Notions de mécanique des fluides en vue de leur application au domaine de l’environnement
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Chapitre I :
Introduction à la mécanique des fluides

Objectifs du cours :
L’appellation très générale ‘d’environnement’ recouvre en fait une multiplicité de problèmes concrets dont le traitement nécessite de prévoir l’évolution temporelle de quantités scalaires ou vectorielles. Ces quantités peuvent être des champs de vent tridimensionnels, des champs de concentration en contaminants (qui peuvent être gazeux ou particulaires), des flux de chaleur ou de matière,... dont la variation au cours du temps est en grande partie due à la capacité des deux enveloppes fluides de la planète (l’atmosphère, d’une part, et les océans, rivières et lacs, d’autre part) à se mettre en mouvement sous l’effet des contraintes exercées sur elles. La prédiction de ces mouvements est l’objet de la ‘mécanique des fluides’. Dans ce cours, on s’attachera à faire comprendre les processus physiques intervenant en mécanique des fluides en évitant (dans la mesure du possible) de recourir à un formalisme mathématique trop complexe. On s’efforcera également de donner des exemples concrets d’application aux différents domaines de l’environnement. 
I Définitions et rappels
1-  notion de fluide, de particule fluide

a)  Définition : 

Les fluides (liquides et gaz) se distinguent des solides par l’absence d’ordre à longue portée. Les conditions de densité et/ou de température empêchent les forces inter particulaires d’imposer un tel ordre. Par conséquent :

· les fluides sont des milieux isotropes

· les molécules peuvent migrer (diffusion)

· les fluides n’ont pas de forme propre



Question 1: Quelles sont les principales différences entre les caractéristiques microscopiques et macroscopiques des liquides et les gaz ?

b)  Hétérogénéité d’un fluide ; particule fluide 




On vient de voir que, dans le cas des fluides, il y a absence d’ordre à longue portée. Ceci se traduit par une hétérogénéité spatiale des grandeurs caractéristiques des fluides. Ces grandeurs peuvent être de natures très diverses : pression, température, masse volumique, vitesse, concentrations, ...




Pour pallier cette difficulté, on raisonne souvent sur des « particules fluides », qui sont des particules de fluide suffisamment petites pour pouvoir être considérées comme homogènes, mais suffisamment grandes pour contenir un très grand nombre de particules (molécules, ...) individuelles. 

L’un des principaux buts de la mécanique des fluides est de prédire l’évolution temporelle des champs de caractéristiques associées à l’ensemble de toutes les particules constituant le système fluide étudié.

2- Rappel sur quelques outils mathématiques utilisés dans le cours
a) Travail et puissance d’une force. Définition, exemple : travail du poids lors d’un déplacement quelconque

b) Développement limité d’une fonction au voisinage d’un point (exemple du calcul de l’incrémentation de la position d’un objet mobile sur un axe en fonction de la vitesse instantanée, puis généralisation)
c) Outils utilisés pour quantifier la variabilité spatiale des champs scalaires ou vectoriels (définition de ces champs et exemples). Opérateurs gradient (définition, lois de Fick et de Fourier), divergence (application au calcul du ‘taux d’échauffement’ d’une couche d’atmosphère contenant un composé absorbant les rayonnements solaire ou tellurique ou, au contraire, une source de rayonnement), laplacien (on verra plus tard l’exemple des forces de frottement visqueux appliquées à une particule fluide), rotationnel. Circulation et flux d’un champ de vecteur. Théorèmes de Stokes et d’Ostrogradski 

II. Les deux approches possibles d’un problème de mécanique des fluides

1-  Approche lagrangienne et approche eulérienne

Les lois de la mécanique classique permettent de prédire l’évolution dans le temps des caractéristiques (position, vitesse, accélération,...) d’objets matériels. La vérification expérimentale de ces prédictions suppose que l’on soit capable de suivre, avec les instruments de mesure appropriés, ces objets dans leur mouvement. Du fait du très grand nombre de particules fluides concernées, une telle approche n’est pas envisageable dans le cas de l’étude des fluides. On préfère alors utiliser une approche eulérienne qui consiste à utiliser des instruments de mesure fixes qui ne suivent pas une particule individuelle mais voit défiler la succession des particules qui sont amenées, au cours de leur mouvement, à passer devant eux.


2- Dérivée particulaire

Le problème que pose l’approche eulérienne est le suivant : les lois de la mécanique (lois de conservation, ...) ne sont valables que pour des systèmes individualisés étudiés selon une approche lagrangienne. Comment, dans ces conditions, peut-on relier les grandeurs mesurées par des appareils fixes (approche eulérienne) à celles que l’on mesurerait si l’on suivait les particules dans leur mouvement ? Pour répondre à cette question, prenons un exemple : si un anémomètre fixe mesure une vitesse constante en un point M d’un fluide en écoulement, cela ne signifie pas que les particules fluides passant par ce point ont une accélération nulle, mais simplement qu’elles ont toutes la même vitesse lorsqu’elles passent au niveau de M. Pour calculer l’accélération d’une particule, il faut imaginer qu’on peut la suivre dans son mouvement pendant une durée dt à partir de l’instant t où elles se trouvait en M. Par définition, cette accélération a est alors donnée par :




La dérivation


, pouvant également être notée

, est parfois appelée dérivée particulaire pour bien montrer qu’elle correspond à une particule individuelle suivie dans son mouvement.

Exercice (sera vu en TD) : En projetant l’équation ci-dessus sur l’axe des x, montrer que la dérivée particulaire peut se mettre sous la forme




Questions : Quelle est la signification physique de chacun des deux termes intervenant dans le second membre de l’égalité précédente ? Imaginer, dans le domaine de l’environnement, des exemples concrets de situations pour lesquelles la mesure locale et la mesure lagrangienne diffèrent. Si l’on souhaite quantifier l’exposition d’une personne à un composé dangereux quelle est, a priori, la mesure la plus intéressante? Pour modéliser l’évolution temporelle de cette concentration sur quel type de grandeur travaille-t-on en priorité?

