TD Physique PCSI2            

                     Lycee Alphonse Daudet


TD THERMODYNAMIQUE  n° 3 :

PREMIER PRINCIPE

I. freinage (*).

Une automobile de masse M = 1500 kg roulant à la vitesse v = 108 km.h-1 s’arrête brusquement à l’aide de ses 4 freins à disques. En assimilant ces derniers à des cylindres de 12 cm de rayon, d’épaisseur 1,5 cm, de masse volumique ρ = 8.103 kg.m-3 et de capacité thermique massique c = 420 J.K-1.kg-1, calculer leur élévation de température en supposant

que toute la chaleur est absorbée par les disques.

parcourt.

Réponse : ∆T=74K

II.  calorimétrie : méthode électrique.(*)

Dans un calorimètre, de capacité thermique Ccal = 100 J.K-1 , contenant une masse m = 400 g d’eau à la température θi = 15°C on plonge une résistance chauffante, de capacité thermique négligeable, et de résistance R = 10 Ω. Sachant que l’élévation de température est de 4°C par minute, déterminer la tension au bornes de la résistance et l’intensité qui la parcourt.

Réponses : 3,4A ; 34V

III.calorimétrie : méthode des mélanges (*)

I. Le calorimètre contient M = 1,00 kg d’eau, la température de l’ensemble est θ1 = 15,00°C.  On y ajoute la même masse d’eau à la température θ2 = 65,00°C. La température d’équilibre est θ3 = 38,85°C. Déterminer la capacité thermique du calorimètre Ccal et son équivalent en eau µcal. (Données : ceau = 4186 J.K-1.kg-1)

II. Le même calorimètre contient M = 1,00 kg d’eau, la température de l’ensemble est  θ1 = 15,00°C. On y ajoute une masse m = 50,0 g de glace à la température θ3= 0,00°C. La  température d’équilibre est θ4= 10,87°C. Déterminer la chaleur latente de fusion de la  glace.

III. Le calorimètre contient M = 1,00 kg d’eau, la température de l’ensemble est θ1 = 15,00°C.  On y ajoute une masse m = 50,0 g de glace à la température θ5 = - 5,00°C. La température d’équilibre est θ6 = 10,75°C. Déterminer la capacité thermique massique de la glace.

Réponses : 1)96,4g  ; 2) Lf= 3,34.105 J.kg-1 ; 3) c= 2,30.103 J.K-1.kg-1 

IV calorimétrie : écoulement (**)

  Un calorimètre est en équilibre thermique avec l’eau qu’il contient à la température θ0 =15,0°C. La capacité thermique de l’ensemble est C = 1700 J.K-1.  On immerge un serpentin de capacité thermique négligeable, parcouru par un liquide de capacité thermique massique c = 1700 J.K-1.kg-1 avec un débit massique dm = 1 g.s-1.

  Le liquide entre à la température constante θ1 = 80,0°C et sort à la température θ en équilibre thermique avec le calorimètre. On négligera les fuites thermiques. La capacité thermique C est très supérieur à la capacité thermique du fluide présent dans le serpentin.

1. Déterminer la température θ en fonction du temps.

2. Quelle sera la température θ lorsque 100 g de liquide auront traversé le serpentin ?

3. Quelle aurait été la température d’équilibre du calorimètre si l’on y avait versé directement les 100 g de liquide ?

4. Le serpentin est maintenant parcouru par un courant d’hydrogène qui entre à la température θ1 = 80°C et sort à la température θ du calorimètre, initialement θ = θ0 = 15°C. Le débit massique est dm = 1 g.s-1 , on mesure une température θ = 51,6°C au bout d’un temps t = 100 s. Déterminer la capacité thermique massique et molaire à pression constante de l’hydrogène.

Réponses : 2)  21,2°C; 3) 20,9°C ; 4) c= 1,4.104 J.K-1.kg-1  Cm=28,2 J.K-1.mol-1 

V.  transformations des GP : bilans énergétiques(*)

  Un récipient contient 6 g de H2 ( G.P. γ = 1,4 ) sous une pression P0 = 1 bar et une température θ0 = 15°C. On porte sa température à θ1 = 30°C.

1. La transformation est isochore. Déterminer ∆U, ∆H, W et Q

2. La transformation est isobare. Déterminer ∆U, ∆H, W et Q

Réponses : 1) ∆U=Q =935J, ∆H=1310J, W=0 ;2)  ∆U=935J, Q =∆H=1310J, W=-374J

VI. transformations des GP : bilans énergétiques (*)

On fait subir à une mole de gaz parfait monoatomique (γ=Cp/Cv=5/3) un cycle de transformations quasi-statiques représenté en coordonnées de Clapeyron par un rectangle ABCDA.

VA=22.4 l   VD=44.8l   PA=1 atm   PB=5 atm. (1 atm =1,013 bar)

Calculer :

  a) Les températures aux points A,B,C,D

  b) Le transfert thermique reçu par le gaz au cours du cycle et la variation d'énergie interne UC-UA

c) Le transfert thermique reçu par le gaz dans la transformation BC.

