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LE DIPÔLE RC
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  Le dipôle RC est constitué d’un condensateur associé en série avec un résistor (conducteur ohmique).
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     u tension aux bornes du dipôle RC

Pour t<0 ; u =0

Pour t ( 0 ; u = E.
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(on doit représenter les flèches des tensions avant d’établir l’équation différentielle).

  Le condensateur est initialement déchargé, à la date t=0, on ferme l’interrupteur K.

d’après la loi des mailles :

uR  + uc = E avec uR =Ri

Ri  +  uc = E avec  
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, on pose (=RC


[image: image10.wmf]c

c

du

uE

dt

t+=

 ou 
[image: image11.wmf]cc

duu

E

dt

+=

tt



[image: image12]
a- Un peu de maths : La fonction exponentielle f(x) = ex.

· 
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 La fonction exponentielle est une fonction puissance, elle a les mêmes propriétés que les fonctions puissances.

e1 = 2,718      e-1( 0,37     e0 = 1    ea.eb = ea+b     
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 (donc la fonction ex ne s’annule jamais pour des valeurs définies de x).

· La dérivée de eax :

(eax )’ = a.eax.

· La réciproque de la fonction ex est ln(x) :

Ln(ex) = x et   eln(x) = x.

b- Solution de l’équation différentielle :

  L’équation différentielle précédente a pour solution 
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Expression de uR(t)

uR = E – uc =
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Expression de i(t)
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a- Définition :

  La constante de temps ( est une grandeur caractéristique du dipôle RC, elle nous renseigne sur la rapidité avec laquelle s’effectue la charge ou la décharge d’un condensateur.

b- Unité de ( :
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(seconde) donc ( est un temps.

c- Détermination de ( :

· Par calcul :

  Ayant les valeurs de R(en Ω) et de C(en F), on peut calculer directement ((en s) .

· Graphiquement :

· 1ère méthode (utilisation de la tangente à l’origine) : on peut montrer que ( est l’abscisse du point d’intersection de la tangente à la courbe de uc (t)[de même pour uR(t), i(t) et q(t)] à la date t=0 avec l’asymptote (lorsque t(+().
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· 2ème méthode (lecture graphique) :

1er cas : à partir du graphe de uc(t)

Pour t=(, quelle est la valeur de uc ?
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Exemple :  
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On a E= 4 V  d’où  0,63.4 =2,52 V donc l’abscisse du point d’ordonnée 2,52 V est égale à (
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2ème  cas : à partir du graphe de uR(t)

Pour t=(, quelle est la valeur de uR ?
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Exemple :  

On a E= 4 V  d’où  0,37.4 =1,48 V donc l’abscisse du point d’ordonnée 1,48 V est égale à (.
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  On peut considérer qu’un condensateur est complètement chargé lorsque sa tension uc = 0,99E ce qui donne une durée de charge t(5( = 5RC

  Le temps de charge augmente avec R et avec C.

  Pour t < 5(, on a le régime transitoire.

  Pour t ( 5(, on a le régime permanent.

Remarque :

·  la réponse d’un dipôle RC à un échelon de tension est la charge progressive du condensateur : c’est un phénomène transitoire.

· Charge d’un condensateur par une tension créneaux. 
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Pour 5( < 
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, pendant une demi-période la tension uc peut atteindre sa valeur finale donc on observe les courbes suivantes (les deux voies ont la même sensibilité verticale) :
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Pour 5( > 
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, pendant une demi-période la tension uc ne peut pas atteindre sa valeur finale donc on observe les courbes suivantes :
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1- 
Equation différentielle :
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(on doit garder la même orientation du circuit).

  Le condensateur est initialement chargé, à la date t=0, on ferme l’interrupteur K.

d’après la loi des mailles :

uR  + uc = 0 avec uR =Ri

Ri  +  uc = 0 avec  
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2- 
Solution de l’équation différentielle :

  L’équation différentielle précédente a pour solution 
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3- 
Expression de uR(t) et de i(t) :

Expression de uR(t)

uR = 0 – uc = 
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Expression de i(t) : 
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4- 
graphes de uc(t), uR(t) et de i(t) :
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LE DIPÔLE RL
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  Une bobine est un dipôle constitué de l’enroulement d’un fil conducteur, recouvert d’une gaine isolante, sur un support cylindrique.
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  Toute variation de champ magnétique à proximité d’une bobine en circuit fermé produit un courant induit. Le phénomène s’appelle induction magnétique.