Exemple d’application numérique: Durant l’automne, un navire se trouvant dans l’hémisphère nord remonte le long d’un méridien à la vitesse de 36 km/h A son bord, on suit régulièrement l’évolution de la température en fonction du temps. A un endroit où la valeur absolue de la composante méridienne du gradient de température est de 10-2 °C.km-1, il croise un autre navire, arrêté, faisant le même type de mesure que lui. Expliquer pour quelle raison physique les deux mesures ne sont pas identiques puis comparer quantitativement les résultats des deux séries de mesure.

III. Forces s’exerçant sur une particule fluide

1- Inventaire des forces :

a. Remarque préliminaire: si le référentiel n’est pas galiléen (terrestre, par exemple), il faudra ajouter aux forces réellement exercées, et listées ci-dessous, les forces d’inertie d’entraînement et de Coriolis.

b. Forces à distance (poids, réparti en volume)

c. Forces intérieures de contact (frottements internes)

d. Forces de contact entre particules fluides adjacentes.
Une particule fluide immergée au sein d’un fluide en mouvement est soumise à des contraintes de la part de « l’extérieur » (Fig.I1). Par exemple, la contrainte exercée sur la surface ABCD peut se décomposer en une composante normale (pression, p) et une composante tangentielle, notée . Cette dernière peut être interprétée comme la tendance du milieu extérieur à entraîner la particule dans son mouvement. Elle traduit une sorte d’adhérence due aux forces dites de viscosité. 
Question 2 : Quelles sont les unités légale et usuelles servant à exprimer les contraintes ? Quelle est la dimension d’une pression ? 
e. Généralisation : tenseur des contraintes : 

Si l’on repère l’espace au moyen de trois axes (x,y,z), on peut exprimer les trois composantes (selon les axes) de la contrainte exercée sur chacune des trois surfaces qui seraient successivement choisies  perpendiculaires à ces trois axes.

Exemple : soit la surface perpendiculaire à l’axe des x. La contrainte exercée sur elle a pour composantes : Txx, Txy, Txz (le premier indice correspond à la direction perpendiculaire à la surface). En tout, on peut donc définir 9 composantes de contraintes qui définissent le « tenseur » des contraintes :
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Questions: 
Que représentent les éléments diagonaux du tenseur ci-dessus?
A quelle condition le tenseur peut-il être symétrique par rapport à la diagonale?  
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	Fig.I1 : Illustration des contraintes exercées sur une particule fluide par le milieu extérieur


Questions : 

Quelles hypothèses simplificatrices ont été utilisées pour tracer le schéma de la figure ci-dessus?
Dans le cas d’un fluide au repos (on est alors dans le cadre de la ‘statique des fluides’), déterminer la variation de pression observée lorsque l’on passe d’un point du fluide à un autre (On fera d’abord le bilan des forces exercées sur la particule fluide représentée sur la Fig. I1). 

Que devient cette expression dans le cas d’un fluide incompressible (liquide par exemple) ? 

AN : 1- Calculer la pression subie par un plongeur se trouvant à 30 mètres sous la surface de la mer. 2- Calculer la différence de pression entre le pied et le sommet d’un immeuble de 30 mètres.  
Conséquence : Manomètre à liquide, unités usuelles de pression (hauteur de colonne fluide, …)
2- Expression des contraintes tangentielles : viscosité
Tous les fluides réels présentent une certaine viscosité, en ce sens que toute variation de vitesse en leur sein (on parle de gradient de vitesse) se traduit par l’apparition de forces internes de friction tendant à provoquer une homogénéisation des vitesses. Dans le cas où l’on néglige ces phénomènes, le fluide est qualifié de parfait. Cependant cette simplification ne pourra jamais être adoptée au voisinage d’une paroi où les forces de viscosité imposent au fluide d’avoir la même vitesse que celle-ci (condition de non glissement).

a) Écoulement de Couette, coefficient de viscosité (ou viscosité dynamique)
Considérons l’écoulement d’un fluide visqueux entre deux plaques planes et parallèles dont les dimensions transversales sont très supérieures à la distance, h, qui les sépare (Fig. I2). L’une de ces plaques est maintenue fixe, alors que l’autre est entraînée à vitesse constante (U) sous l’effet d’une force par unité de surface (donc une contrainte) notée . Pour certains fluides (air, eau, ...), le profil de vitesse est linéaire, et la force exercée est proportionnelle au gradient de la vitesse.

u(z) = Uz/h et  = constante U/h

Un fluide présentant un tel comportement est qualifié de newtonien. L’hypothèse de Newton consiste en la généralisation suivante :




La constante  est appelée coefficient de viscosité du fluide. Il dépend fortement de la température, et dans une moindre mesure, de la pression du fluide.

Remarque 1 : en général, la viscosité augmente avec la température dans le cas des gaz, mais diminue dans le cas des liquides.

Remarque 2: il ne faut pas confondre coefficient de viscosité ( et viscosité cinématique (ou dynamique), notée , et définie par




Comme on le verra plus tard en démontrant les équations de Navier-Stokes, cette dernière rend mieux compte que µ de l’impact de la viscosité d’un fluide sur son mouvement. Attention aux idées reçues, à 20°C, sous la pression normale, la viscosité dynamique de l’air sec (15.1 E-6 SI) est plus importante que celle de l’eau (1.008 E-6 SI).

