LES SUITES NUMERIQUES

I. Définition et représentation graphique

1) Définition d'une suite numérique
Exemple d'introduction :

On considère une liste de nombres formée par tous les nombres impairs rangés dans l'ordre croissant : 1, 3, 5, 7, …

On note (un) l'ensemble des "éléments" de cette suite de nombres tel que :

u0 = 1, u1 = 3, u2 = 5, u3 = 7, …

On a ainsi défini une suite numérique.

On peut lui associer une fonction définie sur ℕ par u :
ℕ → ℝ
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Définitions : Une suite numérique (un) est une liste ordonnée de nombres réels telle qu'à tout entier n on associe un nombre réel noté un.

un est appelé le terme de rang n de cette suite (ou d'indice n).


2) Générer une suite numérique par une formule explicite
Exemple :

- Pour tout n de ℕ, on donne : 
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 qui définit la suite des nombres pairs.

Les premiers termes de cette suite sont donc :

u0 = 2 x 0 = 0, 

u1 = 2 x 1 = 2, 

u2 = 2 x 2 = 4, 

u3 = 2 x 3 = 6.

Lorsqu'on génère une suite par une formule explicite, chaque terme de la suite est exprimé en fonction de n et indépendamment des termes précédents. 


3) Générer une suite numérique par une relation de récurrence
Exemple :
- On définit la suite (vn) par :

v0 = 3 et pour tout n de ℕ, 
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Les premiers termes de cette suite sont donc :

v0 = 3, 
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Contrairement à une suite définie par une formule explicite, il n'est pas possible, dans l'état, de calculer par exemple v13 sans connaître v12.

Cependant il est possible d'écrire un algorithme sur une calculatrice programmable.
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Lorsqu'on génère une suite par une relation de récurrence, chaque terme de la suite s'obtient à partir d'un ou plusieurs des termes précédents. 

A noter : Le mot récurrence vient du latin recurrere qui signifie "revenir en arrière".



4) Représentation graphique d'une suite
Dans un repère du plan, on représente une suite par un nuage de points de coordonnées 
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Exemple :

Pour tout n de ℕ, on donne : 
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On construit le tableau de valeurs avec les premiers termes de la suite :

	n
	0
	1
	2
	3
	4
	5
	6
	7
	8
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Il est aisé d'obtenir un nuage de points à l'aide d'un logiciel.
II. Sens de variation d'une suite numérique
Exemple :

On a représenté ci-dessous le nuage de points des premiers termes d'une suite (un) :
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On peut conjecturer que cette suite est croissante pour 
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Définitions : Soit un entier p et une suite numérique (un).

- La suite (un) est croissante à partir du rang p signifie que pour 
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- La suite (un) est décroissante à partir du rang p signifie que pour 
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On dit qu’une suite est monotone lorsqu’elle est croissante ou décroissante.

Méthode : Etudier les variations d'une suite

1) Pour tout n de ℕ, on donne la suite (un) définie par : 
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Démontrer que la suite (un) est croissante à partir d'un certain rang.

On commence par calculer la différence 
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On étudie ensuite le signe de 
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Ainsi pour 
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 (n est entier), on a 
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On en déduit qu'à partir du rang 2, la suite (un) est croissante.

Propriété : Soit une fonction f définie sur 
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et une suite numérique (un) définie sur ℕ par 
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- Si f est croissante sur l'intervalle 
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, alors la suite (un) est croissante à partir du rang p.

- Si f est décroissante sur l'intervalle 
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, alors la suite (un) est décroissante à partir du rang p.

Démonstration :

- f est croissante sur 
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 donc par définition d'une fonction croissante, on a pour tout entier 
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- Démonstration analogue pour la décroissance.

Méthode : Etudier les variations d'une suite à l'aide de la fonction associée

Pour tout n de ℕ, on donne la suite (un) définie par : 
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Démontrer que la suite (un) est décroissante.

On considère la fonction associée f définie sur 
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Ainsi 
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.   f est l’inverse d’une fonction croissante sur 
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f est décroissante sur 
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III. Suites arithmétiques

1) Définition
Exemple : 

Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5.

Si le premier terme est égal à 3, les premiers termes successifs sont :

u0 = 3,

u1 = 8,

u2 = 13,

u3 = 18.

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 
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Le nombre r est appelé raison de la suite.

Retour à l'exemple :

La suite introduite plus haut est définie par : 
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u

0

=

3

u

n

+

1

=

u

n

+

5

ì

í

ï

î

ï


Méthode : Démontrer si une suite est arithmétique

1) La suite (un) définie par : 
[image: image44.wmf] 
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2) La suite (vn) définie par : 
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1) 
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La différence entre un terme et son précédent reste constante et égale à -9.

