘’ soient continues et ne s’annulent par sur  eq \b\bc\[(a , b). Si de plus f(a) SYMBOL 180 \f "Symbol"\h f(b) < 0, alors, en choisissant x0 SYMBOL 206 \f "Symbol"\h  eq \b\bc\[(a , b) tel que f(x0) SYMBOL 180 \f "Symbol"\h f ‘’ (x0) > 0, la suite  eq \b(xn) définie par x0 et xn+1 = xn –  eq \s\do1(\f(f(xn) ;f‘(xn) ))converge vers l’unique solution ( dans  eq \b\bc\[(a , b) de l’équation f(x) = 0.

Faire une figure.

Exercices 26 et 27p66.

B]
Calcul d’intégrale
La méthode des rectangles.

On suppose que f est une fonction continue et strictement croissante sur un intervalle  eq \b\bc\[(a , b).

On partage l’intervalle  eq \b\bc\[(a , b) en n intervalle de même longueur  eq \s\do1(\f(b – a ;n)).

Soit i SYMBOL 206 \f "Symbol"\h {1, …, n}.
On pose a = x0 et b = xn et xi =  eq \s\do1(\f(i;n))  eq \b(b – a).
Faire une figure.

On constate donc que :
 eq \s\do1(\f(b – a ;n)) f(xi–1) SYMBOL 163 \f "Symbol"\h  eq \i\in(\d\ba2()xi–1 ;\d\fo1()xi ; f(x))dx SYMBOL 163 \f "Symbol"\h  eq \s\do1(\f(b – a ;n)) f(xi).
On somme cela de 1 à n, d’où  eq \s\do1(\f(b – a ;n))  eq \i\su(0 ;n–1 ;  f(xi)) SYMBOL 163 \f "Symbol"\h  eq \i\in(\d\ba2()a ;\d\fo1()b ; f(x))dx SYMBOL 163 \f "Symbol"\h  eq \s\do1(\f(b – a ;n))  eq \i\su(1 ;n ; f(xi)).

On obtient donc un encadrement d’amplitude  eq \s\do1(\f(b – a ;n))  eq \b(f(b) – f(a)).

Exemple :

Le faire avec 1;x)) eq \i\in(\d\ba2()1 ;\d\fo1()2 ; )
dx avec une amplitude de 10–1. Il faut donc prendre n = 10.
A faire en DM le 24p65.
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