Question : quelles sont les dimensions de  et de ?
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	Fig. I2 : Schéma de l’expérience de Couette


b) Interprétation moléculaire de la viscosité

Remarque qualitative : la contrainte est due à un échange de molécules plus ou moins rapides entre deux particules fluides adjacentes et de vitesses moyennes différentes.

Remarque sur les unités : Une contrainte s’exprime en Pa (donc en N/m2), ce qui peut aussi se mettre sous la forme (kg.m.s-1)/(m2.s). Elle peut donc être interprétée comme un flux de quantité de mouvement à travers la surface de séparation entre les deux particules fluides.
c) Remarque complémentaire : viscosité et couche limite, écoulement établi et écoulement non établi
Lorsque l’on injecte dans une conduite cylindrique un fluide dont le profil de vitesse est initialement uniforme (Fig.I3), l’existence de forces de viscosité nécessairement très importantes (pourquoi ?) au niveau des parois se traduit par le développement progressif d’une couche limite (régime non établi). Lorsque le profil de vitesse devient indépendant de l’abscisse de la section étudiée, le régime est dit établi.
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	Fig.I3 : Évolution schématique du profil de vitesse de l’écoulement fluide à l’entrée d’une conduite.




	Corps
	Température (°C)
	Viscosité (Pa.s)
	
	Fluide de la vie courante

	Fluide parfaitement défini
	
	bitume
	20
	108

	hydrogène
	0
	8,4 × 10-6
	
	mélasse
	20
	102

	
	50
	9,3 × 10-6
	
	miel
	20
	101

	
	100
	10,3 × 10-6
	
	huile de ricin
	20
	3,4

	air
	0
	17,1 × 10-6
	
	huile d'olive
	20
	de 0,81 à 1

	
	50
	19,4 × 10-6
	
	café crème
	20
	2-Oct

	
	100
	22,0 × 10-6
	
	sang
	37
	de 4 à 25 (généralement 6)× 10-3

	xénon
	0
	21,2 × 10-6
	
	jus de raisin
	20
	de 2 à 5 × 10-3

	eau
	0
	1,793 × 10-3
	
	pétrole
	20
	0,65 × 10-3

	
	20
	1,002 × 10-3
	
	Viscosité de corps à la pression atmosphérique

	
	50
	0,5470 × 10-3
	
	
	
	

	
	100
	0,2818 × 10-3
	
	
	
	

	glace
	-13
	15 × 1012
	
	
	
	

	mercure
	20
	1,526 × 10-3
	
	
	
	

	acétone
	
	0,326 × 10-3
	
	
	
	

	éthanol
	
	1,20 × 10-3
	
	
	
	

	méthanol
	
	0,59 × 10-3
	
	
	
	

	benzène
	
	0,64 × 10-3
	
	
	
	

	nitrobenzène
	
	2,0 × 10-3
	
	
	
	

	glycérine
	
	1,49
	
	
	
	


Chapitre 2 : Lois générales de la dynamique des fluides dans le cas des écoulements permanents

Définitions et remarques préliminaires

Un écoulement est qualifié de permanent si toutes ses grandeurs caractéristiques locales (p, T, U, ,...) sont indépendantes du temps. 

Dans ces conditions, toutes les particules fluides se succédant en un point quelconque de l’écoulement ont les mêmes caractéristiques, et en particulier le même vecteur vitesse. Il est alors possible de définir la trajectoire des particules fluides passant par ce point. Une telle trajectoire est aussi appelée ‘ligne de courant’.
Les écoulements stationnaires sont assez fréquents dans les applications techniques (écoulements à débit constant dans les pipelines, gaines de ventilation...), mais beaucoup moins dans les milieux naturels (notamment dans l’atmosphère).
I Équation de conservation de la masse (équation de continuité). Débits

1-  Filet fluide

Soit une ligne de courant passant par un point M1 (Fig. II1), et un élément de surface d1 perpendiculaire à celle-ci et passant par M1. L’ensemble des lignes de courant s’appuyant sur le contour C1 de d1 délimite un tube de courant, aussi appelé filet fluide.
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	Fig II.1


2-  Conservation de la masse dans le cas d’un filet fluide

Exercice : En écrivant que la masse de fluide se trouvant à l’instant t dans la portion de tube de courant comprise entre d1(t,M1) et d2(t,M2), est la même que celle se trouvant à l’instant t+dt entre d1(t+dt,M’1) et d2(t+dt,M’2), puis en utilisant le fait que l’écoulement est stationnaire, montrer que :





v1dtd1 =v2dtd2


(II.1)

Cette égalité signifie simplement que la masse traversant d1 pendant dt est la même que celle traversant d2 pendant la même durée.

Le produit dqm = vdest appelé débit massique, c’est une constante pour le filet fluide.

Remarque : En général le débit volumique défini par dqv = dqm/ dépend du point où l’on se place et n’est pas une caractéristique de l’écoulement. Cependant dans le cas des écoulements fluides isovolumes (pour lesquels, par définition,  est uniforme), le débit volumique du filet fluide est une constante. Dans ce dernier cas, la vitesse dans une section du filet fluide est inversement proportionnelle à l’aire de la section.

