[image: image8.wmf]

[image: image9.png]

Université d’Avignon

master 1 informatique

Implémentation d’un protocole de routage dans un réseau de capteurs sans-fils

L.Daumas, O.Uberti

Encadrants : A.Benslimane

15 juin 2008
Remerciements

Nous tenons à remercier nos encadrants F.FEZZI et A.BENSLIMANE pour toute l’aide apportée. Nous tenons également à remercier l’IUP d’Avignon de nous avoir prêté le matériel nécessaire ainsi qu’une salle pour pouvoir faire notre projet.

Table des matières
1Université d’Avignon

2Remerciements

5Introduction

7Chapitre 1

7Présentation des Réseaux de capteurs sans-fil

9TinyOS et NesC

9Les capteurs

10Architecture d’un capteur

11Le système d’exploitation TinyOS

11Présentation

11Propriétés

12Allocation de la mémoire

12Allocation des ressources :

13Simulation : TOSSIM et TinyViz

13Le simulateur TOSSIM

13TinyViz

14Outils d’intégration Crossbow

14Moteworks

16Mote config

17MoteView

17Xsniffer

18NesC

18Les Principales caractéristiques de NesC

22Chapitre 2

22Gestion du projet

22Contraintes

221.
Coût

222.
Matériels

223. Travail de groupe

23Présentation des acteurs et de leurs responsabilités

24Méthodologie de conception de suivie

25Prévisions et réalité

25Prévision

26Réalité

27Chapitre 3

27Protocoles de routages et techniques de localisation dans un réseau de capteurs

27Protocole AODV

30Protocoles de localisation

30RSSI

31Time Of Arrivals

31Angle of Arrival

32Chapitre 3

32Algorithme et phase de test

35Conclusion

37Diagramme de Gantt

38Bibliographies

Introduction
Le groupe travaillant sur le projet Capteur est composé de deux étudiants, DAUMAS Laurent et UBERTI Olivier. Le groupe est supervisé par le tuteur Mr BENSLIMANE Abderrahim. Nous souhaitions aborder un sujet orienté télécom et réseaux dans lequel nous pouvions aborder beaucoup d’aspect différents, que cela soit la technologie sans fil, les protocoles de routages, les systèmes de transmissions,...

Dans la vie courante, l’utilisation des capteurs sans fil est de plus en plus demandée pour la supervision et la sécurité. Les industries proposent alors des capteurs sans fil qui peuvent renseigner l’utilisateur sur plusieurs données.

Ces capteurs peuvent aussi être reliés ensemble pour former un réseau sans fil se basant sur des protocoles pour se communiquer et proposant des programmes et des réseaux embarqués. Les capteurs fonctionnent donc à basse tension et ceci est géré par un système d’exploitation spécialisé : TinyOS.

Il est le système actuellement le plus utilisé dans les applications nécessitant des capteurs. Enfin, pour le développement des applications légères, il n’existe actuellement qu’un langage de programmation capable d’interagir avec le système d'exploitation TinyOs : NesC. Ce langage dédié est proche du C traditionnel mais il est orienté composants.

Les capteurs sont des dispositifs de taille extrêmement réduite avec des ressources très limitées, autonomes, capable de traiter des informations et de les transmettre, via les ondes radio, à une autre entité (capteurs, unité de traitements...) sur une distance limitée à quelques mètres.

Les réseaux de capteurs utilisent un très grand nombre de ces capteurs pour former un réseau sans infrastructure établie. Un capteur analyse son environnement, et propage les données récoltées aux capteurs appartenant à sa zone de couverture. Chaque capteur relayant l'information sur sa propre zone de couverture, le réseau se trouve entièrement couvert.

Nous prenons en charge la suite des projets portant sur les capteurs sur lequel les étudiants des années précédents ont travaillé. Ils ont créé un espace de travail dans les locaux de l'IUP avec des postes de travail configurés pour travailler directement sur les capteurs. Ils ont ainsi mis en place un programme permettant de localiser les capteurs environnants et développé une interface JAVA permettant de localiser les capteurs sans fils.

Le but du projet capteur est d’arriver à créer un réseau de capteur sans fil, et si possible d'identifier des capteurs rentrant dans notre réseau et de retracer une route de manière automatique. Les capteurs devront donc communiquer entre eux afin de s’échanger des données à travers un protocole de routage que nous développerons.

Nous présenterons dans un premier temps les outils nécessaires pour faire de l’intégration de protocole dans un réseau de capteurs et dans un deuxième temps le protocole mis en place ainsi que son implémentation en langage NesC.
Chapitre 1

Présentation des Réseaux de capteurs sans-fil
L’objectif du projet de master est donc d’implémenter sur des capteurs un protocole de routage qui fera de la localisation dans un réseau de capteurs de type ad-hoc.

Les capteurs sont des objets électroniques capables de mesurer une grandeur physique (au sens large) : température, pression, pH, etc. Les modules MICAz sont des transmetteurs sans fil fonctionnant avec la technologie ZigBee, sorte de WiFi adapté aux appareils disposant de peu d’énergie. C’est le cas de ces modules car ils sont alimentés par piles.

Les réseaux de capteurs sont utilisés dans de nombreux domaines tels que l’industrie, le bâtiment (capteurs sismiques), l’écologie (contrôle des polluants, du climat et des désastres), le domaine médical ou bien encore le militaire (surveillance).

C’est une technologie en plein essor et qui a de très nombreux débouchés. Par exemple, si une organisation forestière s’intéresse à la surveillance de son domaine forestier afin de détecter le départ d’un incendie, les capteurs dispersés dans le domaine s’avèrent très utiles pour faire remonter l’information jusqu’au point de contrôle (voir figure 1.1).

[image: image10.png]

Le capteur X diffuse un message d’alerte avec sa position qui est relayé de proche en proche par les capteurs jusqu’au point de collecte des informations où l’alerte peut être donnée. On estime le lieu de l’incendie par rapport à la position du capteur qui a lancé l’alerte.

Comme les ressources d’un capteur sont très limitées, la réalisation d’une application dépend entièrement de la collaboration entre tous les capteurs qui exécutent des tâches simples.

