	[image: image15.png]4
N IVERSITE DE BOURGOCHE



8  
	AQL 
	QUALITE - INNOVATION 

	
	
	M1 STIC
	TD


Analyse d'une situation ayant conduit  à une catastrophe

Il est rare en matière de génie logiciel qu'on ait des rapports détaillés sur les bugs ayant conduit à des catastrophes. En général ces rapports restent en interne et sont soigneusement cachés. 

Il est pourtant intéressant d'analyser une situation où un enchaînement de circonstances a conduit à un bug qui a provoqué une catastrophe : c'est le cas du bug de la fusée Ariane 501.

Lors du premier tir de cette nouvelle série (Ariane V), un dysfonctionnement a provoqué I' explosion de la fusée peu après son départ. Le CNES a nommé une commission d'enquête externe et a diligenté une enquête. 

Nous avons la chance d'avoir le rapport de cette commission qui a conclu à un bug logiciel.

Analysez ce rapport et voyez s'il n'était pas possible de déceler et de corriger I' erreur. Ce travail se fera ensemble après que chacun ait lu entièrement le rapport

Rapport de la Commission d'enquête Ariane 501
Echec du vol Ariane 501
Président de la Commission : Professeur J.-L. LIONS
 Avant-propos
Ce document est la copie intégrale du rapport du CNES/ESA publié le 23 juin 1996. 

Le vol inaugural d'Ariane 5 qui eut lieu le 4 juin 1996 s'est soldé par un échec. Environ 40 secondes seulement après le démarrage de la séquence de vol, le lanceur, qui se trouvait alors à une altitude de quelques 3700 mètres, a dévié de sa trajectoire, s'est brisé et a explosé. Des ingénieurs des équipes du projet Ariane 5 du CNES et de l'industrie ont immédiatement commencé à rechercher les causes de cet échec. Dans les jours qui ont suivi, le Directeur général de l'ESA et le Président du CNES ont constitué une Commission d'enquête indépendante dont ils ont désigné les membres :

Prof. Jacques-Louis Lions (Président), Académie des Sciences (France)
Dr. Lennart Lübeck (Vice-Président), SSC (Suède)
M. Jean-Luc Fauquembergue, DGA (France)
M. Gilles Kahn, INRIA (France)
Prof. Dr. Ing., Wolfgang Kubbat Université technique de Darmstadt (Allemagne)
Dr. Ing. Stefan Levedag, Daimler Benz Aerospace (Allemagne)
Dr. Ing. Leonardo, Mazzini Alenia Spazio (Italie)
M. Didier Merle, Thomson CSF (France)
Dr. Colin O'Halloran, DERA (U.K.)

La Commission d'enquête a reçu pour mandat :

- de déterminer les causes de l'échec du lancement,

- d'analyser l'adéquation des essais de qualification et des essais de recette face aux problèmes rencontrés,

- de recommander les actions correctives pour éliminer les causes de l'anomalie et d'autres faiblesses éventuelles des systèmes incriminés.

La Commission a commencé ses travaux le 13 juin 1996 et rendit son rapport dix jours plus tard. La Commission était assistée d'un Comité technique consultatif composé de :

Dr. Mauro Balduccini (BPD)
M. Yvan Choquer (Matra-Marconi Space)
M. Rémy Hergott (CNES)
M. Bernard Humbert (Aerospatiale)
M. Eric Lefort (ESA)

Rapport de la Commission d'enquête Ariane 501
Conformément au mandat qu'elle a reçu, la Commission a concentré ses recherches sur les causes de l'échec, les systèmes incriminés, les éventuelles défaillances semblables sur des systèmes similaires ainsi que sur des événements qui pourraient être liés à l'accident. En conséquence, les recommandations de la Commission sont limitées aux domaines examinés. Le présent rapport contient l'analyse de l'échec, les conclusions de la Commission et ses recommandations en vue de mesures correctives, la plupart d'entre elles devant être apportées avant le prochain vol d'Ariane 5. En outre, il a été rédigé un rapport, pour distribution restreinte, dans lequel les résultats des travaux de la Commission sont présentés avec davantage de détails techniques. Bien qu'elle ait utilisé les données de télémesure enregistrées pendant le vol, la Commission n'a pas évalué ces données et ne s'est pas livrée non plus à un examen complet de l'ensemble du lanceur et de tous ses systèmes.

Le présent rapport est le résultat d'un travail collectif de la Commission, avec l'aide des membres du Comité technique consultatif.

Nous nous sommes tous efforcés de présenter une explication très précise des raisons de l'échec et d'apporter une contribution à l'amélioration des logiciels d'Ariane 5. Ces améliorations sont nécessaires pour garantir le succès du programme.

Les résultats des travaux de la Commission reposent sur les présentations détaillées et transparentes des équipes du projet Ariane 5 et sur des documents qui témoignent du haut niveau de qualité du programme Ariane 5 en ce qui concerne l'ingénierie en général ainsi que l'exhaustivité et la traçabilité des documents.

1 L'ECHEC
1.1 DESCRIPTION GÉNÉRALE
D'après les documents mis à la disposition de la Commission et les informations qui lui ont été présentées, on peut faire les remarques suivantes :

Le matin du 4 juin 1996, les conditions météorologiques qui régnaient sur le site de lancement de Kourou étaient acceptables pour que le lancement ait lieu ce jour là et que le lanceur puisse être transféré sur son pas de tir. Il convient de noter, en particulier, qu'il n'y avait pas de risque de foudre ; l'intensité du champ électrique mesurée était négligeable. La seule incertitude portait sur les critères de visibilité.

La chronologie de lancement, qui inclut le remplissage de l'étage principal cryotechnique, s'est déroulée correctement jusqu'à H0-7 minutes ; elle a alors été arrêtée car les critères de visibilité n'était pas satisfaits à l'ouverture de la fenêtre de lancement (08 h 35, heure locale). Les conditions de visibilité se sont améliorées comme prévu et le lancement a eu lieu à H0 = 09 h 33 min 59s, heure locale (soit 12 h 33 min 59s, TU). L'allumage du moteur Vulcain et des deux moteurs à propergol solide ainsi que le décollage se sont déroulés de façon nominale. Le lanceur a réalisé un vol nominal jusqu'à environ H0 + 37 secondes. Peu après, il a brusquement dévié de sa trajectoire, s'est brisé et a explosé. Une première analyse des données de vol a montré :

un comportement nominal du lanceur jusqu'à H0 + 36 secondes ; la défaillance du système de référence inertielle de secours, suivie immédiatement par celle du système de référence inertielle actif ; le braquage en butée des tuyères des deux moteurs à propergols solides puis, quelques instants après, du moteur Vulcain, provoquant le basculement brutal du lanceur ; l'auto-destruction du lanceur déclenchée correctement par la rupture des liaisons entre les étages d'accélération à poudre et l'étage principal. On a pu remonter rapidement jusqu'à l'origine de cette défaillance dans le système de pilotage et, plus précisément, dans les systèmes de référence inertielle qui, à l'évidence, ont cessé de fonctionner presque simultanément à environ H0 + 36,7 s.

1.2 INFORMATIONS DISPONIBLES
La Commission disposait pour ses travaux des informations suivantes sur le lancement :

données de télémesure reçues au sol jusqu'à H0 + 42 secondes données de trajectographie provenant des stations radar observations optiques (caméra IR, films) expertise des débris récupérés Toutes les données de télémesure reçues à Kourou ont été transférées au CNES à Toulouse où elles ont été converties en paramètres reportés sur des graphiques en fonction du temps. Le CNES a remis une copie des données à l'Aerospatiale qui a travaillé, pour l'essentiel, sur les données relatives au système électrique.

1.3 RÉCUPÉRATION DES DÉBRIS
Le lanceur s'est auto-détruit à proximité de l'ensemble de lancement, à une altitude d'environ 4000 mètres. Tous les débris sont donc retombés au sol, sur une superficie d'environ 12 km2, à l'est de l'ensemble de lancement. La récupération des débris s'est toutefois avérée difficile car cette région se compose, pour l'essentiel de mangrove et de savane.

Il a néanmoins été possible d'extraire des débris les deux systèmes de référence inertielle. Le système qui avait travaillé en mode actif et qui a été le dernier à cesser de fonctionner était particulièrement intéressant : en effet, on ne disposait pas pour ce système de certaines données de télémesure (la transmission au sol de ces données n'étant prévue que pour l'unité qui tombe en panne la première). Les résultats de l'examen de cette unité ont donc été très utiles pour analyser le déroulement de la défaillance.

1.4 AUTRES ANOMALIES OBSERVÉES SANS RAPPORT AVEC L'ACCIDENT
L'analyse après vol des données de télémesure a révélé un certain nombre d'anomalies qui ont été portées à la connaissance de la Commission. Dans la plupart des cas, leur importance est mineure et dans l'ordre normal des choses pour un vol de démonstration.

L'attention de la Commission a cependant été attirée sur une anomalie particulière ; il s'agit de variations de la pression hydraulique des vérins de la tuyère du moteur principal qui se sont progressivement développées à partir de H0 + 22 secondes. Ces variations avaient une fréquence d'environ 10 Hertz.

On dispose de quelques explications préliminaires quant aux causes de ces variations ; elles sont actuellement à l'étude.

Après examen, la Commission a estimé que cette anomalie, tout en étant significative, n'avait aucune relation avec l'échec du vol Ariane 501.

2 ANALYSE DE L'ECHEC
2.1 SÉQUENCE DES ÉVÉNEMENTS TECHNIQUES
De manière générale, la chaîne de pilotage d'Ariane 5 repose sur un concept standard. L'attitude du lanceur et ses mouvements dans l'espace sont mesurés par un système de référence inertielle (SRI) dont le calculateur interne calcule les angles et les vitesse sur la base d'informations provenant d'une plate-forme inertielle à composants liés, avec gyrolasers et accéléromètres. Les données du SRI sont transmises, via le bus de données, au calculateur embarqué (OBC) qui exécute le programme de vol et qui commande les tuyères des étages d'accélération à poudre et du moteur cryotechnique Vulcain, par l'intermédiaire de servovalves et de vérins hydrauliques.