3- Extension au cas d’une canalisation régulière

Une canalisation est dite régulière si elle est peu courbée et ne présente que des variations progressives de section. Il est alors facile de vérifier que, par intégration à la section de la canalisation, l’on obtient :







(II.2)

4-  Forme locale de l’équation locale de continuité

Si l’on suit dans son mouvement (point de vue lagrangien) un domaine fluide D, la conservation de sa masse s’écrit (la deuxième égalité est à admettre):



 


(II.3)

d’où, 









(II.4)

En régime stationnaire, cette équation se simplifie en 
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(II.5)
Exercice : 

1)  Que représente le produit se trouvant sous l’opérateur divergence?
2)  Compte tenu de la signification physique de l’opérateur divergence, interpréter l’équation (II.5) 

3)  Comparer ce résultat à celui obtenu précédemment pour un filet fluide dans le cas de l’écoulement stationnaire.
4)  Que devient l’équation de continuité si le fluide est incompressible? (on développera l’équation II.5 avant de la simplifier).
II Équation dite de « l’impulsion » (ou des quantités de mouvement)

1)  Énoncé du principe 

Quelle que soit la particule fluide que l’on suit dans son mouvement, on peut écrire que



d(mU)/dt =  (actions mécaniques extérieures exercées sur la particule)
(II.6)

2) Expression massique des actions extérieures exercées sur une particule fluide



a) Forces de pesanteur : g


b) Forces de contact

- Les forces de pression

La résultante selon x des forces de pression (Fig. II.2) est la suivante

Fx = (p(x) - p(x+dx))dydz 



(II.7)

d’où, par unité de masse








(II.8)

En généralisant ce résultat on obtient finalement











(II.9)
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	Fig. II.2 : Représentation des forces de pression exercées, selon x, sur une particule fluide.


- Forces de viscosité par unité de masse

Prenons l’exemple d’un fluide newtonien, incompressible, dont les caractéristiques de l’écoulement ne dépendent que de z (homogénéité horizontale) (Fig.II.3)

La composante selon x de la résultante des forces de viscosité appliquées à la particule est :



 

(II.10)

Soit, après transformation, et pour une unité de masse :








(II.11)

En généralisant au cas où il n’y a pas homogénéité de l’écoulement (mais où le fluide est toujours incompressible pour ne pas avoir à prendre en compte la viscosité de volume), cette expression devient :








(II.12)
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	Fig. II.3 : 


3)  Equations de Navier Stokes (pour une unité de masse de fluide visqueux incompressible)

En utilisant les expressions trouvées ci-dessus pour les différentes actions extérieures, (II.6) devient :

                     1                  2                      3                    4                       5










(II.13)




Dans ces équations, dites de Navier-Stokes, la signification des différents termes est la suivante :

Le terme 1 traduit l’effet de la pesanteur sur l’écoulement. Seule sa composante verticale n’est pas nulle.

Le terme 2 correspond à l’effet du champ de pression sur le mouvement de la particule

Le terme 3 traduit l’action des forces de viscosité. 

Le terme 4 est la variation locale de vitesse que mesurerait un anémomètre fixe devant lequel passerait la particule

Le terme 5 est un terme d’advection

De nombreux exemples d’applications de ces équations seront étudiés en TD

III Équation de l’énergie pour un écoulement stationnaire. Équation de Bernouilli

1)  Établissement de l’équation dans le cas d’un filet fluide

Considérons le système S, constitué par la portion de filet fluide comprise à l’instant t entre les deux sections d1 et d2, d’abscisses curvilignes respectives s1 et s2 (Fig. II.4). 
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	Fig. II.4 :


Le théorème de l’énergie cinétique appliqué à ce système permet d’écrire :





(II.14)

où 

et

sont respectivement les puissances des actions extérieures et intérieures exercées sur le système.

Exercice :

1) Montrer que le premier membre de II.14 peut s’écrire :






(II.15)

2)  Les actions extérieures exercées sur S sont le poids et les forces de pression.

a) En exprimant d’abord la puissance du poids d’une tranche de filet fluide d’épaisseur ds et de vitesse V, puis en intégrant à S, montrer que :

 P(poids(S, t) = - dqm g (z2 - z1)



(II.16)

b)  En utilisant le fait que la résultante des forces de pression exercées sur la tranche de filet fluide d’épaisseur ds peut se mettre sous la forme  - gradp.d.ds, montrer que :





(II.17)

En notant dPf,1(2, la puissance des forces de frottement exercées entre s1 et s2, la combinaison des équations II.14, II.15, II.16 et II.17 conduit à l’équation de Bernouilli :





(II.18)

2-  Signification physique du théorème de Bernouilli : charge massique en un point d’un écoulement ; perte de charge massique entre deux points d’un filet fluide

Chacune des quantités entre crochets est composée de trois termes ayant la dimension d’une énergie par unité de masse. Le premier est l’énergie cinétique, le second l’énergie potentielle de pesanteur et le troisième correspond à l’énergie acquise du fait du travail des forces de pression entre le point de départ, d’abscisse s0, et le point où se trouve actuellement la particule. La somme des ces énergies constitue l’énergie mécanique totale massique du fluide. Elle est aussi appelée charge massique du fluide et n’est définie qu’à une constante près qui dépend du choix de s0 et de l’origine de l’axe vertical

En l’absence de machines génératrices (ou réceptrices), la charge massique du fluide ne peut que diminuer au cours de l’écoulement du fait du travail nécessairement résistant (dPf,1(2<0) des forces de friction.

Question : Que devient (II.18) dans le cas d’un fluide parfait et incompressible ?

IV- Exemples d’application (TD: liste non exhaustive)


Écoulement de Poiseuille, loi de Hagen-Poiseuille (viscosimétrie)


Principe du tube de Pitot


Couche limite laminaire au-dessus d’une plaque plane

Cavitation

Chapitre 3


Écoulements dans les conduites. Pertes de charge régulières

Comme dans le domaine de l’environnement, les fluides rencontrés peuvent en général être considérés comme incompressibles on se limitera à l’étude de ce cas. Pour des raisons diverses, on peut être amené à faire circuler le fluide dans une ‘canalisation’. C’est par exemple le cas lorsque l’on souhaite faire circuler un fluide pour le distribuer en différents points (distribution d’eau, ventilation…), ou en prélever des échantillons pour déterminer sa qualité. 