Fig. 1.1 – Un réseau de capteurs surveillant une forêt

Un réseau de type ad-hoc est un réseau sans hiérarchie entre les nœuds et où les informations transitent de nœud en nœud pour atteindre leur destination. Il est modélisé par un graphe (non orienté) où chaque nœud est ici un capteur et où chaque arête correspond à un lien de communication ZigBee.

En effet ZigBee est un protocole de haut niveau permettant la communication de petites radios, à consommation réduite, basée sur le standard IEEE 802.15.4 pour les réseaux à dimension personnelle (Wireless Personal Area Networks : WPANs). Cette technologie a pour but la communication de courte distance telle que le propose déjà la technologie Bluetooth, tout en étant moins chère et plus simple. À titre d’exemple, les nœuds ZigBee classiques nécessitent environ 10 % du code nécessaire à la mise en œuvre de nœuds Bluetooth ou de réseaux sans fil, et les nœuds ZigBee les plus élémentaires peuvent ainsi descendre jusqu’à 2 %.

Pour les réseaux de capteurs, les mesures doivent atteindre un nœud particulier appelé point de collecte (le centre forestier de la figure 1.1). Autrement dit, de tout nœud du réseau, il doit exister un chemin vers le point de collecte. La localisation permet de construire une cartographie complète du réseau à partir de la connaissance de la position de quelques nœuds du réseau. Ces nœuds particuliers portent le nom d’ancre.

La cartographie complète d’un réseau de capteurs est nécessaire car une mesure représente l’état d’un point particulier. Or la localisation systématique, par GPS ou ”manuellement”, est une solution beaucoup trop coûteuse. Quand il y a un évènement on veut savoir où il s’est produit. De plus certains algorithmes de communication (routage, broadcast) utilisent aussi les positions.

 Trois techniques de localisations existent, deux algorithmes sont des évolutions de la triangulation.

La programmation ne peut pas être effectuée directement sur le module. Ils sont donc interfacés au PC via un port COM grâce à un autre module sur lequel ils s’enfichent : le MIB510CA (Crossbow). Les modules MICAz sont dotés d’un système d’exploitation, appelé TinyOS, ainsi qu’un langage de programmation spécifique orienté composant, le NesC. Il sont adaptés au contexte ”capteur” c’est-à-dire à un environnement industriel, avec des faibles capacités de traitement et une faible énergie embarquée. Les outils de programmation (compilateur, chargeur, simulateur, etc.) sont bien entendu spécifiques. L’outil fourni avec les modules s’appelle MoteWorks. Il existe également des outils libres, sous forme d’une distribution Ubuntu dédiée : XubuntOS.

TinyOS et NesC

Les capteurs

· Présentation des capteurs utilisés :

MIB510CA :

[image: image11.jpg]INVERSITE

DAVIGNON

Carte d’interface série pour la programmation de toutes les plates formes MICA. Elle possède deux connecteurs de 51 pins pour raccorder la carte aux capteurs.

MCS410 :

[image: image12.jpg]10P GMI

DATINON

Système de localisation, destiné surtout pour usage intérieur, fournis des informations de positionnement précises, identification des espaces, coordonnées de position et d’orientation. C’est un produit de recherches et d’études. Sa précision varie entre 1cm et 3 cm. Combine les technologies RF et d’ultrason, se monte sur les murs ou les plafonds et peut être utilisé en émission comme en réception.

Architecture d’un capteur

L’architecture des capteurs, en général, est commune pour tous. On peut voir sur la les différents composants qui constituent un capteur.

· Mote, Processeur, RAM, Flash :

On appelle Mote la carte physique utilisant le système d’exploitation. Le processeur est à la base des calculs binaires. Les mémoires RAM et Flash servent pour le stockage, définitif ou non, des données.

· Radio, Antenne :

Afin d’émettre, un capteur a besoin d’une antenne et d’une radio pour ajuster les fréquences hertziennes.

· LED, interfaces, capteur :

Composants prévus pour mettre en place un réseau de capteurs.

· Batterie :

Indispensable pour l’autonomie du capteur.
[image: image13.emf]
Le système d’exploitation TinyOS

Présentation

TinyOS est le système d’exploitation open source pour les réseaux de capteurs sans-fil conçu par l’université américaine de BERKELEY. Sa conception a été entièrement réalisée en NesC, langage orienté composant qui se rapproche syntaxiquement du langage le plus connu : le C.

TinyOS a été créé pour répondre aux caractéristiques et aux nécessités des réseaux de capteurs, telles que :

· Une taille de mémoire réduite.

· Une basse consommation d’énergie.

· Des opérations d’assistance intensive.

· Des opérations robustes.

· Il est optimisé en termes d’usage de mémoire et d’énergie.

Propriétés

Le plus gros avantage de TinyOS est qu’il est basé sur un fonctionnement événementiel, c’est-à-dire qu’il ne devient actif qu’à l’apparition de certains évènements. Le reste du temps, le capteur se trouve en état de veille afin de garantir une durée de vie maximale aux faibles ressources énergétiques du capteur. TinyOS se distingue aussi par son caractère non préemptif, c’est-à-dire qu’il ne gère pas les interruptions entre tâches. Par contre il donne une priorité aux interruptions matérielles qui peuvent à tout moment stopper l’exécution d’une tâche. Pour terminer, TinyOS ne gère pas de ”temps réel” car il n’est pas prévu pour manipuler des niveaux de priorité, pour mieux respecter les échéances, dans les tâches. TinyOS est donc basé sur une structure `a deux niveaux de planification :

· Les évènements : ils sont utilisés pour réaliser de petits processus (par exemple quand le compteur du ((timer)) arrive à son terme). De plus ils peuvent interrompre les tâches qui sont exécutées.