Pour améliorer la fiabilité, on a prévu une importante redondance au niveau des équipements. On compte deux SRI travaillant en parallèle ; ces systèmes sont identiques tant sur le plan du matériel que sur celui du logiciel. L'un est actif et l'autre est en mode "veille active" ; si l'OBC détecte que le SRI actif est en panne, il passe immédiatement sur l'autre SRI à condition que ce dernier fonctionne correctement. De même, on compte deux OBC et un certain nombre d'autres unités de la chaîne de pilotage qui sont également dupliquées.

La conception des SRI d'Ariane 5 est pratiquement la même que celle d'un SRI qui est actuellement utilisé à bord d'Ariane 4, notamment pour ce qui est du logiciel.

Sur la base de la documentation et des données exhaustives relatives à l'échec d'Ariane 501 qui ont été mises à la disposition de la Commission, on a pu établir la séquence suivante d'événements ainsi que leurs interdépendances et leurs origines, depuis la destruction du lanceur jusqu'à la cause principale en remontant dans le temps.

Le lanceur a commencé à se désintégrer à environ H0 + 39 secondes sous l'effet de charges aérodynamiques élevées dues à un angle d'attaque de plus de 20 degrés qui a provoqué la séparation des étages d'accélération à poudre de l'étage principal, événement qui a déclenché à son tour le système d'auto-destruction du lanceur ; cet angle d'attaque avait pour origine le braquage en butée des tuyères des moteurs à propergols solides et du moteur principal Vulcain ; le braquage des tuyères a été commandé par le logiciel du calculateur de bord (OBC) agissant sur la base des données transmises par le système de référence inertielle actif (SRI2). 

A cet instant, une partie de ces données ne contenait pas des données de vol proprement dites mais affichait un profil de bit spécifique de la panne du calculateur du SRI 2 qui a été interprété comme étant des données de vol ; la raison pour laquelle le SRI 2 actif n'a pas transmis des données d'attitude correctes tient au fait que l'unité avait déclaré une panne due à une exception logiciel ; l'OBC n'a pas pu basculer sur le SRI 1 de secours car cette unité avait déjà cessé de fonctionner durant le précédent cycle de données (période de 72 millisecondes) pour la même raison que le SRI 2 ; l'exception logiciel interne du SRI s'est produite pendant une conversion de données de représentation flottante à 64 bits en valeurs entières à 16 bits. Le nombre en représentation flottante qui a été converti avait une valeur qui était supérieure à ce que pouvait exprimer un nombre entier à 16 bits. Il en est résulté une erreur d'opérande. Les instructions de conversion de données (en code Ada) n'étaient pas protégées contre le déclenchement d'une erreur d'opérande bien que d'autres conversions de variables comparables présentes à la même place dans le code aient été protégées; l'erreur s'est produite dans une partie du logiciel qui n'assure que l'alignement de la plate-forme inertielle à composants liés. 

Ce module de logiciel calcule des résultats significatifs avant le décollage seulement. Dès que le lanceur décolle, cette fonction n'est plus d'aucune utilité ; La fonction d'alignement est active pendant 50 secondes après le démarrage du mode vol des SRI qui se produit à H0 - 3 secondes pour Ariane 5. En conséquence, lorsque le décollage a eu lieu, cette fonction se poursuit pendant environ 40 secondes de vol. Cette séquence est une exigence Ariane 4 mais n'est pas demandé sur Ariane 5 ; l'erreur d'opérande s'est produite sous l'effet d'une valeur élevée non prévue d'un résultat de la fonction d'alignement interne appelé BH (Biais Horizontal) et lié à la vitesse horizontale détectée par la plate-forme. Le calcul de cette valeur sert d'indicateur pour la précision de l'alignement en fonction du temps ; la valeur BH était nettement plus élevée que la valeur escomptée car la première partie de la trajectoire d'Ariane 5 diffère de celle d'Ariane 4, ce qui se traduit par des valeurs de vitesse horizontale considérablement supérieures. 

Les événements internes du SRI qui ont conduit à l'accident ont été reproduits par simulation. En outre, les deux SRI ont été récupérés pendant l'enquête de la Commission et le contexte de l'accident a été déterminé avec précision à partir de la lecture des mémoires. De plus, la Commission a examiné le code logiciel qui s'est avéré correspondre au scénario de l'échec. Les résultats de ces examens sont exposés dans le Rapport technique.

On peut donc raisonnablement affirmer que la séquence d'événements ci-dessus traduit les causes techniques de l'échec d'Ariane 501.

2.2 COMMENTAIRES AU SUJET DU SCENARIO DE DÉFAILLANCE
Dans le scénario de défaillance, les principales causes techniques sont l'erreur d'opérande lors de la conversion de la variable biais horizontal BH et l'absence de protection de cette conversion, qui a provoqué l'arrêt de fonctionnement du calculateur du SRI.

Il a été signalé à la Commission que les conversions n'étaient pas toutes protégées car un objectif de charge de travail maximale de 80 % avait été assigné au calculateur du SRI. Afin de déterminer la vulnérabilité des codes non protégés, une analyse a été conduite sur chaque opération pouvant donner lieu à une exception, y compris une erreur d'opérande. 

On a notamment analysé la conversion de représentations flottantes en nombres entiers et il s'est avéré que les opérations comportant sept variables risquaient de conduire à une erreur d'opérande. En conséquence, une protection a été ajoutée à quatre des variables, comme en témoigne le code Ada, alors que trois variables sont restées non protégées. Aucun élément justifiant cette décision n'a été retrouvé dans le code source proprement dit. 

Compte tenu du grand nombre de documents qu'exige toute application industrielle, l'hypothèse retenue, même si elle a fait l'objet d'un accord, est, pour l'essentiel, passé inaperçue lors de toute les revues externes, bien qu'il ne se soit pas agi d'une intention délibérée.

La raison pour laquelle les trois autres variables, y compris celle qui caractérise le biais horizontal, sont restées non protégées est que l'on a estimé qu'elles étaient soit limitées physiquement, soit assorties d'une grande marge de sécurité, raisonnement qui s'est avéré erroné dans le cas de la variable BH. Il est important de noter que la décision de protéger certaines variables, mais de ne pas le faire pour d'autres, a été prise conjointement par les partenaires du projet à différents niveaux contractuels.

Il n'a pas été possible de déterminer si des données de trajectoire ont été utilisées pour analyser le comportement des variables non protégées, mais il convient surtout de noter qu'il a été décidé conjointement de ne pas inclure les données de trajectoire d'Ariane 5 dans les exigences et la spécification du SRI.

Bien que la source de l'erreur d'opérande ait été identifiée, elle n'est pas en soi la cause de l'échec de la mission. La spécification relative au mécanisme de traitement des exceptions a également contribué à la défaillance. En cas d'exception quelle qu'elle soit, la spécification système précise que la défaillance doit être indiquée sur le bus de données, que son contexte doit être enregistré dans une mémoire EEPROM (qui a été récupérée et lue à l'issue du vol Ariane 501) et que le processeur du SRI doit être arrêté.

C'est la décision d'arrêter le fonctionnement du processeur qui s'est finalement révélée fatale. Un redémarrage est impossible car le calcul de l'attitude est trop difficile pour être refait après l'arrêt du processeur, de sorte que le système de référence inertielle devient alors inutile. La raison qui sous-tend cette procédure draconienne tient à la philosophie adoptée par le programme Ariane, qui consiste à ne prendre en compte que les défaillances aléatoires de matériels. Dans cette optique, les mécanismes de traitement des exceptions ou des erreurs sont conçus pour faire face à une défaillance aléatoire de matériel, qui peut être efficacement prise en charge par un système de secours.

Bien que la défaillance ait été provoquée par une erreur de conception de logiciel à caractère systématique, il est possible d'introduire des mécanismes pour atténuer ce type de problème. Par exemple, les calculateurs présents dans les SRI auraient pu continuer de fournir leurs meilleures estimations des informations d'attitude requises. Il est préoccupant de constater qu'une exception de logiciel puisse être autorisée, voire requise pour provoquer l'arrêt d'un processeur alors que celui-ci commande des équipements critiques pour la mission. De fait, la perte d'une fonction logicielle correcte présente un risque car c'est le même logiciel qu'utilisent les deux unités SRI. Dans le cas d'Ariane 501, cela s'est traduit par la mise hors circuit de deux équipements critiques ne présentant pas de défaillance.

L'exigence qui est à l'origine de la poursuite du fonctionnement du logiciel d'alignement après le décollage a été imposée il y a plus de 10 ans pour les premiers modèles de lanceurs Ariane afin de faire face à l'éventualité assez peu probable d'un arrêt de la chronologie entre H0-9 secondes, au moment ou le SRI d'Ariane 4 passe en mode vol, et H0-5 secondes, lors de la mise en route, dans le lanceur, de certaines opérations dont le retour à l'état initial prend plusieurs heures. La période choisie pour le maintien de la fonction d'alignement, qui est de 50 secondes après le passage en mode vol, était basée sur la durée nécessaire aux équipements au sol pour reprendre le contrôle intégral du lanceur en cas d'arrêt.

Cette fonction particulière devait permettre aux premières versions d'Ariane de réenclencher la chronologie sans attendre la procédure normale d'alignement, qui dure 45 minutes ou plus, préservant ainsi la possibilité d'utiliser une fenêtre de lancement étroite. En fait, cette fonction a servi une seule fois en 1989 pour le vol V33.