Dans ce chapitre, on supposera également que le fluide s’écoule dans une conduite cylindrique de section circulaire et suffisamment longue pour pouvoir considérer que l’écoulement y est « établi ».
I. Charge, perte de charge

Il est facile, à partir de (II.18), de déterminer l’expression du théorème de Bernouilli relative à l’unité de poids :






(III.1)

Chaque terme entre crochets est homogène à une longueur, par conséquent la quantité (toujours positive)







(III.2)

représente la perte d’énergie mécanique totale pour une unité de pois de fluide passant de M1 en M2. Cette quantité est exprimée en hauteur de fluide.

Exercice : Montrer que pour une conduite cylindrique et un fluide incompressible en écoulement permanent, les deux relations précédentes conduisent à

p1,g - p2,g = ght



(III.3)

dans laquelle pg représente la pression motrice définie par






pg = p + gz




(III.4)

Remarques : 
- C’est la pression motrice qui intervient dans le calcul des pertes de charge

- La pression motrice est constante dans un plan perpendiculaire à l’écoulement (voir pb sur l’écoulement de Poiseuille)

II Calcul des pertes de charge dans une conduite cylindrique (écoulement isovolume établi)

1)  Notions d’analyse dimensionnelle

De nombreux phénomènes physiques sont difficilement abordables par le biais d’équations mathématiques dont le traitement nécessite des simplifications souvent peu réalistes. On cherche alors de manière empirique les lois physiques régissant le phénomène. Soit f cette loi cherchée, on suppose qu’elle dépend de certains paramètres indépendants : a, b, c...

On fait ensuite l’hypothèse (à vérifier ensuite expérimentalement) que f peut se mettre sous la forme














(III.5)

Dans cette expression j = 1, 2, 3... et les coefficients Aj sont adimensionnels. Le fait que chaque terme de la somme doit avoir la même dimension que f, impose des contraintes sur les valeurs des exposants j, j, ...

2)  Application au calcul des pertes de charge

On va chercher à exprimer la perte de charge par unité de longueur de conduite et par unité de volume de fluide, c’est à dire :












(III.6)

Question : Quelle est la dimension de cette quantité ?

On suppose que ces pertes dépendent des caractéristiques de la conduite (diamètre D, hauteur moyenne des aspérités de la paroi interne, ), du fluide (masse volumique , viscosité ) et de son écoulement (vitesse moyenne, Vm).

On écrit ensuite que les pertes de charges linéïques peuvent se mettre sous la forme III.5






(III.7)

Question : Quelles équations doivent vérifier les exposants apparaissant dans cette équation pour qu’elle soit homogène ? Les résoudre en conservant j et j comme inconnues, puis montrer que III. 7 se met sous la forme :




(III.8)

On voit apparaître dans cette équation deux nombres adimensionnels : la rugosité relative de la conduite, /D, et l’inverse « du nombre de Reynolds » défini par :
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(III.9)
Remarque importante : Comme on va le voir ci-dessous, ce nombre adimensionnel est très important en mécanique des fluides. On peut remarquer à ce niveau, qu’il peut être interprété comme représentant l’ordre de grandeur du rapport des termes d’advection et visqueux des équations de Navier-Stokes (le vérifier). C'est-à-dire que sa valeur sera d’autant plus petite que les forces de viscosité, qui s’opposent au développement de mouvement ‘spontanés’ au sein du fluide, seront importantes. Au contraire, les écoulements à forts nombres de Reynolds verront se développer en leur sein de tels mouvements auxquels les forces de viscosité seront trop faibles pour s’opposer.
Finalement, III. 8 peut se mettre sous la forme





(III.10)

Le rapport dP/dqv a la dimension d’une pression. C’est ce qu’on appelle la perte de charge.

Cette relation définit le coefficient, de perte de charge linéique rapporté à l’unité de volume de fluide. L’analyse dimensionnelle a permis de montrer que si  existe, il ne doit dépendre que de la rugosité relative de la conduite, et du nombre de Reynolds de l’écoulement.

Ce sont les expériences réalisées par Colebrook qui ont permis de vérifier la validité de III.10. Les résultats obtenus sont ici donnés sous forme d’abaques (voir courbes fournies en fin de poly).
3)  Interprétation des différents types d’écoulement :
On constate que, pour une conduite de rugosité relative donnée, il est possible de définir trois types découlements différents selon la valeur du nombre de Reynolds.

a)  Régime laminaire (Re < 2000)

 est alors indépendant de la rugosité de la conduite, /D. Les effets de la viscosité du fluide sont prépondérants. On peut remarquer que la valeur de  (= 64/Re) est bien celle trouvée lors de la résolution du problème sur l’écoulement de Poiseuille (vu en TD).




b) Régime turbulent (Re >10000)

L est indépendant du nombre de Reynolds, et ne dépend plus que de la rugosité de la conduite (en régime turbulent, le brassage du fluide par la turbulence est très efficace et la viscosité du fluide n’intervient plus. C’est le frottement sur les parois rugueuses qui est prépondérant)




c) Régime turbulent lisse (2000 < Re < 10000)
On est dans une situation de transition entre le régime laminaire et le régime turbulent et  dépend à la fois de Re et de /D. Il faut toutefois mentionner que la précision des courbes expérimentales pour ce domaine de transition n’est pas très bonne. 