· Les tâches : les tâches sont pensées pour réaliser une plus grande quantité de traitements et elles ne sont pas critiques dans le temps. Les tâches sont exécutées complètement, mais l’initialisation et la terminaison d’une tâche sont des fonctions séparées.
 Allocation de la mémoire

Il est très important d’aborder la façon avec laquelle un système d’exploitation gère la mémoire et plus spécialement quand celui-ci travaille dans un espace restreint. TinyOS ne nécessite pas beaucoup de place mémoire puisqu’il n’a besoin que de 300 `a 400 octets dans le cadre d’une distribution minimale. Il est primordial d’avoir 4 Ko de mémoire libre qui se répartissent entre les différents besoins suivant :

· La Pile : Elle sert de mémoire temporaire pour l’empilement et le dépilement des variables locales.

· Les variables globales : Elles réservent un espace mémoire pour stocker des valeurs pouvant être accessibles depuis différentes tâches.

· La mémoire libre : Pour tout le reste du stockage temporaire. La notion d’allocation dynamique de mémoire n’est pas présente dans le système, ce qui simplifie l’implémentation mais, par ailleurs, il n’existe pas de mécanisme de protection de la mémoire, ce qui rend le système plus vulnérable au crash et aux corruptions de mémoire.

Allocation des ressources :

· L’ordonnanceur

Le choix d’un ordonnanceur détermine le fonctionnement global du système et le dote de propriétés telles que la capacité à fonctionner en temps réel.

L’ordonnanceur TinyOS se compose de :

· 2 niveaux de priorités (bas pour les tâches, haut pour les évènements).

· 1 file d’attente FIFO (disposant d’une capacité de 7).

On a un niveau de priorité entre les tâches leur permettant de se classer. Lors de l’arrivée d’une nouvelle tâche, celle-ci sera placée dans la file d’attente en fonction de sa priorité. Dans le cas où la file d’attente est pleine, la tâche dont la priorité est la plus faible est enlevée de la file FIFO.

· Les tâches

Elles sont utilisées pour effectuer la plupart des blocs d’instructions d’une application. A l’appel d’une tâche, celle-ci va prendre place dans une file d’attente de type FIFO (First In First Out) pour y être exécutée. Une tâche activée s’exécute entièrement car il n’y a pas de mécanisme de préemption. Lorsque la file est vide, le système met en veille le dispositif jusqu’au lancement de la prochaine interruption.

· Les évènements

Ils sont prioritaires par rapport aux tâches et peuvent interrompre la tâche en cours d’exécution. Ils permettent de faire le lien avec les interruptions matérielles.

· Plates-formes sous TinyOS

TinyOS est prévu pour fonctionner sous plusieurs plates-formes comme Windows (2000 et XP) ou bien GNU/Linux. Deux principales versions de TinyOS sont disponibles : la version stable (V. 1.1.15) et La version en développement (V. 2.0.2) qui nécessite l’installation de l’ancienne version pour fonctionner.
Simulation : TOSSIM et TinyViz

Le simulateur TOSSIM

Afin de simuler le comportement des capteurs, un outil très puissant a été développé et proposé sous le nom de TOSSIM. Ce dernier est souvent utilisé avec une interface graphique (TinyViz) pour une meilleure compréhension et visualisation de l’état du réseau. L’utilisation de ces deux logiciels est immédiate dès lors que TinyOS est opérationnel.

TinyViz

L’outil TinyViz est une application graphique qui nous permet d’avoir un aperçu de notre réseau sans avoir à déployer les capteurs dans la nature. Une économie d’effort et une préservation du matériel sont possibles grâce à cet outil. L’application permet une analyse étape par étape en activant les différents modes disponibles.
Outils d’intégration Crossbow

Afin de travailler de façon optimale sur les capteurs il est nécessaire d’avoir une plate forme de travail Windows accueillant les outils de travails dédiés aux capteurs. Le fabricant Crossbow fournit ces logiciels

MoteWorks
MoteWorks possède comme environnement de développement pour le NesC une version simplifiée de Programmer’s Notepad. Cet environnement permet de créer, compiler et charger des applications en NesC sur les Motes.

Cet environnement utilise une interface Cygwin comme console de commande. La compilation et le chargement d’applications se font par des commandes standardisées simples. Pour toutes les applications on utilise les mêmes commandes. Pour la compilation, en fonction de la plateforme processeur/radio que l’on on a à disposition, il suffit de sélectionner dans la barre d’outils make <platform>.

Dans notre cas : make mica2 Lors du chargement d’une application sous l’environnement MoteWorks, après avoir lancé un Shell, on utilise une commande simplifiée dans laquelle on précise la plateforme Processeur/radio, la carte d’interface de programmation du mote et le port de communication.

Dans notre cas cela donne :

make mica2 install mib520,com7

Cette simplicité des commandes de compilation et de chargement permet un accès facile pour des personnes peu habituées à la programmation. Ceci est intéressant car un grand nombre d’applications est fourni par Crossbow.

 Il suffit de sélectionner l’application souhaitée et de la traiter comme vu précédemment. Par contre, cette simplicité des commandes nécessite un format pour les applications strict. A savoir, chaque application possède un répertoire composé de 4 fichiers nécessaires :

1. Makefile

2. Makefile.component

3. Un fichier de configuration de l’application

4. Un fichier contenant le module de l’application

Makefile est le fichier qui est compilé lors de la commande make, il fait appel à d’autres fichiers

[image: image1.emf]
Le fichier MakeXbowlocal contient les options de la carte de programmation, l’identifiant de groupe permettant de différencier des motes appartenant à des réseaux différents, la sélection de la bande radio et des canaux ainsi que la puissance d’émission.

Makefile.component décrit à haut niveau le composant de l’application et le nom de la carte de capture. Ceci permet simplement d’annoncer au compilateur que l’on va utiliser les composants NesC précompilés de la carte afin d’initialiser ses capteurs.

[image: image2.emf]
Le fichier contenant la configuration de l’application est le fichier Nom_application.nc. Dans ce fichier sont implémentés les composants qui interagissent entre eux dans l’application, puis on définit comment ces composants sont liés :

[image: image3.emf]
Chaque application doit au moins contenir le composant Main et son module Nom_applicationM.

 Le composant Main est le premier à être exécuté et c’est lui qui contrôle les autres via les méthodes init(), start(), stop() communes à chaque composant. Enfin on crée le module dans le fichier Nom_application.nc. Ce dernier contient le code de l’application.