Cette exigence n'a pas lieu d'être sur Ariane 5, dont la séquence de préparation est différente. Elle a été conservée pour des raisons de communité, qui semblent reposer sur le principe selon lequel il n'est pas opportun, sauf preuve contraire, de procéder à des modifications sur des logiciels qui ont bien fonctionné sur Ariane 4.

Même dans les cas où cette exigence est considérée comme étant toujours valable, il est risqué de laisser la fonction d'alignement opérationnelle après le décollage du lanceur. L'alignement des centrales mécaniques et à gyrolasers à composants liés implique des fonctions filtres mathématiques complexes afin d'aligner correctement l'axe X sur l'axe de gravité et de calculer le Nord à partir de la détection de la rotation terrestre. L'alignement avant le lancement se fait sur la base de l'hypothèse selon laquelle le lanceur occupe une position fixe connue. De ce fait, la fonction d'alignement est totalement perturbée lorsqu'elle est exécutée en vol car les mouvements du lanceur tels qu'ils sont mesurés sont interprétés comme des écarts capteurs et d'autres paramètres caractérisant le comportement des capteurs.

Pour en revenir à l'erreur de logiciel, la Commission tient à souligner qu'un logiciel est le résultat d'une conception extrêmement détaillée et ne tombe pas en panne au sens où on l'entend pour des systèmes mécaniques. En outre, un logiciel est flexible et possède un grand pouvoir d'expression, ce qui favorise des exigences très contraignantes, qui entraînent à leur tour des modes de fonctionnement complexes et difficiles à évaluer.

Un aspect sous-jacent du développement d'Ariane 5 est la stratégie suivie pour lutter contre les défaillances aléatoires. Le fournisseur des SRI n'a fait qu'appliquer la spécification qui lui était imposée, selon laquelle le processeur devait être arrêté au cas où il détecterait une exception. Or, l'exception constatée n'était pas due à une défaillance aléatoire, mais à une erreur de conception. L'exception a bien été détectée, mais a été traitée de manière inappropriée du fait que le logiciel doit être considéré comme correct tant qu'il ne s'est pas révélé défaillant. 

La Commission a quelques raisons de penser que ce principe a également été appliqué à d'autres domaines de la conception des logiciels d'Ariane 5. Elle est favorable au principe opposé, selon lequel un logiciel est présumé défaillant tant qu'il n'a pas été jugé correct par les meilleurs pratiques en vigueur.

Cela signifie qu'un logiciel critique au sens où la défaillance de celui-ci compromet la mission, doit être identifié en tant que tel à un niveau très détaillé, que les possibilités de fonctionnement en mode exceptionnel doivent être confinées et qu'une bonne politique de sauvegarde doit prendre en compte des défaillances de logiciel.

2.3 PROCÉDURES D'ESSAI ET DE QUALIFICATION
La qualification du système de contrôle de vol d'Ariane 5 suit une procédure standard et est exécutée aux niveaux suivants :

qualification des équipements, qualification des logiciels (logiciel du calculateur de bord), intégration des étages, essais de validation système. La méthode appliquée consiste à vérifier à chaque niveau ce qui n'a pas pu l'être au niveau précédent, assurant ainsi en fin de compte une couverture complète de chaque sous-système et du système intégré.

Les essais au niveau équipements ont été conduits de façon rigoureuse, dans le cas du SRI, en ce qui concerne tous les paramètres d'environnement, au-delà même de ce que l'on pouvait attendre pour Ariane 5. Toutefois, aucun essai n'a été fait pour vérifier que le SRI réagirait correctement eu égard à la chronologie, à la séquence de vol et à la trajectoire d'Ariane 5.

Il convient de noter que les lois de la physique interdisent de tester le SRI comme une "boîte noire" dans des conditions de vol, à moins de procéder à un essai en vol totalement réaliste, mais qu'il est possible de procéder à des essais au sol en injectant des signaux accélérométriques simulés correspondant aux paramètres de vol prévus tout en utilisant une table tournante afin de simuler les mouvements angulaires du lanceur. Si un essai de ce type avait été exécuté par le fournisseur ou dans le cadre des essais de recette, le processus de défaillance aurait été mis en lumière.

La principale explication de l'absence d'un tel essai, déjà mentionnée plus haut, est que la spécification du SRI (qui doit être considérée comme un document précisant les exigences applicables au SRI) ne mentionne pas les données de trajectoire d'Ariane 5 en tant qu'exigences fonctionnelles.

La Commission a également constaté que la spécification système applicable au SRI ne fait pas état de restrictions opérationnelles résultant de l'application choisie. Une telle déclaration de limitation, qui devrait être obligatoire pour tout dispositif critique pour la mission, aurait permis de mettre en évidence toute non-conformité avec la trajectoire d'Ariane 5.

Les nombreux essais et simulations exécutés sur l'installation de simulation fonctionnelle ISF, qui est implantée dans les locaux de l'architecte industriel, constituaient l'autre possibilité majeure de détecter le processus de défaillance existant. Les essais ISF ont pour objet de qualifier :

- les performances de guidage, navigation et pilotage dans la totalité du domaine de vol, le fonctionnement de la redondance des capteurs, les fonctions spécifiques des étages, la conformité du logiciel de vol (calculateur de bord) avec tous les équipements du système électrique de contrôle de vol. Un grand nombre de simulations en boucle fermée du vol complet, simulant le fonctionnement du segment sol, la transmission des télémesures et la dynamique du lanceur ont été faites afin de vérifier :

- la trajectoire nominale, des trajectoires dégradées par rapport aux paramètres internes du lanceur, des trajectoires dégradées par rapport aux paramètres atmosphériques, des défaillances d'équipements, suivies de leur détection et élimination. Lors de ces essais, de nombreux équipements était matériellement présents et mis en oeuvre, mais pas les deux SRI, qui étaient simulés par des modules logiciels réalisés à cet effet. Certains essais en boucle ouverte, destinés à vérifier la conformité du calculateur de bord et du SRI, ont été exécutés avec le SRI réel. Il est entendu que ces essais étaient seulement des essais d'intégration électrique et des essais de conformité "de bas niveau" (communication par les bus).

Il n'est pas obligatoire, même si c'est préférable, que tous les éléments d'un sous-système soient présents dans tous les essais à un niveau donné. Quelquefois, cela n'est matériellement pas réalisable, de même qu'il est parfois impossible de mettre en oeuvre ces éléments intégralement ou de manière représentative. Dans de tels cas, il est logique de les remplacer par de simulateurs, à condition toutefois d'avoir vérifié soigneusement que les niveaux d'essai précédents couvrent l'intégralité du domaine étudié.

Cette procédure est particulièrement importante pour l'essai final du système avant que celui-ci soit utilisé de manière opérationnelle (les essais exécutés sur le lanceur 501 proprement dit ne sont pas traités ici car ils n'interviennent pas dans la qualification du système électrique de contrôle de vol).

Afin de mieux comprendre les explications fournies quant à la décision de ne pas intégrer les SRI dans la simulation en boucle fermée, il est nécessaire de décrire les configurations d'essai qui auraient pu être utilisées.

Comme il n'est pas possible de simuler au banc d'essai les importantes accélérations linéaires du lanceur sur l'ensemble des trois axes (voir ci-dessus), il existe deux possibilités d'intégrer les SRI dans la boucle :

La première consiste à le placer sur une table dynamique trois axes (pour stimuler la centrale à gyrolasers) et à remplacer la sortie analogique des accéléromètres (qui ne peuvent pas être stimulés mécaniquement) par des signaux simulés et injectés à travers un connecteur d'entrée spécifiquement conçu pour ces essais et d'une carte électronique réalisée à cet effet. Cette méthode est similaire à celle qui a été mentionnée au sujet d'un essai éventuel au niveau équipements. 

La deuxième consiste à remplacer à la fois la sortie analogique des accéléromètres et celle des gyrolasers par des signaux produits par simulation et injectés à travers un connecteur d'entrée conçu pour cet essai. 

La première méthode fournit en principe une simulation précise (dans les limites de la plage de fréquences de la table dynamique trois axes) et est assez onéreuse ; la deuxième est moins coûteuse et les résultats obtenus dépendent essentiellement de la précision de la simulation. Ces deux méthodes permettent de tester une grande partie de l'électronique et l'ensemble du logiciel dans des conditions de fonctionnement réelles.

Lorsque la philosophie d'essai du projet a été définie, il a été admis qu'il était important que les SRI soient intégrés dans la boucle et il a été décidé de retenir la méthode B ci-dessus. A un stade ultérieur du programme (1992), cette décision a été modifiée. Il a alors été décidé de ne pas intégrer les SRI réels dans la boucle pour les raisons suivantes :

Les SRI doivent être considérés comme entièrement qualifiés au niveau équipements ; la précision du logiciel de navigation du calculateur de bord dépend, de manière critique, de la précision des mesures des SRI. Dans l'ISF, cette précision ne pouvait être obtenue par l'électronique produisant les signaux d'essai ; la simulation des modes de défaillance est impossible avec des équipements réels ; elle ne peut être réalisée qu'avec un modèle ; la période de base du SRI est de 1 milliseconde, tandis que celle de la simulation sur l'ISF est de 6 millisecondes. Cela entraîne un surcroît de complexité au niveau de l'électronique d'interface et peut conduire à une réduction supplémentaire de la précision de la simulation. 

La Commission est d'avis que ces arguments étaient techniquement valables, mais que, étant donné qu'un essai de simulation au niveau système a pour objet de vérifier non seulement les interfaces, mais également l'ensemble du système pour l'application considérée, on a pris un risque incontestable en supposant qu'un équipement critique tel que le SRI était validé du seul fait de sa qualification ou de son utilisation antérieure sur Ariane 4.