L’élément qui crée le champ magnétique est l’inducteur et la bobine est l’induit.
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  Le sens du courant induit est tel qu’il s’oppose par ses effets à la cause qui lui a donné naissance.
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    Le courant induit est dû à une f.e.m délocalisée appelée f.e.m induite.
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· lorsque la bobine est à la fois l’inducteur et l’induit le phénomène s’appelle auto-induction.

· Une bobine traversée par un courant électrique variable est le siège d’une auto-induction.

· L’auto-induction traduit l’opposition d’une bobine à toute variation de courant.
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· L’inductance L est une grandeur qui ne dépend que des caractéristiques de la bobine, elle caractérise la faculté de la bobine d’emmagasiner de l’énergie magnétique.

· Pour une bobine idéale ou inductance pure (r=0), la tension aux bornes de la bobine est 
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  Le dipôle RL est constitué d’une bobine associée en série avec un résistor (conducteur ohmique).
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  A la date t=0, on ferme l’interrupteur K.

d’après la loi des mailles :

uR0  + uB = E avec uR =Ri
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, on pose R=R0 + r
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 on divise l’équation par R


[image: image80.wmf]LdiE

i

RdtR

+=

  on pose 
[image: image81.wmf]0

LL

RRr

t==

+



[image: image82.wmf]diE

i

dtR

t+=


Remarque : 

  On peut avoir l’équation différentielle régissant les variations de

·  uR0 en remplaçant i par 
[image: image83.wmf]R

0

0

u

R

, on trouve   
[image: image84.wmf]R0

0R0

0

u

d()

Ru

E

dtRR

t+=



[image: image85.wmf]R0R0

00

duu

E

RdtRR

t

+=

   en multipliant l’équation par R0 :
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  La solution de l’équation différentielle 
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 s’écrit sous la forme 
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  avec A, B et ( sont des constantes positives qui dépendent des caractéristiques du circuit.

  Déterminons A, B et ( :

· A t=0, on ferme le circuit donc à cette date l’intensité du courant est nulle d’où i(0) = 0
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  A + B =0    A = - B.
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· Cette solution vérifie l’équation différentielle :
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 cette égalité est valable quelque soit t.

Lorsque t
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En remplaçant A par son expression, on aura :
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a- Expression de uR0(t) :

UR0(t) = R0i(t) =
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b- Expression de uB(t) :

uB = E – uR0
    = E - 
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on va mettre les deux quantités au même dénominateur

    = 
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[image: image124]
a- Définition :

  La constante de temps ( est une grandeur caractéristique du dipôle RL, elle nous renseigne sur la rapidité avec laquelle s’effectue l’établissement du courant dans le circuit.

b- Unité de ( :
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(seconde) donc ( est un temps.

c- Détermination de ( :

· Par calcul :

  Ayant les valeurs de R(en Ω) et de L(en H), on peut calculer directement ((en s).

· Graphiquement :

· 1ère méthode (utilisation de la tangente à l’origine) : on peut montrer que ( est l’abscisse du point d’intersection de la tangente à la courbe de i(t)[de même pour uR(t) et uB(t) ] à la date t=0 avec l’asymptote (lorsque t(+().
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· 2ème méthode (lecture graphique) :

 à partir du graphe de i(t)

Pour t=(, quelle est la valeur de i ?
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Exemple :  

On a Imax= 4 mA  d’où  0,63.4 =2,52 mA donc l’abscisse du point d’ordonnée 2,52 mA est égale à (
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  On peut considérer que le courant s’établit dans le dipôle RL lorsque i= 0,99Imax 
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  La durée de l’établissement de courant augmente :

· R0 ou r diminue.

· L augmente.

  Pour t < 5(, on a le régime transitoire.

  Pour t ( 5(, on a le régime permanent.