Mote config

· Local Program : Le local programme est utilisé pour uploader des progiciels sur les Motes à travers la Gateway et la MIB520. La Gateway doit être connecté au PC par port USB ou port série dans notre cas nous avons utilisé la MIB520 port COM. Les motes devraient être attaché à la Gateway et devraient être tourné en OFF avant la programmation.

· Remote program : Cette option nous permet d’uploader une application sur les Motes à distance.

[image: image4.emf]
La station de base (Gateway) doit être programmée par l’application XMeshBase, Les autres Motes devront être programmés par le type de sensors board attachée à la mica2 à travers la MIB520.

MoteView

L’outil MoteView fourni avec le kit Crossbow nous fournit en temps réel les Informations nécessaires suivant une topologie du réseau des capteurs reprogrammables.
[image: image5.emf]
On peut récupérer des différents capteurs les informations transférées à la station de base, qui envoie les données à travers le port série du PC connecté. On récupère alors la température, la luminosité, la position, l’humidité, les accélérations (suivant l’axe des abscisses x et des ordonnées y) ainsi que l’état de la batterie. Chaque capteur est repéré par un numéro de « Node » et on peut sélectionner différents capteurs pour avoir les informations et le mode de travail de chaque capteur connecté.

Xsniffer
Xsniffer est un outil développé par Crossbow qui permet aux utilisateurs de superviser la communication multi-sauts sous Xmesh. Ce programme s’exécute sur un PC et utilise un MICAz pour la surveillance du trafic des paquets radio.

Xsniffer peut être utilisé pour observer le comportement du réseau. Il affichera tous les messages radio transmis au sein du réseau. Xsniffer peut être utilisé pour vérifier si un mote a rejoint le réseau. Quand ceci arrive les paquets de vie et de données modifieront leur adresse de broadcast pour l’adresse de la station de base ou celle d’un autre élément du réseau.

NesC

Le langage NesC (network embedded system C) est un dialecte de C basé sur des composants. NesC est orienté pour satisfaire les exigences des systèmes embarqués. De plus, il supporte un modèle de programmation qui agrège l’administration des communications, les concurrences provoquant les tâches et les évènements ainsi que la capacité de réagir par rapport à ces évènements.

NesC réalise aussi une optimisation dans la compilation du programme, en détectant les carrières possibles de données qui peuvent produire des modifications concurrentes au même état, à l’intérieur du processus d’exécution de l’application. Une carrière de données se produit quand plus d’un fils peuvent simultanément accéder à la même section de mémoire (concurrence d’accès mémoire entre threads), et quand au moins l’un des accès est un ”write”.

NesC simplifie aussi le développement d’applications et réduit la taille du code un critère important dans l’implémentation de code dans un capteur étant donné sa capacité de mémoire.
Les Principales caractéristiques de NesC

NesC est constitué d’interfaces et de composants. Une interface peut être utilisée ou peut être fournie. Les composants sont des modules ou des configurations.

Architecture d’une application NesC :

[image: image14.png]

[image: image15.wmf]

[image: image16.png]

· Interface :

Une interface peut être utilisée ou peut être fournie. Les composants sont des modules ou des configurations. Une application est représentée comme un ensemble de composants, regroupés et rattachés entre eux.

Les interfaces sont utilisées pour les opérations qui décrivent l’interaction bidirectionnelle. Le fournisseur de l’interface doit mettre en application des commandes, alors que l’usager de l’interface doit mettre en application des évènements.

· Composant :

Deux types de composants existent :

Les modules, qui mettent en application des spécifications d’un composant.

Les configurations, qui se chargeront d’unir différents composants en fonction des interfaces (commandes ou évènements).

La figure suivante montre un diagramme de blocs dans lequel est décrit le processus de compilation pour une application TinyOS écrite en NesC :

Processus de compilation :
[image: image17.wmf]
· Interface :

Ce type de fichier déclare les services fournis et les services qui seront utilisés. Ils se trouvent dans le répertoire /tos/interface.

· Module :

Le type Module contient le code de l’application, en mettant en œuvre une ou plusieurs interfaces.

· Configuration :

Dans ces fichiers on déclare la manière d’unir les différents composants et comment effectuer le contrôle des flux. (exemple : Blink.nc).

· Composants :

TinyOS définit un nombre important de concepts qui sont exprimés dans NesC. D’abord, les applications NesC sont construites par des composants avec des interfaces bidirectionnelles définies. Aussi, NesC définit un modèle basé sur les tâches et les captures d’évènements matériels, et détecte des éclatements d’information pendant la compilation.
Un composant, du point de vue de la programmation, est composé de plusieurs sections et l’ensemble de toutes ces sections donne lieu à la création de ce composant.

· Implémentations :

Cette section définit les connections entre les différents composants qu’utilise l’application. Dans cette section ((implémentation)) sont donc principalement définis quels sont les composants qui fournissent les interfaces `a notre application (ils seront généralement des composants primitifs). Généralement nous devons utiliser les interfaces que nous fournissent d’autres composants primitifs ou non primitifs, et en définitive pour chacune de ces interfaces, que nous utiliserons dans la création de notre composant, on doit obligatoirement définir des relations avec les composants qui fournissent ces interfaces. Le processus définissant ces relations s’appelle ((wiring)).

Exemple :

1

 implementation {

2

 components Main , MonAppliM ;

3

 Main . StdControl -> MonAppliM . StdControl ;

4

 }

· Configurations

C’est à cet endroit que l’on déclare les autres composants dont se servira l’application. Cette possibilité offerte par le langage permet de faire de la programmation modulaire et de réutiliser des composants préalablement définis.