Etant entendu qu'il est souhaitable d'obtenir une grande précision lors d'une simulation, il est incontestablement préférable, lors des essais système sur l'ISF, de faire des compromis en matière de précision, mais d'atteindre tout les autres objectifs, notamment de démontrer la bonne intégration, au niveau système, d'équipements tels que le SRI. La précision du système de guidage peut être démontrée efficacement par analyse et par simulation sur ordinateur.

Dans ce contexte, il convient finalement de noter que la principale méthode utilisée pour prévenir les défaillances est celle des revues, qui font partie intégrante du processus de conception et de qualification et qui sont conduites à tous les niveaux avec l'ensemble des grands partenaires du projet (avec également la participation d'experts externes). 

Dans un programme de cette taille, ce sont littéralement plusieurs milliers de problèmes et de défaillances potentielles qui sont résolus avec succès au cours des revues et il n'est certes pas facile de détecter des erreurs de conception de logiciel du type de celle qui a été la cause technique principale de l'échec du vol 501. Néanmoins, il est évident que les limitations du logiciel SRI n'ont pas été totalement analysées lors des revues et que l'on n'a pas pris conscience du fait que l'organisation des essais ne permettait pas de mettre en évidence ces limitations. De même, les conséquences éventuelles d'une procédure autorisant le fonctionnement du logiciel d'alignement pendant le vol n'ont pas été évaluées à leur juste valeur. A cet égard, la procédure de revue a contribué à l'échec.

2.4 AUTRES FAIBLESSES ÉVENTUELLES DES SYSTEMES INCRIMINÉS
Conformément au mandat qui lui a été donné, la Commission d'enquête a examiné d'autres faiblesses éventuelles de conception, notamment au niveau du système de contrôle de vol. Elle n'a relevé aucun point faible en relation avec l'accident, mais, malgré le peu de temps dont elle disposait, elle a procédé à une analyse approfondie du système de contrôle de vol sur la base de l'expérience qu'elle avait déjà acquise lors de l'analyse de la défaillance.

Cette analyse a porté sur les domaines suivants :

Conception du système électrique logiciels embarqués implantés dans des sous-systèmes autres que le système de référence inertielle calculateur de bord et logiciel du programme de vol. La Commission a également examiné les méthodes appliquées lors du programme de développement, en particulier celles qui ont été utilisées pour mettre au point les logiciels.

Les résultats de l'analyse ont été consignés dans le rapport technique et la Commission espère qu'ils contribueront à améliorer encore davantage le système de contrôle de vol d'Ariane 5 et son logiciel.

3 CONCLUSIONS
3.1 RÉSULTATS DE L'ENQUETE
La Commission a constaté ce qui suit :

A - Au cours de la campagne de préparation du lancement et de la chronologie, il ne s'est produit aucun événement en rapport avec l'accident.

B - Les conditions météorologiques au moment du lancement étaient acceptables et n'ont joué aucun rôle dans l'accident. La Commission n'a relevé aucun autre facteur externe susceptible d'être incriminé.

C - L'allumage des moteurs et le décollage se sont, dans l'ensemble, déroulés de façon nominale, et les effets de l'environnement (bruit et vibrations) sur le lanceur et sa charge utile apparaissent sans rapport avec l'accident. La performance des propulseurs a été conforme aux spécifications.

D - 22 secondes après H0 (commande d'allumage du moteur cryotechnique principal), des variations d'une fréquence de 10 Hz ont commencé à se manifester au niveau de la pression hydraulique des vérins qui commandent l'orientation de la tuyère du moteur principal. Ce phénomène est significatif et n'a pas encore été parfaitement expliqué. L'enquête montre toutefois qu'il est sans rapport avec l'accident.

E - A H0 + 36,7 secondes (environ 30 secondes après le décollage), le calculateur du système de référence inertielle de secours, qui fonctionnait en mode de veille pour la fonction de guidage et de contrôle d'attitude, est devenu inopérant. Cette panne s'explique par le fait qu'une variable interne liée à la vitesse horizontale du lanceur a dépassé une limite inscrite dans le logiciel de ce calculateur.

F - Environ 0,05 seconde plus tard, le système de référence inertielle actif - identique du point de vue matériel et logiciel au système de secours - est tombé en panne pour la même raison. Compte tenu de la défaillance du système inertiel de secours, il est alors devenu impossible d'obtenir des données de guidage et d'attitude exactes et la perte de la mission était inévitable.

G - Du fait de sa défaillance, le système de référence inertielle actif a transmis essentiellement des informations de diagnostic au calculateur principal du lanceur, qui les a interprétées comme des données de vol et les a utilisées pour des calculs de contrôle de vol.

H - Sur la base de ces calculs, le calculateur principal a envoyé aux tuyères des étages d'accélération à poudre et, un peu plus tard, également à la tuyère du moteur principal, l'ordre de procéder à une correction importante de trajectoire par rapport à une déviation qui, en fait, ne s'était pas produite.

I - Le changement d'attitude rapide qui s'est alors produit a entraîné la désintégration du lanceur à H0 + 39 secondes sous l'effet des charges aérodynamiques.

J - La destruction du lanceur s'est déclenchée automatiquement dès sa désintégration, à 4000 m d'altitude et à 1000 m du pas de tir.

K - Les débris sont retombés sur une zone de 5 x 2,5 km². Parmi les équipements récupérés au sol figuraient les deux systèmes de référence inertielle, qui ont été utilisés aux fins d'analyse.

L - L'analyse après vol des données de télémesure a fait apparaître un certain nombre d'anomalies additionnelles qui sont en cours d'analyse, mais dont on estime qu'elles n'ont pas joué de rôle dans l'échec du lancement.

M - Le système de référence inertielle d'Ariane 5 est, pour l'essentiel, identique à un système actuellement utilisé sur Ariane 4. La partie du logiciel qui a interrompu le fonctionnement des calculateurs des systèmes de référence inertielle est utilisée avant le lancement pour aligner le système de référence inertielle, mais aussi, sur Ariane 4, pour permettre un réalignement rapide du système en cas d'interruption tardive de la chronologie. Cette fonction de réalignement, qui n'a aucune utilité sur Ariane 5, a néanmoins été maintenue pour des raisons de communité et pouvait, comme sur Ariane 4, rester active pendant une quarantaine de secondes après le décollage.

N - Lors de la conception du logiciel du système de référence inertielle d'Ariane 4 et d'Ariane 5, il a été décidé qu'il n'était pas nécessaire de protéger le calculateur de la centrale inertielle contre un arrêt de fonctionnement dû à une valeur excessive de la variable liée à la vitesse horizontale, laquelle protection a été prévue pour plusieurs autres variables du logiciel d'alignement. Cette décision de conception a été prise sans que l'on analyse ou comprenne parfaitement les valeurs que cette variable particulière pourrait prendre lorsque le logiciel d'alignement est autorisé à fonctionner après le décollage.

O - Une telle défaillance ne s'est pas produite sur les vols Ariane 4 utilisant le même système de référence inertielle, car la trajectoire pendant les 40 premières secondes du vol est telle que la variable particulière liée à la vitesse horizontale ne peut dépasser, même en tenant compte d'une marge opérationnelle adéquate, la limite inscrite dans le logiciel.

P - Ariane 5 a une accélération initiale élevée et une trajectoire telle que sa vitesse horizontale s'accroît cinq fois plus rapidement que celle d'Ariane 4. La vitesse horizontale supérieure d'Ariane 5 a généré, en l'espace de ces 40 secondes, la valeur excessive qui a entraîné l'arrêt de fonctionnement des calculateurs des systèmes de référence inertielle.

Q - Le processus des revues, auquel tous les grands partenaires d'Ariane 5 participent, a pour objet de valider les décisions de conception et d'obtenir la qualification pour le vol. Au cours de ce processus, les limitations du logiciel d'alignement n'ont pas été pleinement analysées et l'on n'a pas mesuré les conséquences que pouvait avoir le maintien de cette fonction en vol.

R - Les données de trajectoire d'Ariane 5 n'étaient pas expressément prévues dans la spécification relative au système de référence inertielle ni dans les essais au niveau équipements. En conséquence, la fonction de réalignement n'a pas été testée dans les conditions de vol simulées d'Ariane 5 et l'erreur de conception n'a pas été décelée.

S - Il aurait été techniquement possible d'inclure la quasi-totalité du système de référence inertielle dans les simulations du système complet. Pour un certain nombre de raisons, il a été décidé d'utiliser les résultats simulés du système de référence inertielle, et non le système proprement dit ou sa simulation détaillée. Si l'on avait inclus ce système, la défaillance aurait pu être décelée.

T - Des simulations après vol ont été conduites à l'aide d'un calculateur doté du logiciel du système de référence inertielle et dans un environnement simulé, en intégrant les données de trajectoire réelles du vol Ariane 501. Ces simulations ont fidèlement reproduit la séquence des événements qui ont conduit à la défaillance des systèmes de référence inertielle.

3.2 CAUSE DE L'ACCIDENT
C'est la perte totale des informations de guidage et d'attitude 37 secondes après le démarrage de la séquence d'allumage du moteur principal (30 secondes après le décollage) qui est à l'origine de l'échec d'Ariane 501. Cette perte d'informations est due à des erreurs de spécification et de conception du logiciel du système de référence inertielle.

Les revues et essais approfondis effectués dans le cadre du programme de développement d'Ariane 5 ne comportaient pas les analyses ou essais adéquats du système de référence inertielle ou du système complet de contrôle de vol qui auraient pu mettre en évidence la défaillance potentielle.

4 RECOMMANDATIONS
Sur la base de ses analyses et de ses conclusions, la Commission d'enquête émet les recommandations ci-après :

1 - Inhiber la fonction d'alignement du système de référence inertielle immédiatement après le décollage. De façon plus générale, faire en sorte qu'aucune fonction logicielle ne soit active en vol, sauf en cas de nécessité.