Remarque :

·  la réponse d’un dipôle RL à un échelon de tension E est un courant continu d’intensité 
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 qui ne s’établit pas instantanément à cause de l’inductance L de la bobine( la bobine s’oppose à l’établissement du courant dans le circuit). Avant d’atteindre le régime permanent, on passe par un régime transitoire.

· On peut déterminer l’expression de Imax en utilisant l’équation différentielle en régime permanent :

  en régime permanent i=Imax =constante et l’équation différentielle est 
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· Dans le cas où la bobine est une inductance pure (on remplace dans les expressions précédentes r par 0). 
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et le graphe de uB(t) est : 
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OSCILLATIONS ELECTRIQUES LIBRES
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  On place l’interrupteur sur la position 1 pour charger le condensateur puis on le place sur la position 2 pour avoir les oscillations électriques libres amorties ( en cas de résistance R faible).

  Avant la décharge, la charge initiale du condensateur est Q0=C.E

  Cette décharge s’appelle décharge oscillante car elle s’effectue dans une bobine.

  Avec R=30 Ω(faible), on obtient le graphe suivant :
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  On répète la même expérience en augmentant la valeur de la résistance R, on obtient les graphes suivants :

	R=50 Ω
	[image: image146.png]



	Régime

 pseudopériodique

	R=100 Ω
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	R=200 Ω
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	Régime

 apériodique


Pour un amortissement faible, on obtient le régime pseudopériodique, en augmentant l’amortissement (la résistance R) :

· Le nombre d’oscillations diminue.

· La pseudo période augmente.

· On passe du régime pseudopériodique au régime apériodique.

Remarque : le régime critique correspond au passage le plus rapide de uC vers sa valeur nulle et sans oscillations.
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  D’après la loi des mailles(K est en position 2) : 

uB + uR + uC =0 
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  avec 
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 donc :
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c’est l’équation différentielle qui régit les variations de la charge q(t) du condensateur en régime libre amorti.

Remarque : on peut établir l’équation différentielle régissant les variations de la tension uc aux bornes du condensateur en remplaçant q=Cuc

[image: image156.wmf]2

ccc

2

d(Cu)d(Cu)Cu

L(Rr)0

dtdtC

+++=



[image: image157.wmf]2

cc

c

2

dudu

LC(Rr)Cu0

dtdt

+++=

 divisons cette équation par LC
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   L’énergie totale E = Ec + EL avec 

Ec : énergie électrique emmagasinée dans le condensateur.

EL : énergie magnétique emmagasinée dans la bobine.
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  De même ici pour voir comment varie l’énergie totale E, on doit calculer sa dérivée : 
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avec uc(t) et i(t) sont deux fonctions de temps(et non pas des valeurs constantes).
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d’après la loi des mailles 
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L’énergie totale d’un circuit RLC série diminue au cours du temps.

 SHAPE  \* MERGEFORMAT 
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Exemple : on prend t1 = 0 s et t2 = 35 ms. En ces deux dates, uC est maximale donc Ee est maximale d’où EL est nulle (car lorsque uc est maximale 
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A t1 , E1 = Ee(t=t1) =
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 et à t=t2 on a E2 = Ee(t=t2) =
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donc l’énergie dissipée par effet joule dans (R + r) ou perdue est égale à

Edissipée = E1 – E2 = 
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   On considère le circuit électrique schématisé ci-dessous, lorsque le condensateur se charge complètement, sa charge est maximale Qmax. D’après la loi des mailles : 

uG – uC = 0
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L’énergie électrique emmagasinée par le condensateur est 


[image: image187.wmf]2

2

max

e

Q

11

ECEavecE:f.e.m

2C2

==



[image: image188]
  Le condensateur se décharge dans une inductance pure, on obtient des oscillations électriques libres non amorties( oscillations sinsoïdales). Voila les variations de la tension uc aux bornes du condensateur :
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Avec T0 est la période propre du circuit LC.
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d’après la loi des mailles ( K1 est ouvert et K2 est fermé) : la décharge du condensateur dans une inductance pure.
uc + uL = 0
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Equation différentielle des oscillations électriques libres non amorties de pulsation propre (0 tel que 
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L’équation différentielle précédente a pour solution : 
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    avec :

Qmax : amplitude.

