Les suites numériques

Objectifs :
1- Maîtriser la notion de convergence; cas particuliers de la convergence monotone;

2- Maîtriser les suites récurrentes un+1 = f(un) avec f monotone; cas particulier des suites géométriques;

3- Voir quelques exemples de suites récurrentes un+1 = f (un) avec f non monotone.

Exercice  AUTONUMLGL  On considère la suite 
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1- Montrer que la suite 
[image: image4.wmf](

)

n

n

u

Î

N

 est croissante et majorée.

2- Démontrer, en utilisant la définition de la limite d'une suite, que 
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Exercice  AUTONUMLGL  Calculer, quand elles existent, les limites des suites suivantes :
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Exercice  AUTONUMLGL  Soit 
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 une suite numérique telle que les suites extraites 
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 soient convergentes. Montrer que la suite 
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Exercice  AUTONUMLGL 

1- Montrer que les suites définies, pour tout n
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 sont adjacentes.

2- En déduire que la suite de terme général wn=
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 est convergente.
Exercice  AUTONUMLGL  On considère la suite numérique 
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1- Montrer que la suite 
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2- Montrer que pour tout n
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3- En déduire que la suite 
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 est divergente. Quelle est sa limite ?
4- Montrer que pour tout k
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 ln(k + 1) - ln k. En déduire que pour tout n
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ln(n) et retrouver le résultat de la question 3-.
5- On introduit les suites 
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Exercice  AUTONUMLGL  On considère les deux suites numériques 
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 dont les termes généraux sont donnés par :
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1- Montrer que les suites 
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 sont adjacentes, donc convergentes de même limite notée l.

2- A l'aide de l'encadrement valable pour tout n
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3- On considère à présent la suite 
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 définie par w0 = l - 1 et la relation de récurrence 
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a- En introduisant la suite 
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, obtenir l'écriture explicite de zn puis celle de wn en fonction de n.

b- A l'aide de la relation de récurrence satisfaite par la suite 
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Remarque : on montrera plus tard que l = e à l'aide de la formule de Taylor-Lagrange.

Exercice  AUTONUMLGL  On définit pour tout n 
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 [0, 1], Pn(x) = xn - nx + 1.

1- A l'aide d'un tableau de variations, montrer que Pn admet une unique racine dans [0,1] que l'on notera un. Trouver des relations d'inégalité entre un, 
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2- Trouver la limite de la suite 
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Exercice  AUTONUMLGL  Soit f :(
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 définie par la donnée de son premier terme u0 
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1- Etudier les variations de la fonction f sur (, puis tracer son graphe.

2- Déterminer les points fixes de f .

3- En comparant u0 et u1 (on résoudra l'inéquation f (x) 
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 x), étudier le sens de variation de la suite 
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4- Etudier la convergence de la suite 
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Exercice  AUTONUMLGL  Soit 
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1- Déterminer une application f telle que pour tout n
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2- Montrer que 
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 est majorée par 2.

3- Montrer que 
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 est convergente et déterminer sa limite.

Exercice  AUTONUMLGL  Soit 
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 la suite définie par u0 = 1 et pour tout n
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1- Montrer que pour tout n
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 [0,1]. La suite 
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2- On pose pour tout n
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3- Résoudre l'équation (f 
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 f) (x) = x.

4- Etudier la convergence des suites 
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Exercice  AUTONUMLGL  On considère la suite 
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 et de déterminer sa limite par trois méthodes différentes.

Montrer que la limite éventuelle de 
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 1- a- Montrer que, pour tout n
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     b- En déduire que 
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2-a- Etudier le signe de un+1- en fonction de celui de un- et le signe de un+1- un en fonction de celui de un- un-1.


    b- Montrer par récurrence que, pour tout p
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   c- Montrer que les suites 
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sont adjacentes. Quelle est leur limite commune ?

    d- En déduire que 
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3- Soit =
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    a- La suite 
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    b- Montrer que 
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 est une suite géométrique. On pourra remarquer que  et  sont les racines de l’équation r²=r+1. Quelle est sa limite ?

    c- En déduire que la suite 
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Exercice  AUTONUMLGL  Soit 
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]0, 1[ et f la fonction définie sur [0, 1] par f(x) = x(1 - x). On considère la suite numérique 
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 définie par u0 = a et pour tout n
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1- Etudier les variations de f sur [0, 1].

2- Montrer que pour tout n
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3- Montrer par récurrence que pour tout n
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4- On introduit la suite 
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a- Montrer que 
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 est croissante et converge vers un réel v tel que 0 < v 
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b- Montrer que 
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c- On suppose que v < 1. En écrivant v2n - vn =
[image: image126.wmf](

)

2n1

k1k

kn

vv

-

+

=

-

å

 et en remarquant que 
[image: image127.wmf]2n1

kn

11

k2

-

=

³

å

, en déduire que la suite 
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Exercice  AUTONUMLGL  Soient a et b deux réels tel que 0 < a < b. On considère les suites 
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 définies par u0 = a, v0=b et par les relations de récurrence :
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Montrer que ces deux suites sont adjacentes, donc convergentes vers une même limite (appelée moyenne arithmetico-géométrique des nombres a et b).

N.B. Les deux exercices ci-dessous nécessitent le théorème des accroissements finis. Ils devront donc être traités ultérieurement en fonction de l'état d'avancement du cours.

Exercice  AUTONUMLGL  Soit > 1. On considère la suite numérique 
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1- Montrer que la suite 
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2- Montrer, en utilisant le théorème des accroissements finis, l'inégalité suivante, valable pour tout x > 1 :
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3- En déduire que la suite 
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Remarque : dans le cas  = 2, l'exercice peut se traiter sans utiliser le théorème des accroissements finis, la majoration 
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Exercice  AUTONUMLGL  Soit f : [0, +
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1- Montrer que, pour tout n
[image: image147.wmf]Î

(, un 
[image: image148.wmf]Î

 [0,1].

2- Montrer qu'il existe un unique réel l 
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 [0, 1] tel que f (l) = l.

3- Prouver, à l'aide de l'inégalité des accroissements finis, que :

pour tout n
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4- En déduire que 
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