Chapitre 2
Gestion du projet

Contraintes
1. Coût
Concernant le projet Capteur tout le matériel nécessaire est déjà à notre disposition (microcapteurs, logiciels, postes de travail...), aucun coût n'a été à prendre en compte. Sachant que c'est notre tuteur qui s'est chargé d'acheter les équipements, il est normal que nous en respections le matériel.
Nos ordinateur ne disposant pas de port de connexion série, nous avons cependant, pour nous permettre de travailler indépendamment des heures d’accès à la salle électronique, du nous fournir d’un connecteur USB-DB9. Cette nécessité n’a pas été formulée au premier semestre.
2. Matériels
Le matériel nécessaire est situé en salle d'électronique de l'IUP. Cette salle est accessible qu'en dehors des heures de travaux pratiques. Cependant pour plus d’autonomie, la grève rendant la salle inaccessible, nous avion du nous contraindre à changer de direction concernant la plate forme de travail utilisé. L’installation de TinyOS sur nos ordinateurs personnels se soldant par un échec, nous avons opté pour un choix différent à celui envisagé lors de la rédaction du cahier des charges. Nous avons utilisé un ordinateur personnel équipé des outils Crossbow pour travailler.
3. Travail de groupe

Afin de faire avancer le travail, nous devons nous rencontrer à des horaires différents de ceux de l'IUP. Nous devions nous mettre d'accord sur le travail à effectuer chacun de notre coté afin de faire avancer le projet.

Présentation des acteurs et de leurs responsabilités
Le groupe de travail est composé de 2 personnes : Laurent Daumas, et Olivier Uberti et d'un tuteur de projet Mr Abderahim Benslimane.

Laurent Daumas est en charge de l'évolution du site internet, il s’st également occupé de l’installation des équipements de travaux et des premiers tests sur les capteurs.
Olivier Uberti sera en charge de rédiger les différents documents pour le projet. Il se chargera également du développement sous NesC, le langage spécifique au capteur.

Aucun de nous n'aura cependant une tâche spécifique durant ce projet, la charge de travail dont chacun est responsable aura pour but de collecter des informations pour pouvoir les expliquer au second membre du groupe de travail, le travail étant commun au binôme, toutes avancées quelconques sera partagé au groupe de travail.

Mr Benslimane est notre responsable de projet. Il nous donne les axes de travail pour notre recherche et nous cadre par rapport aux choix que nous prendrons.

Méthodologie de conception de suivie
Trois types de réunions de travail ont été mis en place :

· Réunion de travail en présence de tous les membres de groupes,

· Travail individuel selon la répartition du travail,

· Réunion de bilan avec les personnes enseignantes en charge d’encadrer notre projet.

Les réunions de travail ont lieu de manière apériodique selon l’avancement de chacun. Elles ont lieu pour la plupart du temps à l’IUP, aux horaires libérés pour notre application.
Durant ces réunions, nous évaluons le travail accomplis, l’état d’avancement du projet, puis nous répartissons le travail en mini-groupe.

Les réunions de travail en mini-groupe ont pour objectif de remplir les objectifs que nous nous sommes fixés lors des réunions de groupes. Les travaux sont alors envoyé aux autres membres du groupes de travail afin qu’ils en fassent une revue. L’évaluation globale se fera lors de la réunion de groupe.
Les réunions de bilans ont lieu avec le tuteur du projet. Les réunions de bilan ont pour objectif de comprendre ce que le tuteur attend de nous concernant le projet et de nous fixer les axes de travail. Nous échangeons également les informations que nous avons collectées durant les dernières semaines et nous posons les questions qui nous permettraient de faire avancer le projet, ces dernières représentent le contenu présent dans les fiches de compte rendus.
Une communication par mail a été mise en place entre tous les membres du groupe de travail. Cela permettait de s’échanger des informations quelque soit la distance géographique.
Notre méthode de travail est donc la suivante, réunion des membres du groupe de travail pour discuter du travail à faire, répartition du travail, revue intermédiaire du travail par mail, évaluation global du travail lors d’une réunion qui définira les étapes suivantes nécessaire à l’élaboration du projet.
 Prévisions et réalité
Prévision
Afin de pouvoir de travailler dans les meilleurs conditions possibles sur notre projet, nous devions nous familiariser avec les technologies associées aux Capteurs afin d'y implémenter un protocole de routage. Nos premiers objectifs étaient donc purement théoriques.

· S'informer sur les Capteurs et les technologies associées,

· S'informer sur la communication entre les Capteurs,

· Savoir échanger des données entre capteurs,

· Se documenter sur le système d'exploitation des micro-capteurs (TinyOS),

Dans un premier temps, et avant toute manœuvre pratique, il est primordial de connaître l'environnement des Capteurs. Même si cela c'est avéré abstrait en raison de l'absence pratique, nous nous sommes informer sur les technologies utilisées lors de la mise en place d'un réseau de Capteur. Le tout a pour but d'implémenter un protocole de routage entre les différents Capteurs.

Notre objectif principal durant ce projet est donc celui-ci :

· Implémenter un protocole de routage de localisation dans un réseau de capteur sans fil.
Afin d'implémenter un protocole de routage il fallait bien évidemment se poser les bonnes questions. Nous avons définis un axe de réflexion sur ce dernier point :
o Définir ce qu'est un protocole de routage

o Comment se fait le calcul des distances

Pour commencer l’aspect pratique de notre projet, nous implanterons un protocole de routage très basique reposant sur le broadcast. Une source demandera à ce localisé et les nœuds lui enverront leur position par broadcast. Nous partons d’une architecture statique ou chaque nœud connait sa position.

Dans un second temps, nous implanterons un protocole bien plus évolué qui aura pour but que lorsqu’une source demande à ce localisé, les nœuds lui répondent en mode source/destination.

Cette réflexion a été basée dans un système à base de Capteurs sans fil bien évidemment.
Réalité
Nos prévisions, que cela soit en termes de compréhension techniques, en termes de volume horaire et de choix d’orientation, ont souvent été mauvaises. En ce qui concerne la compréhension technique, nous avions sous estimé la charge d’information à acquérir pour travailler sur les capteurs. Nous savions qu’il fallait nous familiariser avec un nouveau système d’exploitation et un nouveau langage de programmation. Nous avons malheureusement omis certaines subtilités de ces derniers, méthode de compilation spécifique, outils d’intégration spécifique.
Concernant le protocole de routage nous avions choisit de nous lancer dans le protocole OLSR en fin de premier semestre, après une réunion avec notre tuteur, celui ce nous a fortement conseillé de nous orienté plutôt vers le protocole AODV qui avait déjà montré des résultats dans les réseaux de capteurs.