2 - Mettre en place une installation d'essais qui réunisse, dans la mesure des possibilités techniques, un maximum d'équipements réels, introduire dans cette installation des données réalistes, et procéder à des essais complets en boucle fermée au niveau systèmes. Procéder à des simulations complètes avant toute mission. Etendre la couverture des essais.

3 - Interdire à tous les instruments de mesure quels qu'ils soient, par exemple au système de référence inertielle, de cesser d'envoyer les meilleures données disponibles.

4 - Organiser une revue de qualification spéciale pour tous les équipements comprenant des logiciels. L'architecte industriel participera à ces revues et remettra un rapport sur les essais systèmes complets réalisés avec ces équipements. Toute restriction d'utilisation de ces équipements sera présentée de façon explicite à la commission de revue. Déclarer tous les logiciels critiques comme des produits à configuration contrôlée (CCI).

5 - Revoir tous les logiciels de vol (y compris les logiciels intégrés), et en particulier :

- Identifier toutes les hypothèses implicites faites par le code et ses documents de justification sur les paramètres fournis par l'équipement. Vérifier ces hypothèses au regard des restrictions d'utilisation de l'équipement.

- Vérifier la plage des valeurs prises dans les logiciels par l'une quelconque des variables internes ou de communication.

- L'équipe projet proposera des solutions aux problèmes potentiels du logiciel du calculateur de bord, en mettant plus particulièrement l'accent sur la commutation de celui-ci. Ces solutions seront passées en revue par un groupe d'experts externes, qui fera rapport à la commission de qualification du calculateur de bord.

6 - Chaque fois que cela sera techniquement possible, envisager de confiner les exceptions à l'intérieur des tâches et concevoir des solutions de secours.

7 - Fournir davantage de données à la télémesure lorsqu'un composant quelconque tombe en panne, de façon à être moins tributaire de la récupération des équipements.

8 - Redéfinir quels sont les composants critiques en tenant compte des défaillances d'origine logicielle (en particulier des points de défaillance unique).

9 - Associer des participants externes (au projet) aux revues des spécifications, du code et des documents de justification. S'assurer que ces revues prennent en compte le bien-fondé de l'argumentation au lieu de contrôler que des vérifications ont été faites.

10 - Intégrer les données de trajectoire dans les spécifications et les exigences d'essais.

11 - Revoir la couverture des essais réalisés sur les équipements existants et l'étendre en cas de besoin.

12 - Traiter les documents de justification avec autant d'attention que le code. Améliorer la technique visant à assurer la cohérence entre le code et ses justifications.

13 - Mettre sur pied une équipe qui sera chargée d'élaborer la procédure de qualification des logiciels, de proposer des règles strictes de confirmation de la qualification, et de s'assurer que la spécification, la vérification et les essais des logiciels seront d'un niveau de qualité systématiquement élevé dans le programme Ariane 5. Envisager de faire appel à des spécialistes externes en matière de RAMS (Fiabilité, disponibilité, facilité de maintenance, sécurité).

14 - Il y a lieu d'envisager une organisation plus transparente de la coopération entre les partenaires du programme Ariane 5. Il faut une coopération technique étroite et une définition nette des responsabilités et des mandats pour assurer la cohérence du système, avec des interfaces simples et claires entre les partenaires.

	 
	Modèle développent

	QUALITE - INNOVATION 

	
	
	M1 STIC
	TD


Modèle de développement logiciel 

Qu’est ce qu’un « cycle en Vé » ?

	



	AQL
	QUALITE - INNOVATION 

	
	
	M1 STIC
	TD


Modélisation de la satisfaction du client

Etablir un modèle « satisfaction du client » / pôles « Besoin du client », « Produit réalisé », « définition du produit ».
Quelle est la différence entre la norme ISO9000, le concept CIMM ou SPICE 

Qu’est ce que le concept AGILE ?

Type de Test
Proposer une modélisation des types de test suivant 3 dimensions : 

- Niveau d’accessibilité 

- Niveau de détail (situation dans le cycle de vie), 

- Caractéristiques (ce que l’on veut tester) intégrant les indicateurs suivants : 
Système, white box, black box, intégration, performance, robustesse, fonctionnel, ergonomie, sûreté, module, sécurité, système


[image: image2]
D’après J. Tretmans–Univ. Nijmegen

Test de logiciels – une auto-évaluation

Soit la spécification suivante :

Un programme prend en entrée trois entiers. Ces trois entiers sont interprétés comme représentant les longueurs des cotés d’un triangle. Le programme rend un résultat précisant s’il s’agit d’un triangle scalène, isocèle ou équilatéral.

Produire une suite de cas de tests pour ce programme
14 cas de test –GJ Myers –«The Art of Software Testing»-1979 

Bibliographie :

Document INRS (sur le site ) : « Comment construire un test logiciel INRS.pdf »

Livre de référence 

–«Le test des logiciels »-Hermès 2000 -S. Xanthakis, P. Régnier, C. Karapoulios

–«Software Engineering»-Addison-Wesley –6th ed. 2001 –I. Sommerville

–«Test logiciel en pratique»-Vuibert Informatique –John Watkins –2002

Plus d’une centaine d’ouvrages sur le test de logiciels

Lien web

–http://www.faqs.org/faqs/software-eng/testing-faq/
	


	Etude de cas : Plan Qualité
	QUALITE - INNOVATION 

	
	
	M1 STIC
	TD


1- Manuel Assurance Qualité de la Société 
Document support : Manuel Assurance Qualité


- Décrire dans le détail ce qu'apporte  ce manuel.

- Comment est-il structuré?

- Quelle sont les différentes parties de l'entreprise?

- Comment le fonctionnement en les processus apporte de l'efficacité?

- Quels sont les processus? Quels sont les services, les interactions entres ceux-ci?

(cf. cours "Connaissance de l'entreprise" également et descriptif TD) 

2- Plan Assurance Qualité de la société DEV 1.0
Document support : PAQ_DEV1


Afin de convaincre vos éventuels futurs clients de votre suprématie en matière d’AQL, préparer une synthèse du fonctionnement de l’entreprise en matière d’assurance qualité.
Mettez en avant les avantages d’une telle démarche par rapport à un concurrent lambda.

3- Etude du document processus logiciel de la société DEV 1.0
Document support : 2TUP_ARCHI_DEV1

Quel est le but de ce document ?

Qu’est ce que le « Processus de développement logiciel » ?

Sur quoi se base ce Processus ?
Quelle sont les 4 phases de ce Processus ?

Décrivez succinctement le processus 2TUP mis en œuvre.
4 -  BRAINSTORMING

Etablir un document « Processus de test » au sein de votre société.
[image: image4.png]Analyse des besoins
Faisabilité

\/alidation

I \/alidation

L Spécification

Planification

L Conception

1 yerification

L globale 1

Conception

\/ériﬁcation

C

détaillée I
Test U
Codage w
L Test d'intégration
Intégration n
(_, Test system®
Installation 1

Exploitation et
maintenance

nitaire





[image: image5.png]PREPARATION

Analyse des besoins . :
et faisabilité | Test d'acceptation
PP Installation
—_— 0
Spécification et test systéme

Conception
architecturale

Conception
détaillée

Intégration et
test d'intégration

Test unitaire

Programmation






[image: image6.png]crosoft PowerPoint - [3_ Exemple de pr

sentation CCM.ppt]

i3] Fcher Edtion Affchage Inserton Fomat Ol Diporama Fente 7 Tapez une queston
¢ Cette version dOffice niest pas originale. Cliquez ici pour obtenir plus dinfos en ligne. B
NS HREGRTE S @9 o Me E RS Al]m o <@ iea -1 -6 7 s s|E] N A - | ot Conception | Nouyele dipostive |

) pelecteus, | £ 93 2%~ | ¥9Réponcre eninduant des modications

Produit
réalisé

. Fonctions
Conformité inutiles

par hasard

Le modsle CMM

- Chn=Cagabim oy woset
- SiEnequant guuee 3amoreon
PRt o Geiangpene sieg .

- oo 1 198 etk TS g

Besoins
insatisfaits

© | Le modele MM & niveaux Satisfaction

Conformité
inutile

conformité

Le modéle CMM .
i et st s, Besoins du

N client Sur-définition Définition

o i ot

e e du: produit

 [cliguez pour ajouter des commentaires

s
A A

>
egsin - [ || Fotmes automatiues - \ N [ O [+ o &2 (8] 1 | & - L SE=zd0p —
Diapositive 4 sur 12 Modéle par défaut Frangais (France)

o | @ | @






[image: image7]
Source : Wikipédia

Différences entre l'ISO 9001 et le CMMI
Le domaine d'application de l'ISO 9001 est plus large que celui du CMMI :

· Le CMMI s'applique principalement aux pratiques de développement et de maintenance.

· L'ISO 9001 s'applique à l'ensemble des activités d'une organisation.

Le niveau d'abstraction est également différent :

· Le CMMI fait 729 pages, contient énormément d'exemples.

· L'ISO 9001 contient 23 pages, l'ensemble des normes de la famille ISO 9000 contient 146 pages.

Le CMMI est donc moins sujet à interprétation, chaque pratique du modèle étant largement commentée.

La pratique d'évaluation est différente :

· CMMI : Une organisation se fait évaluer par une équipe constituée d'un évaluateur certifié par le SEI, accompagné d'une équipe d'évaluation, typiquement constituée de membres de l'organisation évaluée et éventuellement d'évaluateurs extérieurs à l'organisation évaluée.

· ISO 9001 : Une organisation se fait auditer par un auditeur habilité par l'ISO (COFRAC) à effectuer des audits ISO 9001.

En pratique, l'évaluation CMMI dure plus longtemps et va plus en profondeur qu'un audit ISO.

· CMMI : Le résultat de l'évaluation est une liste de forces et de faiblesses destinée à entamer une démarche d'amélioration. Éventuellement l’équipe d’évaluation donne un niveau de maturité à l’organisation évaluée.