4)  Principales différences entre écoulements laminaires et écoulements turbulents

Dans un écoulement laminaire les filets fluides ne se mélangent pas. Les couches fluides glissent les unes par rapport aux autres, et les échanges moléculaires sont les seuls possibles. Ces écoulements se rencontrent peu dans l’industrie et dans l’environnement naturel. En effet, sauf conditions particulières, on a tendance dans l’industrie à utiliser des débits importants (pour un transport efficace de fluide, par exemple) et le glissement entre couches de fluide devient important. Ceci génère des instabilités et le régime devient turbulent. En situation naturelle, on a souvent le même type de conditions (cours d’eau à débit assez fort, couche limite de surface dans l’atmosphère où la rugosité de surface fait apparaître un fort gradient de vitesse d’écoulement qui est source d’instabilité). Dans l’atmosphère, il peut s’ajouter une source d’instabilité « thermique » à la source de turbulence « dynamique » précédente. Définition et intérêt du nombre de Richardson.
Dans le cas des régimes turbulents, les échanges (de quantité de mouvement, de chaleur, ...) sont bien plus efficaces qu’en régime laminaire (exemple de la convection et de ses conséquences en terme de dispersion de polluants). Ceci favorise une relative homogénéisation des grandeurs caractéristiques au sein de l’écoulement turbulent (exemple qualitatif de profil de vitesse d écoulement en conduite cylindrique).
Autre façon de voir le problème :

Pf/Qv a la dimension d’une pression

Pour des pertes de charge régulières :

Pf/Qv= L/D*(1/2U2) = K (1/2U2)

Pour des pertes de charge singulières: On généralise
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Réécrivons le théorème de Bernoulli en le multipliant par 
[P + gz +1/2v2]2-[P + gz +1/2v2]1 =-Pf/Qm =-Pf/Qv = K(1/2v2)
Pour une canalisation (v2=v1), donc: 

P1-P2= g(z2-z1) +K( 1/2v2 )

La pompe doit compenser à la fois la dénivellation et les frottements
La valeur de K inclut les pertes de charges régulières et singulières (s’il y en a)
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Chapitre 4 : 

Notions sur les écoulements en régime non permanent
I- Généralités

1. Commentaires qualitatifs :
A l’occasion de l’étude (en TD) de l’écoulement de Poiseuille, il a été vu que la résolution exacte des équations de Navier-Stokes est possible pour certains écoulements particulièrement simples. Ceci a également nécessité de faire l’hypothèse 1) que le fluide était incompressible, ce qui n’est pas vraiment contraignant pour les fluides impliqués dans les problèmes environnementaux, mais aussi 2) que l’écoulement était permanent. C’est cette dernière hypothèse qui est la plus discutable. En effet, si l’on mesure avec un instrument très sensible et à court temps de réponse une caractéristique quelconque d’un fluide en un point fixe d’un écoulement (mesure eulérienne), on s’aperçoit que la valeur mesurée n’est jamais réellement indépendante du temps. Il existe toujours des fluctuations, d’amplitude plus ou moins importante, autour de la valeur moyenne.
Théoriquement, la plupart des équations de conservation données plus haut dans le cours sont des équations différentielles applicables en tout point de l’atmosphère à des grandeurs instantanées. En admettant qu’elle soit possible, leur résolution (qui nécessite la fourniture de conditions initiales) devrait donc permettre de préciser pour chaque point de l’atmosphère et chaque instant la valeur instantanée des grandeurs caractérisant l’état de l’atmosphère. Cependant, l’expérience montre que les valeurs instantanées évoluent extrêmement rapidement au cours du temps (donc que la fréquence des fluctuations est élevée). En l’état actuel des moyens de calculs, il est inenvisageable de résoudre les équations de l’écoulement avec une résolution temporelle qui permettrait de rendre compte de ces fluctuations. Cela ne présenterait d’ailleurs aucun intérêt. Ce qui est le plus important pour un modélisateur c’est de prévoir l’évolution temporelle (et spatiale) des valeurs moyennes des grandeurs caractérisant l’écoulement.

On peut alors distinguer théoriquement deux types de cas :


- ceux pour lesquels l’existence de fluctuations n’a aucune influence sur l’écoulement moyen. Les équations applicables aux grandeurs moyennes sont donc les mêmes que celles applicables aux grandeurs instantanées. On est alors dans l’approximation des écoulements laminaires (aussi appelés quasi-permanents ou permanents en moyenne). 


- ceux pour lesquels les fluctuations sont suffisamment importantes pour avoir un effet non négligeable (et parfois même prépondérant) sur l’évolution des grandeurs moyennes. On est alors en régime turbulent (ou non-permanent). C’est ce type de situation que l’on considère dans ce chapitre.

2-  Décomposition de Reynolds et règles statistiques
Comme expliqué ci-dessus, l’évolution temporelle d’une caractéristique quelconque (X) du fluide peut être décrite comme étant le résultat de l’évolution relativement lente d’une valeur moyenne à laquelle se superposent des fluctuations rapides. On peut alors écrire (décomposition de Reynolds) :
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Par définition, la moyenne des fluctuations est nulle, et on va devoir caractériser leur amplitude au moyen de grandeurs statistiques plus élaborées (par exemple la variance).

On va voir également ci-dessous que la covariance de deux grandeurs est aussi une notion importante pour comprendre l’influence de la turbulence sur les phénomènes de transport.

3-  Quelques exemples

a) Énergie cinétique par unité de masse, énergie cinétique turbulente
Exprimons la moyenne de l’énergie cinétique (rapportée à l’unité de masse) en un point de l’écoulement :
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(1)

Dans cette expression, le deuxième terme qui ne fait intervenir que les fluctuations (en fait, des variances de fluctuations) est appelé énergie cinétique turbulente (TKE). Ce terme s’ajoute à l’énergie cinétique de l’écoulement moyen. Donc, l’énergie cinétique moyenne de l’écoulement N’EST PAS EGALE à l’énergie cinétique de l’écoulement moyen !