La grève a également entrainée de nombreux changements. L’accès à la salle étant bloqué et l’installation logicielle de l’OS TinyOS étant impossible sur nos machines, nous avons perdus de nombreuses heures de travailles. Une fois l’accès à la salle autorisée (une fois la grève terminée), la charge en termes de volume horaire hebdomadaire nous rendant la salle électronique inaccessible, donc le travail sur les capteurs impossible, nous avons pris l’initiative de changer d’axe de travail.
Nous nous sommes rendu compte que lors de la création d’un cahier des charges, beaucoup de scénario que nous n’avions pas envisagés se sont produits. Afin d’avoir malgré tout un travail correct à fournir à notre tuteur, nous devions prendre des initiatives. Nous avons également fait le choix de fournir en plus du travail demandé des guides et des processus d’installation et de tests sur les différentes plates formes utilisant les capteurs. Cette dernière vocation aura uniquement pour but de normaliser un peu plus certains aspects autours des capteurs et ainsi de faire grandir la communauté qui s’en retourne. Car étant un domaine de travail tout récent et ayant des spécificités particulières, beaucoup de personnes se posent des questions sur ce sujet. Nous essayons donc avec ces guides d’apporter une partie des réponses en souhaitant que la communauté s’en servent et en apportent d’avantage à l’avenir.

Chapitre 3
Protocoles de routages et techniques de localisation dans un réseau de capteurs

Protocole AODV
Qu'est ce que le protocole AODV et comment fonctionne il ?

Est il adapter au réseau de capteur ?

AODV

Le protocole AODV (Ad-hoc On-Demand Distance Vector) est l’un des protocoles les plus étudiés par les chercheurs, ce qui ce traduit par une maturité dans les implémentations disponibles ainsi que dans les différents comparatifs l’opposant à de nombreuses autres solutions. Ce protocole a donné naissance à une RFC actuellement au stade expérimental (RFC3561) et gérée par le groupe de travail de l’IETF spécialisé dans le domaine des réseaux ad hoc.

Lorsqu’un nœud désire envoyer un message à une destination pour laquelle il ne possède pas de route, la procédure de construction est initiée par l’envoi d’un message RREQ à tous ses voisins physiques par diffusion (broadcast). A la réception d’un tel message, les nœuds insèrent dans leurs tables de routage, une route vers le nœud à l’origine de la requête passant par le nœud ayant envoyé le message qui devient le prochain pas (next hop) vers le nœud à l’origine de la requête.

Cette démarche permet de créer une route de retour (reverse path) pour les futurs messages transitant de la destination à la source. En insérant cette route, les nœuds font l’hypothèse que les liens physiques sont symétriques et qu’ils pourront atteindre le nœud ayant envoyé le message. Chaque nœud recevant ce message va le retransmettre de la même manière ce qui à terme va inonder le réseau. Ces messages sont identifiables par chacun des nœuds ce qui leur permet de les traiter qu’une seule fois et empêche qu’une requête transite indéfiniment dans le réseau. Les principales informations de la table de routage du nœud 7 sont représentées en guise d’exemple, tel que le prochain nœud vers la destination, le numéro de séquence de la destination ainsi qu’une métrique (nombre de sauts jusqu’à la destination).
Dans ce protocole, les nœuds intermédiaires ainsi que le nœud recherché peuvent répondre à ces requêtes par l’envoi d’un message RREP qui va transiter jusqu’au nœud à l’origine de la requête.
Ce nouveau type de message n’inonde pas le réseau mais est envoyé en empruntant la route créée lors du passage de la requête. Les nœuds intermédiaires peuvent répondre uniquement s’ils possèdent une route assez fraiche vers la destination recherchée. Cette caractéristique permet de construire plusieurs routes vers la destination. Ainsi, le nœud à l’origine de la construction va potentiellement recevoir plusieurs messages RREP. Ce dernier va sélectionner la route la plus courte en fonction du nombre de pas physiques. Le niveau de fraicheur des routes est établi sur la base d’un numéro de séquence maintenu par chaque nœud et est comparé avec la fraicheur minimale désirée par le nœud à l’origine de la requête dans le message RREQ.
Ce numéro de séquence permet de garantir la construction de routes dépourvues de boucles et d’imposer la reconstruction d’une route. A la réception d’un message RREP, les nœuds insèrent dans leurs tables de routage la route directe (forward route) vers le nœud recherché. Ainsi, l’algorithme a créé la route bidirectionnelle reliant le nœud à l’origine de la requête et le nœud recherché.
 Lorsqu’une route est créée, une procédure de maintenance est initiée, visant à garantir une route exploitable et consistant à détecter les liens brisés. Dans la version originale du protocole, cette procédure est mise en œuvre par l’échange périodique de messages entre les voisins physiques des nœuds constituant la route. Un nœud ne recevant pas de message de maintenance durant un certain nombre de périodes va considérer la route comme étant brisée. Le processus de gestion des erreurs offre deux possibilités aux nœuds détectant une route brisée. La première consiste à réparer localement la route en initiant une nouvelle requête de construction et à stocker dans un tampon les éventuels messages nécessitant la route brisée an de les retransmettre plus tard. La deuxième solution consiste à avertir tous les nœuds jusqu’au nœud source de l’état de la route. Pour chaque destination contenue dans la table de routage d’un nœud, une liste des prédécesseurs est créée. Cette liste contient les nœuds susceptibles d’utiliser ce nœud pour transférer de l’information vers la destination.
Le nœud détectant une route brisée se base sur ces listes pour envoyer des messages RRER aux nœuds ciblés, contenant la destination du nœud qui n’est plus atteignable. Les nœuds recevant un tel message se comportent de la même manière ce qui va faire transiter l’information jusqu’au nœud source. Le nœud source va reconstruire la route uniquement lorsqu’il en aura à nouveau besoin. Les routes ont une durée de vie limitée qui est mise à jours après chaque utilisation. Une route inutilisée durant une longue période (3 secondes par défaut) n’est plus valide et le processus de maintient de la route est stoppé ce qui permet d’éviter des échanges de messages de maintenance inutiles.