Réponses : a) ?K ; b) Qcycle=?kJ ; ∆U=?kJ ; c) QBC = ?kJ

VII.  Détente d’hélium (*)

    Une enceinte cylindrique fermée par un piston, mobile sans frottement, contient 500 g d’hélium gazeux, monoatomique, de masse molaire M = 4 g.mol−1 . Dans l’état (1) initial, le volume de l’enceinte est V1 = 100 L et le gaz, supposé parfait, est à la température T1 = 600 K. On rappelle que l’énergie interne de n moles de gaz parfait monoatomique à la température T s’écrit U = 3/2 nRT , où R désigne la constante des gaz parfait. Donnée : R = 8, 31 J.K −1 .mol−1 .

   1. Calculer la capacité thermique massique à volume constant cV de l’hélium.

   2. Par déplacement du piston, le gaz subit une détente isotherme, supposée réversible, qui le conduit  de l’état (2) caractérisé par un volume V2 = 250 L. Calculer la pression P2 du gaz dans l’état (2).

   3. Quel est le travail W1→2 reçu par le gaz au cours de cette évolution isotherme ?

   4. On envisage une nouvelle évolution réversible, constituée d’une détente adiabatique entre l’état (1)  et un état intermédiaire (3) de volume V3 = V2 , suivie d’un chauﬀage isochore entre l’état (3) et  l’état ﬁnal (2), déﬁni précédemment. Déterminer la température T3 , de l’état intermédiaire.

   5. Calculer le travail W(1)→(3)→(2) .

Réponses : 1) cV = 3, 12.103 J.kg −1 .K −1 ; P2 = 2, 49.106 P a ; 3) W1→2 = −571 kJ ; 4) T3 = 326 K ; 5)

W(1)→(3)→(2) = −427 kJ

VIII : transformation adiabatique.(*)

Un gaz parfait passe d’un état ( P1 , V1 , T1 ) à un état ( P2 , V2 , T2 ) suivant une transformation adiabatique.

On pose γ = Cp/Cv        (supposé constant).

1. Montrer que, s’il existe une suite continue d’états d’équilibre thermodynamiques internes au cours de la transformation, la pression P et le volume V du gaz sont reliés par : P V γ = cte.

2. Le gaz est comprimé et passe de la pression P1 à la pression P2 = 2 P1 . Calculer le travail échangé par le gaz et le milieu extérieur en fonction de P1 , V1 et γ .

Données : P1 = 1 bar , V1 = 1 dm3 et γ = 1,4 .

Réponses : W = 55 J

IX : Cycle de Lenoir (*)

  On fait subir de façon réversible à une mole de G.P. le cycle suivant :

  • détente isobare qui double le volume ( 0 → 1 )

  • compression isotherme qui le ramène au volume initial (1→2)

  • refroidissement isochore qui le ramène à l'E.I. (P0, V0) (2 → 0)

                         CV.mol = 5/2 R , CP.mol = 7/2 R , P0 = 2 bars, V0 = 14 L

  I. Déterminer T0, P1, V1, T1, P2, V2, T2 . Représenter le cycle dans le diagramme ( P, V )

 II. Calculer W,Q, ∆U, ∆H échangés par le système au cours de chaque étape et du cycle.

III. Comparer le travail reçu pour la transformation 0 → 1 → 2 et une transformation 0 → 2     ( isochore ).

IV. Comparer Q pour la transformation 0 → 1 → 2 et une transformation 0 → 2 ( isochore ).

 V. Comparer la somme W + Q pour la transformation 0 → 1 → 2 et une transformation   0 → 2 ( isochore ).

Réponses : 1) T0=337K P1=2bars , V1=28L , T1=674K , P2=4bars, V2=14L, T2=674K . 2)   sur le cycle :W=-Q=1,1kJ, ∆U= ∆H =0 

X : détente quasistatique polytropique d’un gaz parfait.(**)

On considère la détente polytropique d’indice q constant (transformation pour laquelle le volume V et la pression P vérifient P V q =cte, avec q constante positive,) d’un gaz parfait le menant d’un état ( P1 , V1 , T1 ) à un état ( P2 , V2 , T2 ) avec V2 > V1 . On pose γ =  Cp/Cv      (supposé constant). Pour quelles valeurs du coefficient q , la détente du gaz s’accompagne-t-elle :

1. d’absorption de chaleur et d’échauffement du gaz ?

2. d’absorption de chaleur et de refroidissement du gaz ?

Réponses : 1) γ >q et q< 1 ; 2)   γ >q et q> 1 
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XI : Mesure de γ par la détente de Clément et Desormes (**)

 On considère un ballon de grand volume V1 contenant de l'air ( G.P. ) sous une pression P1 légèrement inférieure à P0 . Le manomètre indique une dénivellation h1. On ouvre le robinet pendant une courte durée. Une petite quantité d'air entre dans le ballon. La pression de l'air dans le ballon devient P2 = P0 = P1 + ∆P1 . Cette légère compression va provoquer un léger échauffement du gaz. Cette compression peut être considérée comme adiabatique et réversible ( l'air entrant joue le rôle d'un piston qui comprime l'air du ballon ). Ensuite le gaz va se refroidir pour retrouver la température T0, la pression va passer de P0 à P3= P0 + ∆P3 ( la nouvelle dénivellation est h3 ) Au cours de cette étape on peut considérer que la transformation est isochore. On néglige la variation de volume due au déplacement du liquide dans le manomètre et dans la première étape la quantité d'air qui entre dans le ballon. Les variations de pression dans les diverses étapes sont infinitésimales.