(0t + (q : phase de la charge q(t) à la date t.

(q : phase initiale de la charge q(t).( phase à t=0)

On peut avoir de même l’expression de 
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q(t) = Qmax sin((0t + (q )
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i(t) = (0Qmax cos((0t + (q )  =(0Qmax sin((0t + (q + (/2).

Or i(t) comme toute fonction sinusoïdale elle s’écrit sous la forme 
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D’après le graphe, on remarque que lorsque :
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  càd lorsque :

·  le condensateur est complètement chargé, la bobine est vide.

·  le condensateur est vide, le courant dans la bobine atteint sa valeur maximale.
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  E = Ee + EL , l’énergie électrique peut être notée Ee ou Ec.

= 
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 donc EL est une fonction parabolique de coefficient (a>0)
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 donc Ee=g(i) est une fonction parabolique(-a<0)
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 donc EL est une fonction linéaire croissante (a>0).
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 donc Ee est une fonction affine décroissante (-a<0).
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LES OSCILLATIONS ELECTRIQUES FORCEES EN REGIME SINUSOÏDAL
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On alimente le circuit RLC série avec un générateur basse fréquence (G.B.F) délivrant une tension sinusoïdale u(t)=Umsin((t+(u) et on visualise les tensions uR(t) sur la voie Y1 et u(t) sur la voie Y2 d’un oscilloscope, on obtient les oscillogrammes suivants(à titre d’exemple) : 
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En faisant varier la fréquence du G.B.F, on peut remarquer, en utilisant les oscillogrammes, que les deux tensions u et uR ont la même période (même fréquence) on dit que les oscillations de la tension uR sont imposées par le générateur, l’oscillateur n’est pas libre et les oscillations sont dites forcées.
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  D’après la loi des mailles :

uB + uR + uc = u avec u(t)=Umsin((t+(u).
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  donc
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 Equation différentielle

des oscillations électriques forcées


[image: image236]
   L’équation différentielle précédente a pour solution i(t) =Imsin((t+(i).
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Pour avoir une solution complète de i(t) on doit avoir l’expression de Im et celle de (i.

  Il est très difficile de résoudre mathématiquement cette équation différentielle, on va utiliser la méthode de résolution de Fresnel (physicien français, 10/05/1788-14/07/1827 ; http://fr.wikipedia.org/wiki/Augustin_Fresnel).
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A une fonction sinusoïdale Fresnel fait correspondre un vecteur :
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  Dans notre équation différentielle on a quatre fonctions sinusoïdales, on doit associer à chacune d’elles un vecteur de Fresnel :

1ère fonction : 
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3ème fonction : 
[image: image242.wmf]mm

i3i

II

1

idtsin(t)V(;)

CC2C2

pp

=w+j-¾¾®j-

ww

ò

r


4ème fonction : 
[image: image243.wmf]mumu

u(t)Usin(t)V(U;)

=w+j¾¾®j

r



[image: image244.wmf]123

di1

Ona(Rr)iLidtudoncVVVV

dtC

+++=++=

ò

rrrr


	Trois cas sont possibles :
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Circuit capacitif
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Circuit résistif
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Circuit inductif
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u(t) est en retard de phase par rapport à uR(t) (càd à i(t)).
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u(t) et uR(t) sont en phase avec (de même pour u(t) et i(t)).
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u(t) est en avance de phase par rapport à uR(t) (càd à i(t)).
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A la résonance d’intensité Im est maximale :

· 
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· Um=(R+r)Im, Z est minimale Z= R + r.

· (u =(i, (( = 0 u(t) et i(t) sont en phase.


· On a 
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A la résonance d’intensité, uc est en quadrature retard par rapport à u(t).
La courbe de variation de I=f(N), (Courbe de résonance).
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Remarque : La pulsation ( de la tension excitatrice est la même que celle de l’intensité de courant qui circule dans le circuit : le rythme d’oscillations du courant est imposé par le générateur donc ces oscillations sont dites forcées.
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