Recherche de la destination par la requête RREQ

[image: image18.png]Architecture générique d'un
Mote

-

~{Imertce |
—

Réponse de la destination par la requête RREP

[image: image6.emf]
Protocoles de localisation
On utilise 3 techniques pour calculer la distance entre les capteurs.

· Angles of arrivals,

· Calcul de la distance par la puissance émise (RSSI),

· Utilisation de la vitesse de propagation du signal (TOA),

RSSI

En télécommunication, le Received Signal Strength Indication ou RSSI est une sortie d'un système de réception d'un signal sans fil (classiquement un signal radio). Son utilité est de fournir un signal lié à l'intensité du signal reçu. Ainsi, la sortie est en courant continu, souvent en 0/5V (ou 0/+V) (le niveau le plus élevé est 5V, le plus bas est 0V). La signification du signal est la suivante: si la tension de sortie est nulle, le récepteur ne perçoit pas de signal. Si la tension est élevée (proche de +V), le signal est maximal. Cela permet donc d'ajuster la qualité de la réception.

Le RSSI est la mesure de la puissance d'un signal reçu par un équipement. La perte de puissance entre l‘émetteur et le récepteur est proportionnelle à la distance parcourue. La mesure RSSI (Received Signal Strength Identification) propose une estimation de la distance mais pas de son axe directeur.

La localisation d‘un équipement implique la détection et la mesure du signal de celui-ci par trois autres équipements dont on connait les positions. La précision de cette méthode de triangulation des fréquences radio dépend de deux facteurs :

1. La précision de chaque mesure. Il existe de nombreux facteurs qui pèsent sur la précision des distances lors des mesures RSSI. Cette mesure peut s‘avérer correcte en elle-même. En revanche l‘orientation de l‘antenne, la présence de murs, parois, objets métalliques peuvent modifier la puissance du signal, la distance réelle s‘avère ainsi peu fiable.

2. Le degré de précision est inversement proportionnel à la distance mesurée.
Time Of Arrivals

Le TOA (Time Of arrival) est un système de localisation basé, sur le temps mesure, sur les points d’accès l’instant d’arrivée du signal émis par le mobile. Si les horloges du mobile et du point d’accès ne sont pas synchronisées, il faut ajouter une inconnue de temps à l’équation. Contrairement aux équipements de localisation utilisant la puissance, la précision du système peut être améliorée en augmentant le rapport signal sur bruit ou la largeur effective de la bande. Comme il est possible d’atteindre une très grande précision de localisation, par exemple 2 à 3 cm avec une largeur de bande de 1.5 GHz et un SNR de 0 dB, la qualité de la mesure du temps et la synchronisation de tous les nœuds influent fortement sur les performances.

Il est possible de s’affranchir du problème de synchronisation des horloges entre le mobile et les points d’accès en travaillant avec des différences de temps d’arrivée (TDOA). Dans ce cas, la différence de temps d’arrivée d’un signal émis par un mobile sur deux points d’accès est calculée. Dans l’espace, le lieu géométrique des positions possibles du mobile est décrit par un hyperboloïde dont les foyers sont les deux points d’accès utilisés.

Trois mesures de TDOA, résultant de la réception simultanée du signal sur trois points d’accès distincts, sont nécessaires pour calculer la position du mobile. Etant donné la complexité de l’environnement construit, seule une très forte densité de points d’accès, permet d’envisager une telle configuration.
Angle of Arrival
L'Angle of arrival est un système de localisation basé sur les angles d’incidence mesure l’angle entre la direction de propagation du rayonnement électromagnétique incident et la normale aux dioptres des points d’accès, le tout à l’aide de rangées d’antennes spécifiques. Il est difficile de déterminer avec précision, l’angle d’incidence dans un ensemble de signaux réfléchis.
Deux références suffisent pour calculer un point dans un espace plan. Le système mesure les angles d’incidence des signaux émis par l’émetteur mobile. Ainsi les angles de direction apparente et d’élévation apparente du mobile dans le référentiel attaché au point d’accès sont fournis. Afin d’exprimer ces mesures dans le référentiel de la pièce/bâtiment dans lequel on se trouve, il faut tenir compte de l’orientation du point d’accès. Cette orientation est définie par les angles d’inclinaison et d’orientation.
Chapitre 4
Algorithme et phase de test
Afin de pouvoir coder le protocole AODV en NesC nous avons résumé le protocole en deux algorithmes, un décrivant la création d‘une route le second décrivant la structure d’envoi des messages qui entrainera une chaine de maintenance.
· Envoi d’un message :

[image: image19.png]EEE

Voddel np ssiuiay

35aN D UoEay93ds SpING UORIEnza

16Uy ioddel np UoEPaY

[UoIunG) SnpUR) E00

Sisa) ap seseud

SMOPUIM SOIUAL 8PING UoR9Epas

SMOPUIN [IEAE1} 5P BULI0} S1eid e 3p UOREIIErsul

G UoIuNG) SnpUR) 00

358 Ua AQOV 810901010 Np UOJEWLIEI60]d

1078 S3aUEEN

Sinajdes sal 98e sjsa} Jaliald

G UoIunG) SnpUR) SO0

AU SoS SQIUAL USHEIIEISUl SPInG Uoaepay

‘SOIUNGNX 1EAE1 3P BLUIG) S1e1d el 3 UoRelelu]

SOIUA UaWEUUGAUS] 3P 16 SINeIde? 5ap UoisUaUZIdwo)

EEEEEEE

)

Sinajdes sal ns sjsa} el

7 UoIunG) ap SpUa) AGWI0D

AV al030joid

i i mwi zi i i i mi e

xi i i m; :i i i i :i N; :i i mi mi hi

i qi ni Ni ; mi Ei i o]

i

‘500c U]

600C e

600Z ke 600C Siew

600z 1213

G00Z el

00z igwaazp

122004

L

· Demande de routes :

[image: image20.png]A

Configuration

Application

Component F

Component D

Configuration

De ces algorithmes nous en tirerons des fonctions principales que nous implémenterons :

Envois des messages :

SendRREQ()

SendRREP()

SendRRER()

resendMSG

Inscription des valeurs dans la table de routage :

Get_route_table

Add_route_table

Messages de fin de transmission :

SendRREQ.sendDone

SendRREP.sendDone

SendRRER.sendDone

Vérification des messages à l’intérieur du noeud :

ReceiveRREQ.receive

ReceiveRREP.receive

Correction des paquets:
Split_Control

Conclusion

Nous n’avons pas travaillé comme nous l’avions prévus, la grève a entrainée un changement de plate forme de travail, un changement dans la répartition des tâches, étant donné que nous habitons respectivement à plus d’une heure de l’espace de travail, nous avons opté pour un travail personnel sur la programmation.