 I. Tracer le diagramme de Clapeyron.

 II. Déterminer γ en fonction de ∆P1  et ∆P3  puis en fonction de h1 et h3.

            ( pour une transformation adiabatique réversible d'un G.P. P.V γ = C te )

réponse : γ =  h1 / (h1-h3)

XII       Oscillations d’un piston dans un cylindre (**)

     Un piston de masse M0 peut coulisser sans frottement dans un cylindre de section
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S placé dans l’air à la pression P0 . Les parois du récipient et le piston sont athermanes

(non conducteur de chaleur). Le cylindre contient de l’air assimilable à un gaz parfait,

à la température T0 ; à l’équilibre, le piston se trouve à une distance h du fond de

récipient. On supposera que la transformation est adiabatique et quasi-statique.

1. Calculer à l’équilibre la pression P1 de l’air à l’intérieur du réservoir.

   2. On pose sur le piston une masse m  << M0 . Déterminer le mouvement du piston. Le piston s’arrêtera t-il. On introduira le rapport γ des capacités thermiques à pression constante et à volume constant .

Réponses : 1) P1= P0 + M0 g /S; 2) x = −  
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XIII    Détente de Joule-Gay Lussac

    Soit une masse m d’un gaz réel satisfaisant à l’équation d’état : P (V − b) = aT avec b = 5.10−6 m3 .On donne deux états de cette masse : P2 = 50 bar, V2 = 4, 57.10−4 m3 et P1 = 500 bar, V1 .

   1. Exprimer les coeﬃcients thermoélastiques α et χT . Comparer avec le gaz parfait.

   2. Un tel gaz est appelé gaz de Joule car il vériﬁe la première loi de Joule. La rappeler.

   3. Ce gaz est situé dans un cylindre rigide adiabatique à deux compartiments inégaux, dont il occupe  le compartiment (1), le vide régnant dans le compartiment (2). On perce un trou entre les deux compartiments. Le gaz passe des conditions initiales P1 , V1 , T1 aux conditions ﬁnales P2 , V2 , T2  (V2 est le volume total (1)+(2)).

         a) Calculer la variation d’énergie interne.

         b) En déduire T2 littéralement puis V1 numériquement.

Réponses : 1) α = a/(VP), χT = 1/V *(V-b)/P , égal si b = 0 ; 3b) V1 = 5,02.10−5 m3

XIV         Détente de Joule-Kelvin du méthane

     Dans tout le problème, le gaz naturel est assimilé à du méthane pur, de masse molaire M = 16 g.mol−1 .

Le méthane est assimilé à un gaz de Van der Waals dont l’équation d’état pour une mole s’écrit : P = 
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                        avec a = 0, 232 Pa.m6.mol-2   ; b = 4, 33.10−5 m3 .mol−1 ; R = 8, 31 J.K−1 .mol−1 . On adopte l’expression approchée suivante pour l’enthalpie molaire H du méthane : H = H0 +(CVm +R)T +(b− 
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)P où H0 est une constante, et CVm = 27, 0 J.K−1 .mol−1 .

    1. Montrer que la détente de Joule-Kelvin est isenthalpique.

    2. On réalise une détente du méthane dans une conduite calorifugée munie d’un étranglement où les  frottements sont importants : le ﬂuide évolue de l’état E1 (P1 , T1 ) à l’état E2 (P2 , T2 ) avec P2 < P1   et on admet que son enthalpie molaire est conservé : H1 = H2 .

          a) Calculer ( ∂H/∂T )P ; que peut-on en conclure sur le sens des variations de H avec T à P constante ?

         b) Calculer ( ∂H/ ∂P)T ; discuter le sens de variations de H avec P pour plusieurs valeurs de T .

    3. En déduire que la détente peut permettre de refroidir le ﬂuide quelle que soit la valeur de la pression ﬁnale P2 , dès lors que la température initiale T1 est inférieure à une température limite TL que l’on  exprimera en fonction de a, b et R. Calculer numériquement TL pour le méthane.

    4. On réalise une détente du méthane et l’on ﬁxe la pression ﬁnale à P2 = 1, 2 bar.

        Calculer la valeur qu’il faut choisir pour la pression initiale P1 si l’on veut atteindre T2 = 120 K   en partant de T1 = 300 K.

Réponses : 2a) ( ∂H/ ∂T )P = CV + R + 2aP/RT²  ; 2b) ( ∂H/∂P )T = b − 2a/RT ; 3) TL = 1289 K : 4) P1 = 450 bar
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