· ISO 9001 : Le résultat de l'audit ISO 9001 est un certificat, preuve que l’organisation auditée répond aux exigences de la norme.

Couverture
Le niveau 2 du CMMI couvre une grande partie des exigences de l'ISO 9001, même si certaines exigences de la norme se retrouvent plus spécifiquement au niveau 3 du modèle CMMI.

Certains chapitres de l'ISO ne se retrouvent pas dans le CMMI : par exemple le chapitre 7.6 concernant les appareils de mesure. Inversement, le CMMI traite de la gestion des risques, contrairement à l'ISO 9001 qui n'aborde pas ce sujet.

Il existe des points commun entre en 9100 (norme aéronautique d'exigences complémentaires à l'ISO 9001) sur les aspects " gestion de configuration ".

Points communs entre les deux modèles
Le CMMI et l'ISO 9001 sont parfaitement compatibles et complémentaires. Ils se basent toutes les deux sur une approche processus et sur une notion d'amélioration continue.

Beaucoup d'entreprises utilisent l'ISO 9001 au niveau global et le CMMI au niveau des départements de développement.

14 cas de test –GJ Myers –«The Art of Software Testing»-1979 

Exemple du triangle –Evaluation

􀂋Chacun de ces 14 tests correspond à un défaut constaté dans des implantations de cet exemple triangle

􀂋La moyenne des résultats obtenus par un ensemble de développeurs expérimentés est de 7.8 sur 14.

=> La conception de tests est une activité complexe, à fortiori sur de grandes applications

1. Cas scalène valide (1,2,3 et 2,5,10 ne sont pas valides)

2. Cas équilatéral valide

3. Cas isocèle valide (2,2,4 n’est pas valide)

4. Cas isocèle valide avec les trois permutations (e.g. 3,3,4; 3,4,3; 4,3,3)

5. Cas avec une valeur à 0

6. Cas avec une valeur négative

7. Cas ou la somme de deux entrées est égale à la troisième entrée

8.3 Cas pour le test 7 avec les trois permutations

9. Cas ou la somme de deux entrées est inférieur à la troisième entrée

10.3 Cas pour le test 9 avec les trois permutations

11. Cas avec les trois entrées à 0 
12. Cas avec une entrée non entière

13. Cas avec un nombre erroné de valeur (e.g. 2 entrées, ou 4)

14. Pour chaque cas de test, avez-vous défini le résultat attendu ?

To demonstrate the test design procedure there is no better example than the Weinberg-Myers Triangle problem. This example is often used in job interviews as a test of the ability to create test cases. Generally it is administered not because it is a great interview device but because the QA manager has read it in a book (see link above) or had it given in their own interview.

In its original form the problem was set for punch card reading programs. The triangle program reads three numbers from a punch card and interprets them as the sides of a triangle. The program then states whether the triangle is scalene, equilateral, or isosceles. For our example we suppose the program to be written in C# running on the .NET framework and accepting input through a web form. 

Software Test Designers would undertake the following steps:

1) Consult with the subject matter expert in triangles to understand what makes a triangle program valuable to its users. 
2) Consult with technical experts to determine technical risks to consider in framing our tests.
3) Determine the control, data and transaction flows of the program 
4) Make a list of bets as to the types of errors that may have been made in programming.
5) Design the formal sequence of tests
6) Specify input values that prove or disprove the presence of faults for each test case specified in step 5.

From the subject matter expert we would learn that a triangle is: 

  equilateral if all three sides are of equal length,

  isosceles if any two sides are of equal length,

  scalene if no two sides are the same length. 

Also, we would learn:

  A set of three values can be validly interpreted as the sides of a triangle only if each element is positive (not zero or less than zero).

  If the sum of two numbers in the input set is equal to or less than the third, for any of the three permutations of the input elements, then the set does not describe a triangle.

From the technical expert (and this could include the designers, architects, developers and IT support staff) we would be assured that memory leaks are not an issue and that the data type of the input values is "signed integer" (in this case). Let us stipulate that only single digit positive non zero integers are to be acceptable as inputs. This stipulation reduces the total space of valid inputs to 9*9*9 = 729 different sets of three numbers.

Having gathered this expertise we can make a basic and very rough flow diagram for the program:

[image: image8.png]Input Check for Check for Check for Scalene
validation [ vaigsers [ Eauiateral [ lsosceles [#

N . “u b

Ermor Error Equilateral Isosceles
Message Message





Input validation will ensure that any input other than a set of three integers will return some suitable error message. Next, the check for valid sets will verify that the relationships among the three elements of the input set are suitable for forming a triangle. Again, where these sets are not proper a suitable error message will be returned. Finally, given valid triangle sets these can be asses first for being equilateral and then isosceles. In each case the announcement of the type is returned. A valid set that is neither equilateral nor isosceles must be scalene, so that is the end result. Not included in the diagram is the implicit return path for another input set after any error message or triangle type determination is given.

The next stage in designing tests for this program is to establish bets as where errors or faults may occur, either because the code is incorrect, or because some other aspect of the programs operation has malfunctioned. For this case we will assume the only risks are coding errors. 

For input valuation we want to ensure that only sets of three positive non-zero integers are input. Thus we want to test that an error message is produced for any of the following:

  Any element of an input set is negative 

  Any element of an input set is zero

  Any element of an input set is greater than 9

  Any element of an input set is an alphabetic letter

  Any element of an input set is a character symbol

  There are less than three elements of the input set

  There are more than three elements of the input set

  Any element of an input set is a combination of any of the invalid inputs

Next we want to test against the risk of sets of inputs of three numbers 1-9 that cannot form triangles. If any of these is input a suitable error message should result:

  The sum of two numbers equals the third in any of three permutations a+b=c, a+c=b, b+c=a.

  The sum of two numbers is less than the in any of three permutations a+b=c, a+c=b, b+c=a.

Next we want to ensure that given a proper set of inputs for a triangle the correct type is determined by the program:

  If and only if all three digits of a valid input are the same the program displays that it has recognized an "equilateral" triangle

  If and only if any two of the digits of a valid input are the same the program displays that it has recognized an "isosceles" triangle

  If and only if each digit of a valid input is different the program displays that it has recognized a "scalene" triangle.

The preceding list of bets about errors may have been made in the coding really look like a set of requirements. The next step is to turn these bets into test cases. Note that if we do not have access to the code and how it is written we will have to design a wider range and longer list of test cases to capture these bets. 

For example, we may know from the code that the program rejects the input set (0,0,0) and provides an error message because the set contains a zero. If we don't know that the code is doing this we would want to verify that the code does not treat (0,0,0) as an equilateral triangle. The less we know about the code the more suspicious our testing cases need to be to reflect the greater uncertainty that the program presents and the larger number of risks we must assume.

The test cases that will determine the outcome of our bets about the program are listed below together with input values chosen to prove or disprove a fault:

	Tests 
	Inputs
	Expected Results

	Any element of an input set is negative 
	(-1,1,1), (1,-1,1), (1,1,-1)
	Error Message

	Any element of an input set is zero
	(0,1,1), (1,0,1), (1,1,0), (1,0,0), (0,1,0), (0,0,1), (0,0,0)
	Error Message

	Any element of an input set is greater than 9
	(10,1,1), (1,11,1), (1,1,12) (15,15,15)
	Error Message

	Any element of an input set is an alphabetic letter
	(T,1,1), (1,T,1), (1,5,T)
	Error Message

	Any element of an input set is a character symbol
	(:,1,3), (5,., 8), (2,4,/)
	Error Message

	There are less than three elements of the input set
	(1,2)
	Error Message

	There are more than three elements of the input set
	(2,4,5,8)
	Error Message

	Any element of an input set is a combination of any of the invalid inputs
	(1A, 3,4), (4,/W",8) (2,4,:) 
	Error Message

	The sum of two numbers equals the third in any of three permutations a+b=c, a+c=b, b+c=a
	(2,4,6), (4,9,5), (8,4,4)
	Error Message

	The sum of two numbers is less than the third in any of three permutations a+b<="" td=""> 
	(3,3,8), (2,5,1), (7,3,3)
	Error Message

	If all three digits of a valid input are the same the program displays that it has recognized an "equilateral" triangle
	(5,5,5)
	Equilateral !

	If any two of the digits of a valid input are the same the program displays that it has recognized an "isosceles" triangle
	(3,3,4),(7,8,7),(5,6,6)
	Isosceles !

	If each digit of a valid input is different the program displays that it has recognized a "scalene" triangle.
	(3,4,5), (3,5,4), (5,4,3)
	Scalene !

	Note the "only if" direction of the last three bets is captured by the input validation.
	
	


2TUP (2 track unified process, prononcez "toutiyoupi") est un processus de développement logiciel qui implémente le 

Process" 
Processus Unifié
.