(un) est une suite arithmétique de raison -9.

2) 
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La différence entre un terme et son précédent ne reste pas constante.

(vn) n'est pas une suite arithmétique.

           2) Expression de un en fonction de n

Propriété : (un) est une suite arithmétique de raison r et de premier terme u0.

Pour tout entier naturel n, on a : 
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Plus généralement si p est un entier naturel, alors un = up + (n –p)r.

Démonstration : 

La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation 
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En calculant les premiers termes : 
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Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Considérons la suite arithmétique (un) tel que 
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Déterminer la raison et le premier terme de la suite (un).

Si p est un entier naturel, alors un = up + (n –p)r.

Ainsi 
u9 = u5 + 4r  donc 19 = 7 + 4r ce qui donne r = 3

 
On a aussi u5 = u0 + 5r donc 7 = u0 + 15 ce qui donne u0 = - 8

           3) Sommes de termes consécutifs

Propriété : n est un entier naturel non nul alors on a : 
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Remarque : Il s'agit de la somme des n premiers termes d'une suite arithmétique de raison 1 et de premier terme 1.

Démonstration : 


1
+
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+  …
+
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n
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+
2
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1  

       (n+1)
+      (n+1)
+       (n+1)
+  …
+       (n+1)
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    = n x (n+1)

donc : 
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et donc : 
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Plus généralement :

Propriété : Soit r un réel et (un) une suite arithmétique de raison r. Soit n un entier naturel alors on a : u0 + u1 + u2 …………….+ un = (n + 1) x 
[image: image59.wmf]2

0

n

u

u

+


         4) Variations
Propriété : (un) est une suite arithmétique de raison r.

- Si r > 0 alors la suite (un) est croissante.

- Si r < 0 alors la suite (un) est décroissante.

Démonstration : 
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- Si r > 0 alors 
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 et la suite (un) est croissante.

- Si r < 0 alors 
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3) Représentation graphique
Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.
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IV. Suites géométriques

1) Définition
Exemple : 

Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2.

Si le premier terme est égal à 5, les premiers termes successifs sont :

u0 = 5,

u1 = 10,

u2 = 20,

u3 = 40.

Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : 
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Le nombre q est appelé raison de la suite.

Retour à l'exemple :

La suite introduite plus haut est définie par : 
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Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élève à 4%.

Chaque année, le capital est multiplié par 1,04.

Ce capital suit une progression géométrique de raison 1,04.

Méthode : Démontrer si une suite est géométrique

La suite (un) définie par : 
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Le rapport entre un terme et son précédent reste constant et égale à 16.

(un) est une suite géométrique de raison 16.

        2) Expression de un en fonction de n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0.

Pour tout entier naturel n, on a : 
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Plus généralement si p est un entier naturel, alors un = up x qn-p

Démonstration : 

La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation 
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En calculant les premiers termes : 
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Méthode : Déterminer la raison et le premier terme d'une suite géométrique

Considérons la suite géométrique (un) tel que 
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Déterminer la raison et le premier terme de la suite (un).

Si p est un entier naturel, alors un = up x qn-p

Ainsi 
u7 = u4 x q3 donc 
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On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64.

Ainsi 
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Comme 
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           3) Sommes de termes consécutifs
Propriété : n est un entier naturel non nul et q un réel différent de 1 alors on a : 
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Remarque : Il s'agit de la somme des n premiers termes d'une suite géométrique de raison q et de premier terme 1.

Démonstration : 
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Ainsi :
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Plus généralement

Propriété : Soit q un réel non nul différent de 1 et (un) une suite géométrique de raison q. Soit n un entier naturel alors : u0 + u1 + u2 …………….+ un = u0 x 
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           2) Variations
Propriété : (un) est une suite géométrique de raison q et de premier terme non nul u0.

Pour 
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- Si q > 1 alors la suite (un) est croissante.

- Si 0 < q < 1 alors la suite (un) est décroissante.

Pour 
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- Si q > 1 alors la suite (un) est décroissante.

- Si 0 < q < 1 alors la suite (un) est croissante.

Démonstration dans le cas où u0 > 0 : 
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- Si q > 1 alors 
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- Si 0 < q < 1 alors 
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Exemple :

La suite arithmétique (un) définie par 
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 est décroissante car le premier terme est négatif et la raison est supérieure à 1.
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Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone.
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