Remarque: Si l’on souhaite prévoir l’évolution temporelle de la TKE en un point de l’écoulement, il faudra prendre en compte l’advection de TKE vers le point considéré, la production par instabilité thermique (qui peut aussi être une dissipation en cas de stabilité thermique), la production par instabilité dynamique et la dissipation par les forces de viscosité.
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(2)

Exemple d’évolution diurne de la TKE en un point de la CLA (figure 2.8 de Stull, p 46)

b) Signification physique de la covariance
Soit le produit d’une concentration par une des composantes de la vitesse instantanée. Le produit de ces deux quantités est le flux du composé à travers une surface perpendiculaire à la direction de la composante choisie pour la vitesse:

Par exemple,
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(3), 
représente le flux vertical du composé.

On constate que ce flux est dû en partie à l’écoulement moyen qui transporte la concentration moyenne (premier terme du membre de droite de l’équation 7), mais aussi aux fluctuations simultanées de la concentration et de la composante verticale de la vitesse (deuxième terme). Le terme  
[image: image18.wmf]cw

est appelé flux turbulent. Il s’exprime en g.m-2.s-1 et peut être très supérieur au transport par l’écoulement moyen. 

c) Contraintes de Reynolds et généralisation :

Considérons par exemple une autre covariance : 
[image: image19.wmf]uw


Du point de vue des dimensions, on peut remarquer que le produit  
[image: image20.wmf]uw

   s’exprime en 

kg.m-1.s-2. On peut vérifier facilement qu’il est homogène à une contrainte (N/m2). Par ailleurs, son unité est aussi celle d’un flux de quantité de mouvement (kg.m-1.s-1/m2/s). 

Au final, 
[image: image21.wmf]uw

qui pourrait s’écrire 
[image: image22.wmf]w

u

)

(

1

r

r

, est donc un flux cinématique vertical de quantité de mouvement. On a vu qu’en multipliant 
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 par  on obtient une contrainte qui est appelée contrainte de Reynolds :
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(4)
(NB : le signe – est dû au fait que la contrainte est dans le sens inverse des flux. Voir aussi la remarque 1 ci-dessous)
De la même façon, on aurait :
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(5).
Une autre covariance, telle que 
[image: image26.wmf]w
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 peut également s’interpréter comme un flux cinématique vertical. Il s’agit, cette fois, d’un flux de chaleur. 

Remarque 1 : malgré son aspect apparemment chaotique, il y a un certain ‘ordre’ dans la turbulence. En effet, le flux de chaleur turbulent est toujours dirigé dans le même sens (des régions excédentaires en chaleur vers celle qui le sont moins). Pour le montrer, supposons que l’on soit à l’altitude z dans une région de l’espace où le gradient vertical de température moyenne est négatif. Une fluctuation positive de la composante verticale de la vitesse (w) va amener vers le niveau z une particule qui était à un niveau inférieur, donc à une température plus haute, ce qui entraine l’apparition d’une fluctuation de température () négative. Donc le produit 
[image: image27.wmf]w
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 sera négatif, c'est-à-dire vers le bas et donc dans le même sens que le gradient de température moyenne ou dans le sens inverse du flux de chaleur turbulent. On pourrait facilement vérifier que ce raisonnement reste valable si la fluctuation initiale de la composante verticale vitesse était négative (température serait alors négative et le produit 
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 toujours  négatif)
Remarque 2: on avait déjà vu que les contraintes visqueuses pouvaient s’interpréter comme des flux de quantités de mouvement dont l’origine était la diffusion moléculaire. Avec les flux ci-dessus (contraintes de Reynolds), on a à faire à des flux d’origine turbulente qui sont en général bien supérieurs aux flux moléculaires.

II Effet des fluctuations sur l’écoulement moyen

On a vu que la recherche d’une solution exacte (Full Turbulence Simulation, FTS) aux équations applicables dans la CLA n’était pas utile, et de toute façon inenvisageable compte tenu des moyens actuels de calcul. On peut alors chercher à trouver au moins les solutions qui rendent compte des plus gros tourbillons (Large eddy simulation, LES). A l’heure actuelle, cette méthode constitue plutôt un outil de recherche. On se contente en général de chercher l’expression des équations de conservation relatives aux grandeurs moyennes qui sont plus faciles à résoudre, au moins numériquement.

1. Équation de conservation de la masse d’un fluide incompressible
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(6)

Du fait de la linéarité de l’opérateur divergence, on obtient immédiatement :





[image: image31.wmf]0

)

(

=

+

=

u

div

U

div

U

div

r

r








(7)

En moyennant cette égalité, on a :






[image: image32.wmf]0

)

(

=

=

U

div

U

div

r









(8),

Ce qui reporté dans (7) donne :
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(9).

En conclusion, l’équation de continuité s’écrit de la même manière pour les grandeurs instantanées (equ. 7), les valeurs moyennes (equ. 8)  et les fluctuations (equ. 9)

2. Équation de conservation de la chaleur

Exercice : 

1) Donner l’expression du terme d’advection qui intervient dans l’équation de la chaleur

2) Si l’on ne considère, pour simplifier, que le cas où il n’y a ni changement d’état de l’eau ni absorption de rayonnement, quelle est la forme que prend l’équation de conservation pour la température potentielle moyenne ? 

3) Commenter

Réponse :

notation :
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Le terme d’advection pour les grandeurs instantanées s’écrit :
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(10)

En ajoutant l’équation de continuité pour les grandeurs instantanées, cela donne :
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En utilisant la décomposition de Reynolds, en moyennant et en utilisant à nouveau l’équation de continuité on obtient finalement :
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Soit aussi :
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(13)

La somme des trois premiers termes correspond au transport de chaleur par le vent moyen vers un point donné de l’espace. Le quatrième quantifie l’accumulation, dans un élément de volume entourant ce point, d’une quantité de chaleur liée au fait que le flux turbulent rentrant n’est pas forcément  égal au flux turbulent sortant (c’est ce que traduit une divergence non nulle).