Le 2TUP propose un cycle de développement en Y, qui dissocie les aspects techniques des aspects fonctionnels. Il commence par une étude préliminaire qui consiste essentiellement à identifier les acteurs qui vont interagir avec le système à construire, les messages qu'échangent les acteurs et le système, à produire le 

 charges" 
cahier des charges
 et à modéliser le contexte (le système est une boîte noire, les acteurs l'entourent et sont reliés à lui, sur l'axe qui lie un acteur au système on met les messages que les deux s'échangent avec le sens). Le processus s'articule ensuite autour de 3 phases essentielles:

· une branche technique
· une branche fonctionnelle
· une phase de réalisation
(wiki : http://fr.wikipedia.org/wiki/2TUP)
QUALITE LOGICILLE

a démarche de test 




Mise à jour le Dimanche, 01 Mars 2009 21:59 Écrit par Sangaré Mohamed Dimanche, 01 Mars 2009 08:38 
[image: image10.png]


[image: image11.png]


[image: image12.png]


0 Commentaire 

Le constat: Le test parent pauvre des projets' 
Plusieurs études pour déterminer le degré de maturité du processus de Test Logiciel ont montré que pour la plupart des entreprises, il n’y avait aucune stratégie ni cycle de vie de test développé dans la majorité des projets. 
On ne sait pas quel type de test est pratiqué à quelle étape. Et il n’y avait pas non plus de guide méthodologique à disposition des testeurs, c’est-à-dire aucun standard, aucune uniformisation des techniques de test. La documentation est elle-même négligée. Les tests ne sont pas planifiés à l'avance et certains tests sont pratiqués en urgence : tout ceci entraîne des délais trop courts pour tester le logiciel. En conséquence, les tests sont réalisés sans méthode, quand l'équipe a le temps et de façon différente selon les individus. 
 Le but de la démarche de test qui est présentée dans cet article, est de combler les manques dans la pratique des tests logiciels au sein des entreprises. La démarche décrit un cycle de vie pour les tests logiciels, définit des documents de support aux tests (guides, modèles de documents, check listes…), permet de définir une stratégie de test et définit qui doit faire quoi et comment. Son utilisation permettra d'éviter des situations d’urgence et de mieux déterminer le temps nécessaire aux tests. 

Notre démarche est donc une proposition de méthodologie de mise en place des tests logiciels. Etant donnée la nature très diverse des projets de développement informatique , il est probable que tous les éléments de la démarche ne sont pas applicables tels quels sur tous les projets. Il faut adapter la démarche en fonction du type de projet (projet pour client externe / projet interne de recherche / taille du projet / complexité du fonctionnel…). L’adaptation est à faire par le chef de projet, lors de la mise en place de l’organisation du projet. 

Étapes d’un projet de test 

Afin d’être efficace, un projet de test devrait suivre les étapes suivantes:

1.Une étape de planification(= plan de test)
«Comment on va s’y prendre»
2.Une étape de conception des cas de test (= procédures de test)
«Description de tous les tests qu’on prévoit faire»
3. Une étape d’exécution
«Exécuter les tests »
4.Une étape d’observation des résultats (= rapport de test)
«Résumer de ce qu’on a trouvé»
5. Une étape de correction(= gestion des anomalies)
«Suivi, régression et amélioration continue»

  

1) Planification 

Situer les activités de tests dans la stratégie globale de livraison de l’application logicielle
Établir très clairement l’identification de l’application à tester ainsi que la version soumise aux tests

· S’assurer d’établir les canaux de communication afin de recevoirtous les informations pertinentes 

· Analyses, spécifications, avis de changement, avis de complétude. 

· Définir la portée des tests 

· Les différents intervenants (individus, groupes, entreprises) 

· Limites de la portée des tests 

· Identifier les contraintes 

· Budget 

· Disponibilité des livrables 

· Équipement 

· Temps 

· Formation manquante 

Définir les objectifs du projet de test
· Assurer la sécurité, la performance, …

· Définir l’approche globale du projet de test

· Planification des différents types de tests qui seront utilisés

· Définir les critères d’acceptation et de suspension des tests

· Définir les environnements de tests utilisés

· Besoins particuliers (Réseau, BD, RAM)

· Configurer ou acquérir les outils de test

· Préparer le processus de gestion des anomalies

· Identifier les livrables

· Identifier les ressources impliquées (rôles et responsabilités)

· Produire la cédule des activités de test

· Identifier les risques et souligner les hypothèses

Établir la table de traçabilité des éléments de test vers les documents de spécification et d’analyse
Le document de plan de test
–Le rédiger
–Le faire approuver
Très important:
–Définir les caractéristiques à tester
•Il s’agit de partitionner l’application à tester en un nombre raisonnable de fonctionnalités indépendantes
–Définir les caractéristiques qui ne seront pas testées 

Problème 

Premier problème
–«Comment systématiquement partitionner l’application à tester en une liste de caractéristiques à tester ?» 

Les phases de test 

Il existe principalement quatre phases de test
–Tests unitaires
Valider le fonctionnement d’une pièce de logiciel en isolation
–Tests d’intégration
Valider l’interaction entre diverses composantes d’un système
–Tests système
Valider le comportement du système dans son ensemble
–Tests d’acceptation (normalement classés dans la catégorie : tests sur site -Fieldtesting)
Valider si le système satisfait les besoins initiaux du client 


Concept du test en «V»
Inspiré de Pressman(1992) 

En utilisant ce concept, le cycle de vie des tests logiciels consiste à exécuter des tests en s’inspirant des différents niveaux d’abstraction du cycle complet du développement. 

On s’intéresse à l’ensemble des défauts 

Défauts de spécification, d’analyse, de code
–Permet de détecter très tôt les anomalies
Chaque phase de test valide une portion différente du développement.
–Ce processus de test ne peut exister en l’absence d’un cycle de développement structuré, car dans ce cas, le concept du test en «V» devient inefficace (difficile de valider la bonne portion du développement)
–Par cette approche, le processus de test devient dépendant de lacomplétude des artefacts du cycle de développement
–Avec cette approche, le besoin d’indépendance de l’équipe de test est évident. Il y aurait redondance et la couverture de test serait plus étroite s’il s’agissait des mêmes ressources qui analysent et qui valident (testent) l’application


Résultat final de la planification 

Le problème à été partitionné
–Les sous-problèmes sont plus faciles à appréhender
Aucune des caractéristiques documentées n’est oubliée
Le document de plan de test regroupe ces informations en plus des informations organisationnelles 

2) Conception
(s’inspirant de la norme IEEE 829) 

1. Rédiger tous les cas de test 

2. Établir la table de traçabilité des cas de test vers les documents de spécification et d’analyse 

3. Faire réviser et approuver les cas de test 

4. Préparer les outils et environnements de test 

5. Mettre en place le processus d’archivage 

6. Mettre en place la gestion des fichiers de test et des librairies de test 

7. Obtenir et installer l’application à tester 


Cas de test 

Un cas de teste st développé pour tester un objectif bien précis du logiciel. 

Un cas de test comporte:
–Des instructions pour préparer
–Des instructions pour exécuter
–Des données d’entrée
–Des conditions d’exécution
–Le résultat attendu/ critère de Succès ou d’Échec
–On retrouve souvent un espace réservé afin de noter le résultat lors de l’exécution du cas de test
La plupart du temps, plusieurs cas de tests destinés à vérifier un même objectif de test sont regroupés dans un scénario de test
–On peut alors dire que chaque cas de test constitue une étape dans le déroulement du scénario 

Exemple simplifié d’un cas de test :préparer un fichier d’importation contenant 100 dossiers clients (voir instructions A1), importer les dossiers clients (voir instructions I2). 

Visualiser les dossier clients à l’aide de l’application et vérifier que les dossiers erronés ont été rejetés 


Problème 
· «Comment établir systématiquement les différents cas de test ?» 

· Ou «Comment identifier tous les angles différents pour chaque caractéristique à tester ?» 

· Ou «Relativement aux tests, comment identifier le domaine réalisable de chaque caractéristique à tester ?» 

Les différents angles de test 

Supposons qu’il existe un meta procédure de test qui explore tous les angles d’une meta application 

Inspiré de Open-Source Security Testing Methodology Manual (OSSTMM) 2.1. 


Domaine réalisable de test 

Certains auteurs et organismes élaborent de tels domaines réalisables de test
–Par spécialité
–Par exemple, l’Institute for Security and Open Methodologies(ISECOM), propose plusieurs angles de test concernant la sécurité
On peut transposer ces différents angles de test dans un arbre de domaine réalisable de test (comme dans l’acétate précédente)
Avec un peu de recherche, on peut trouver des domaines réalisables de test pour différentes spécialités.
On peut alors utiliser les différents domaines réalisables de 3 façons (selon les besoins) 


a) Tels quels. Chaque fois qu’il faut bâtir de nouvelles procédures de test, on consulte les documents originaux illustrant les différents angles de test.
b) Au sein de son entreprise, créer son propre domaine réalisableen combinant les domaines réalisablesen un seul. Celui-ci devient alors la référence de base pour toutes nouvelles procédures de test
c) Idem + ajouter des angles de test sur des composantes logicielles uniques à sa propre entreprise. Ce domaine réalisable de test permet alors à un apprenti de rédiger rapidement de bonnes procédures de test 


Appliquer le domaine 

Pour un projet de test en particulier, un sous-ensemble du domaine réalisable de test est utilisé et concrétisé en procédures de test 


Types de test 

Il existe différents types de test:
Regression testing (tests de régression)
–Tests conçus pour vérifier qu’un changement implanté n’affecte pas des parties inchangées dans le système.
Error-handling testing (tests de gestion d’erreur)
–Tests conçus pour déterminer l’habilité du système à traiter unetransaction incorrecte.
Manual-support testing (tests de support manuel)
–Tests conçus pour déterminer que l’interaction personne-ordinateur fonctionne correctement. Tests réalisés sur la partie non automatique du système (manuelle).
Intersystems testing (tests inter-système)
–Tests conçus pour déterminer la communication de données entre deux systèmes
Control testing (tests de contrôles)
–Tests conçus pour déterminer si le niveau de contrôle du systèmeréduit le niveau de risques du système.
–Contrôle = validation des données, trace, backup, audit, etc.
Parallel testing (tests parallèles)
–Tests se déroulant sur l’ancien et sur le nouveau système pendant une même période de temps pour identifier les différences possibles entre les deux systèmes.
Comparison testing (tests de comparaison)
–Tests conçus pour comparer les forces et les faiblesses par rapport à un produit compétiteur
Usability testing (tests de maniabilité)
–Tests conçus pour évaluer les facteurs humains, l’esthétique, laconsistance et la documentation. Évalue la facilité d’apprentissage, d’opération, de préparation et d’interprétation des données par un utilisateur. Ces tests sont subjectifs.
Smoke testing (tests de qualification)
–Tests conçus pour évaluer que toutes les fonctions d’un build opèrent convenablement avant de continuer les tests. Évalue la qualité du produit avant de passer aux tests intégrés ou de système.
Sanity testing (tests de santé)
–Tests conçus pour évaluer la qualité d’une livraison avant d’être envoyé au client. Évalue les opérations sur les scénarios normaux avec des données normales. Vérifie si la livraison est saine.
End-to-end testing (tests de bout en bout)
–Similaire à un test système. Implique de tester une application complète dans une situation semblable au monde réel telle que l’interaction avec des bases de données, le réseau et autres interfaces ou systèmes
Install / Uninstall testing (tests d’installation / désinstallation)
–Tests conçus pour vérifier une installation et désinstallation complète ou partielle ou une mise à jour

Ad-hoc testing (tests ad-hoc / monkey test)
–Tests créatifs et informels non basés sur un plan ou cas de test. Le testeur apprivoise et apprend le système durant l’exécution de ces tests. Tests aléatoires basés sur la probabilité de trouver une erreur.
–Utile pour déterminer si un module est prêt à être tester formellement ou à la fin d’un projet. Il sert à briser les habitudes séquentielles et la mécanique d’exécution en utilisant une ressource différente ayant une vision et une approche différente.