Nous avions opté pour l’OS XubuntOS au départ pour finalement changer et utilisé les utilitaires Crossbow pour Windows, faute aux multiples problèmes d’installations de l’OS XubuntOS sur nos ordinateurs personnels. Ce dernier choix nous rendant plus autonome, nous étions moins indépendant de la salle électronique où nous travaillions jusqu'à lors.

Nous avions également sous estimé la complexité de l’environnement de travail. L’implémentation de programme dans un capteur requiert des connaissances qui ne sont pas faciles à trouver. En effet en plus de devoir se familiariser avec un nouveau système d’exploitation, nous devons en connaître ses subtilités, à savoir son langage de programmation propre, le NesC, les méthodes de compilation, mais nous devions également apprendre à utiliser les outils liés aux technologies Crossbow. Pour palier à ce problème et ainsi éviter à d’autres personnes des recherches inutiles, nous avons pris l’initiative de faire des guides expliquant les marches à suivre pour installer et utiliser les outils nécessaires aux travaux sur les capteurs.
Nous n’avons malheureusement pas atteint les exigences de notre tuteur de projet, en effet il souhaitait incorporer un protocole de routage faisant de la localisation dans un réseau de capteur. Seul le protocole de routage a été implanté. L’intégration de la localisation dans la table de routage n’a pas put se faire. Nous nous sommes lancés dans la programmation du protocole de routage AODV, un routage plus simple aurait permis une meilleure approche de la problématique.
Néanmoins nous retenons des aspects positifs dans ce projet. Travailler dans un nouvel environnement de travail, les réseaux de capteurs étant un univers nouveaux pour nous deux. Etant donné la communauté autours des réseaux de capteurs est très pauvre, nous avons fait le choix de faire des guides autours des différents outils afin d’apporter un aspect plus pédagogique et permettre un travail plus direct aux futurs étudiants travaillant sur des projets en relation avec les capteurs.
Au-delà de l’aspect nouveauté, c’est toute la richesse, que peut apporter les capteurs en termes de mesures, de développement d’application qui nous a intéressés. Nous pensons qu’il serait de bonne augure d’inclure au sein d’une Unité d’Enseignement une UCE réseau de capteur. Cette dernière permettrait de connaître les spécificités de TinyOS et de faire des petites applications au sein d’un réseau de capteurs. Un domaine d’avenir.

Diagramme de Gantt
[image: image21.emf]
Bibliographies

[TOS00] Tinos official website: http://www.tinyos.net/
[AT00] ATEMU Sensor network emulator http://www.cshcn.umd.edu/research/atemu/
[TOS01] TinyOS mote simulator: http://www.cs.berkeley.edu/~pal/research/tossim.html
[SPOT00] Sun SPOT description: http://research.sun.com/spotlight/SunSPOTSJune30.pdf
[NesC00] A programming language for deeply networked systems :

http://nescc.sourceforge.net/
[Arch07] Bouillaguet Mathieu et Valero Mathieu, OS pour réseaux de capteurs, 2005 : http://wwwmaster.ufrinfop6.jussieu.fr/2005/IMG/pdf/presentationZigBeeTinyOS.Pdf
[NesC01] D. Gay, P. Levis, R. von Berehn, M. Welsh, E. Brewer, and D.Culler, “The NesC language: A hoalistic approach to networked embedded systems.” in SIGPLAN Conference on Programming Language Design and Implementation, June 2003.
[WEB06] M. Badet, W.Bonneau, “Réseaux de capteurs sans fils, Mise en place d'une plateforme de test et d'expérimentation” :

http://membres.lycos.fr/faucheur/reseauxdecapteurs/index.htm
[TOS02]C.L Fok TinyOS “tutorial”CS521 Fall 2004
[WEB07] H. Alatrista, S. Aliaga, K. Gouaich, J. Mathieu, “Implémentation de protocole sur une plateforme de réseaux de capteurs sans-fils “ : http://hugo.alatristasalas.free.fr/Archivos/rapportCapteurs.pdf
[RES00] M.CARTRON, “ Vers une plate-forme efficace en énergie pour les réseaux de capteurs sans fil“

[RES01] Applications des réseaux de capteurs intelligents et de la communication sans fil à l’instrumentation des structures de génie civil

http://hal.archives-ouvertes.fr/hal-00376774/en/
[RES02] L.SAMPER, “Modélisations et Analyses de Réseaux de Capteurs “, Mai 2008
[image: image7.png]

� EMBED Word.Picture.8 ���

� EMBED PBrush ���

� EMBED PBrush ���

non

oui

non

oui

non

oui

Mise à jour de la table

FIN

Route connue dans la table ?

Choix de la route la plus rapide

Diffusion de la requête au prochain saut

Insertion du numéro de nœuds dans la table de routage

Insertion du numéro de nœuds dans la table de routage

Origine de la requête RREQ ?

Envoi d’un message RREP au prochain hop

Message RREQ arrivé à destination ?

Diffusion d’un message RREQ

Demande de Route

non

oui

non

oui

Acquittement reçut ?

Temporisation

Stocker dans le cache les nœuds défectueux

Renvoi du message

Fin Envoie du message

Acquittement reçut ?

Temporisation

Envoie d’un message

Envoi d’un message RRER jusqu’au nœud source

Détection d’un nœud brisé

PAGE
14

_1306046145

_1306046651

_1305637872.doc
[image: image1.png]. départincendic
—
cente foreste e .
o e cllece)
+ captean