Si on reporte l’équation (13) dans l’équation de conservation de la chaleur, on obtient
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(14)

Cette expression montre que l’équation de conservation de la chaleur écrite pour les grandeurs moyennes fait intervenir un terme d’origine purement turbulente, c'est-à-dire que la turbulence agit sur l’écoulement moyen. Il est à noter, une fois de plus, que le transfert de chaleur turbulent est bien souvent très supérieur au transfert par diffusion moléculaire (le premier terme du membre de droite dans (14)) qui peut alors être négligé.



- Conservation de l’impulsion (Navier-Stokes)

Considérons l’équation de Navier Stokes selon la direction x (horizontale). Par une démonstration similaire à celle utilisée pour transformer le terme d’advection dans l’équation de conservation de la chaleur, on obtient :
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(15)

Une fois de plus, on constate que la turbulence a un effet sur l’écoulement moyen par l’intermédiaire du terme en divergence.

Conclusion : problème de fermeture des équations

III. Le ‘problème de fermeture’ et quelques exemples de tentatives de résolution

1- Position du problème

Si l’on considère les 3 équations de Navier-Stokes (données par (15) et les deux autres équations similaires sur y et z), on constate qu’elles contiennent plus d’inconnues qu’il y a d’équations disponibles. Le système admet alors plus d’une solution, on dit qu’il est ‘non fermé’. Pour fermer le système, il faudrait que les termes en div puissent être exprimés de manière exacte en fonction des grandeurs moyennes qui seraient alors les seules inconnues. Ceci n’est pas possible, toute tentative pour trouver de telles expressions fait apparaître de nouvelles inconnues, qu’il faut à leur tour exprimer en fonction des grandeurs moyennes, et ainsi de suite. On ne pourra résoudre les équations que de manière approchée et en faisant certaines hypothèses simplificatrices. On va présenter ci-après deux exemples de tentatives de fermeture.

2- Théorie du gradient (théorie ‘en K’)

Cette théorie repose sur une analogie supposée entre le transport turbulent et le transport moléculaire.

Dans ce dernier cas, on a vu que les contraintes tangentielles peuvent s’exprimer, par exemple,  sous la forme :
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(Remarques : 



- le signe – traduit le fait que les échanges se font dans le sens inverse des gradients



- ici le flux de quantité de mouvement représenté est celui de la composante selon x transportée dans la direction z)

Pour les échanges turbulents on définit donc un coefficient d’échange turbulent K, équivalent de , par l’équation :
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Dans le cas examiné ici on a finalement le flux cinématique :
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C'est-à-dire que le flux cinématique turbulent de quantité de mouvement selon x et transporté selon l’axe z a été exprimé en fonction des grandeurs moyennes de l’écoulement (ici 
[image: image44.wmf]U

).

On peut exprimer les autres flux turbulents de la même façon. Par exemple :

Pour le flux de chaleur selon l’axe vertical :
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Pour le flux d’humidité :
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Remarques: 



- par définition 
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- on considère souvent que le transport turbulent est 1) isotrope, donc que K est le même dans toutes les directions et 2) indépendant de l’endroit où l’on se trouve dans l’atmosphère. C’est cette deuxième hypothèse qui est la plus contraignante et qui conduit parfois à des résultats absurdes. Par exemple, si l’on considère le transfert vertical de chaleur dans la couche de mélange convective. On sait que ce transfert est très efficace alors que le gradient vertical de température potentielle moyenne est nul. Le simple examen de l’équation (19) imposerait alors de considérer que Kh est infini, ce qui n’a pas de sens physique. La théorie du gradient est alors mise en défaut, ce qui explique que d’autres théories aient été proposées.

3- Théorie de la longueur de mélange (théorie de Prandtl)




Définition

On considère dans cette théorie que les fluctuations observées en un point d’altitude z sont dues à l’arrivée de ‘bulles’ d’air (‘blobs’ en anglais) en provenance d’autres endroits de l’atmosphère et qui ne se mélangent avec le milieu ambiant qu’après avoir parcouru une certaine distance, notée ‘l’ et appelée ‘longueur de mélange de Prandtl’, qui est l’analogue turbulent du libre parcours moyen moléculaire. 

Par exemple la fluctuation de la composante horizontale de la vitesse U sera, à l’altitude z :
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Ce qui, au premier ordre, donne :
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Une écriture similaire de la fluctuation w, associée à l’hypothèse d’isotropie de la turbulence, conduit immédiatement à l’expression du flux turbulent :
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En posant :
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(23) devient alors :
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Qui par analogie avec (18) donne finalement :
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On constate alors que le coefficient de diffusion turbulent, contrairement à l’hypothèse de base de la théorie en K, n’est plus indépendant de la position. Il sera plus important aux endroits où les gradients de vitesse moyenne sont les plus importants (notamment dans la couche limite de surface, ou CLS).
Application : profil de vitesse dans la CLS

On peut même envisager que la valeur de lm dépende de la position. Par exemple, quand on se rapproche de la surface, il est possible de considérer que celle-ci représente un obstacle matériel au développement des ‘tourbillons’ près du sol et que leur ‘taille’ est alors de l’ordre de z. En d’autres termes lm doit être proportionnel à z, et donc de la forme :







lm = kz






(27),

Si l’on fait de plus l’hypothèse que, dans la CLS, le flux turbulent est indépendant de z et égal à sa valeur (négative, dire pourquoi) à la surface :
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On obtient immédiatement (à partir de (23)):
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Par intégration, cette équation conduit à l’équation de von Karman :
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Dans laquelle z0 représente la ‘hauteur de rugosité’ de la surface (voir tableau des valeurs caractéristiques de différents types de surfaces naturelles).

En pratique, c’est la mesure de la composante horizontale moyenne du vent à différentes hauteurs qui permet de déterminer les valeurs de u* et z0 (voir exercice en TD).
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