Exploratory testing (tests exploratoires)
–Similaire au test ad-hoc à l’exception que le testeur connaît le système. Les tests sont orientés mais informels. Chaque étape est analysée afin de déterminer la prochaine.
–On cherche des indices de mauvais fonctionnement ou de comportement suspect et ce afin de se faire un chemin vers une faute latente.

Stress testing (tests de stress)
–Tests conçus pour déterminer si le système peut fonctionner avecun large volume -plus large que normalement attendu.
–Les zones de stress incluent : transactions, tables internes, espace disque, données de sorties, données d’entrées, communication, capacités de l’ordinateur, interaction avec les ressources, etc.
–On assure de pouvoir traiter x transactions par minute, mais jusqu’où le système peut-il en accepter? Documenter le point de rupture.
Load testing (tests de volume)
–Test utilisé pour assurer que le système fonctionne correctementavec les volumes d’entrée spécifiés. Ce test détermine si le système a la capacité de manipuler des volumes larges. Par exemple, dans une application d’achat en ligne créer une liste d’achats d’une centaine d’articles, une liste d’usagers et de mots de passe contenant plusieurs dizaines de milliers d’entrées, simuler le vieillissement de l’application en générant une grande quantité de données journalières
Performance testing (tests de performance)
–Tests conçus pour vérifier le niveau de performance du système dans un contexte comme : la vitesse d’opération, le temps réponse, lavitesse de communication, le temps de traitement d’une transaction, etc.

Recovery testing (tests de récupération)
–Tests conçus pour déterminer si le système peut retourner dans un statut opérationnel après une défaillance ou perte d’intégrité.
Operation testing  (tests opérationnels)
–Tests conçus pour vérifier avant la mise en production que les procédures opérationnelles sont claires et que les ressources peuvent exécuter l’application sans problème
–Observations libres de la part des utilisateurs
–Collecter les commentaires de façon non officielle
–Sondage de maniabilité auprès des utilisateurs
–Utiliser un questionnaire
–Tests bêta (attention à la mauvaise publicité pouvant survenir lors d’une activité de Tests bêta)
–Avant le déploiement officiel, donner en exclusivité l’accès à l’application Web à un groupe d’usagers visés

Compatibility testing (tests de compatibilité)
–Tests conçus pour vérifier la compatibilité avec une composante mécanique, logicielle, réseau, interface, environnement, etc.
–Laboratoire équipé des différents environnements
–Prendre garde de ne pas altérer les environnements pendant les tests
–Difficulté d’obtenir les composantes représentant les environnements plus anciens
–Obtenir une ancienne version de fureteur
–Obtenir une ancienne version de système d’exploitation
–Tests bêta: demander aux usagers visés par les tests bêta de communiquer les problèmes de compatibilité
Compliance testing (tests de conformité)
–Tests conçus pour déterminer l’adhérence à des normes, procédures ou guide.
Security testing (tests de sécurité)
–Tests conçus pour déterminer si le système est protégé selon le niveau d’importance des données 

Conclusion
Finalement, la réponse à la question initiale:
–«Comment identifier tous les angles différents pour chaque caractéristique à tester ?» 

Résumé de la méthode 

1. Partitionner l’application à tester quelques caractéristiques à tester selon l’angle de tests d’acceptation, systèmes, d’intégration et de tests unitaires 

2. Pour chaque caractéristique à tester, se référer à un domaine réalisable générique de test afin de générer les cas de test selon plusieurs angles différents 

3. Pour chaque cas de test, choisir un ou plusieurs types de test
Domaine réalisable générique 

3) Exécution 

· Exécuter les tests selon le plan et les procédures de test 

· Effectuer la formation requise 

· Rapporter les résultats 

4) Observation 

· Évaluer, analyser de documenter les résultats 

· Vérifier le statut de complétude du projet de test 

· Évaluer les résultats obtenus selon les objectifs 

· Rédiger le rapport de test 


Contenu du document de Rapport de test (s’inspirant de la norme IEEE 829) 

Synthèse des résultats des tests exécutés sur le système ou sur une de ces composantes
Liste des anomalies connues classées par sévérité
Évaluation du risque actuel du système testé

Métriques pertinentes
On devrait pouvoir diffuser le rapport à un vaste auditoire
–Le rapport est rédigé afin d’être facile à comprendre
–Doit être bref mais complet
–Pointer sur les autres documents pertinents pour le lecteur désirant plus d’informations
•Référence vers les résultats détaillés de test
Amélioration du processus de test/développement 

Q: À quels groupes est destiné le rapport de test ? 

5) Correction 

Recueillir et suivre les anomalies détectées suite à l’exécution des tests
Effectuer les tests de régression (ou de non-régression)
Mettre à jour tous les documents produits dans le cadre du projet de test
Évaluer le projet de test qui vient d’être complété (post-mortem)
Effectuer des activités d’amélioration continue des processus
–Améliorer le processus de test
–Ajuster les métriques
–Améliorer le processus de développement

•Il ne faut pas s’en tenir à détecter des problèmes, il faut agir pour éviter d’avoir à les détecter à nouveau dans le prochain projet de test 

1) Planification
2) Conception
3) Exécution
4) Observation
>5) Correction 

Bibilographie :
http://www.qualitelogicielle.com/index.php/tests-logiciels/tests-fonctionnels/la-demarche-de-test.html
[image: image13.png]wma Ew o
et St





[image: image14.png]Comments Duplications Complexity

15.9% 0.0% 2.2 /method
103 ines & Qlines 6.3 /class

86.2% docu. APl 0 blocks
0files 83 ompx &
214 statements &

Test success
Rules compliance Violations 100.0%
82.4% 86 « 0 failoes
usa ®Blocker 0 0 errors
Rel ¥ critical 0
Ef. ® Major 104 W
#Minor 66

olnfo  10A W

Let;symakejallithesejgadgets!)
size Color 0% mmmmm 100%
[T T8 ((Rules complance B





1- Manuel Assurance Qualité de la Société 
Document support : Manuel Assurance Qualité


- Décrire dans le détail ce qu'apporte  ce manuel.

P4 : définit le système qualité : c’est LA référence dans le but que l’entreprise sache comment fonctionner (interne) et que le client soit convaincu que l’Entreprise applique la qualité dans son fonctionnement (externe)  (idée : éviter les erreurs, gaspillages, retards, défauts etc…) grâce à ce MQ

Détail : cf P6 plan 
- Comment est-il structuré?

Le directeur de l’E dit ce qu’il veut (p7) : (…améliorer nos performances…enrichir…progrès…)


Présentation de la société (contexte)

Comment on gère la qualité dans l’Entreprise

Comment on ECOUTE le client ?

Acteurs (qui fait quoi dans l’E ?)

Les outils déployés (les moyens)


Les PROCESSUS identifiés, liés, déployés…=> CARTOGRAPHIE (p20)
Processus support (ex : gestion de l’informatique), processus de réalisation (ex : processus de développement), processus de management (ex : processus écoute client) 

Les instructions, les enregistrements (non décrit dans cette version « grand public »)
- Quelle sont les différentes parties de l'entreprise?

1. Gestion des Ressources Humaines

2. Gestion financières

3. Service informatique et  système d’information

4. Recherche et Développement

5. Approvisionnements

6. Fonction de production

7. Logistique (Supply Chain)

8.  Fonction commerciales, ventes

9. Gestion de la Qualité

10. Réglementation (législation)

11. Gestion de l’environnement

12. Fonction risque
13. Direction générale
Fonction administration

- Comment le fonctionnement en processus apporte de l'efficacité?

Ils décrivent complétement et sans ambigüité le « how to do » (entrée/sortie, qui, comment, où, avec quoi….), sont références « utiles » et sont améliorées, ce de façon exhaustive. 

- Quels sont les processus? Quels sont les services, les interactions entre ceux-ci?

                             fonctionnel


                      robustesse


                performance


            ergonomie


        sûreté


   sécurité











Niveau de détail (situation dans le cycle de vie) 





white box                black box

















Niveau �d’accessibilité





Caractéristiques


(Ce que l’on veut tester)














système


intégration


module


unitaire





                             fonctionnel


                      robustesse


                performance


            ergonomie


        sûreté


   sécurité











Niveau de détail (situation dans le cycle de vie) 





white box                black box

















Niveau �d’accessibilité





Caractéristiques


(Ce que l’on veut tester)














système


intégration


module


unitaire








	 M1 STIC 2015- 2016

	TD AQL
	Page 32



