Suites
DM ex 68 p.57
I. Rappels sur les suites

1) Définition

Une suite numérique est une fonction u dans laquelle la variable n ne prend que des valeurs entières positives.

L’image de n par u, u(n), est aussi notée un.

un est appelé terme général de la suite, ou encore terme d’indice n.

n est l’indice du terme un.

La suite est noté (un)n  SYMBOL 206 \f"Symbol"  SYMBOL 201 \f "Cmath", (un) ou u.

un et un+1 sont deux termes consécutifs de la suite.

Il y a différentes façons de définir une suite :

· par la donnée de son terme général, sous forme fonctionnelle, par exemple, 

un = EQ \s\do(\L(  ))
 - 5n + 2.

· par la donnée de son premier terme et d’une relation de récurrence ( un+1 est donné en fonction de un), par exemple : 
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2) Sens de variation

Une suite (un) est croissante ( respectivement décroissante ) si et seulement si  pour EQ  \L(tout n  SYMBOL 201 \f "Cmath",)
 un+1 ≥ un ( respectivement un+1 ≤ un ).

Une suite (un) est monotone si elle est soit croissante, soit décroissante.

Méthodes

Pour étudier le sens de variation d’une suite, on peut :

(1) Etudier le signe un+1 – un.

(2) Si un = f(n), on étudie le sens de variation de la fonction f.

(3) Si un est une suite dont tous les termes sont positifs, on compare 
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Exemples:

Etudier le sens de variations des suites suivantes :

1) 
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2) 
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3) 
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Ex 10-11-12-13 p.53
3) Suites arithmétiques

a) Définition

Une suite (un) est arithmétique s’il existe un nombre réel r tel que, pour tout nombre entier naturel n, on ait :

un+1 = un + r.
r est appelé la raison de la suite arithmétique.

b) Propriétés

Le terme général d’une suite arithmétique de premier terme u0 et de raison r est : 

un = u0 + nr.

Quels que soient les entiers naturels p et q, on a : up = uq + ( p - q ) r

c) Somme de n termes consécutifs

Si a est le premier terme et d le dernier terme, la somme des n termes consécutifs de a à d d’une suite arithmétique est :

S= 
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Il en résulte que 1 + 2 + 3 + … + n = 
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Exemple :

un = 3 – 2n 

(un) est une suite arithmétique de raison –2 et de premier terme u0 = 3.

u15 = 3 - 2
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15 = - 27

S15 = u0 + u1 + … + u15 = 
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4) Suites géométriques

a) Définition

Une suite (un) est géométrique s’il existe un nombre réel q tel que, pour tout nombre entier naturel n, on ait :

un+1 = q un.
q est appelé la raison de la suite géométrique.

b) Propriétés

Le terme général d’une suite géométrique de premier terme u0 et de raison q est : 

un = u0 
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Il en résulte que quels que soient m et p, 
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c) Somme de n termes consécutifs

Si a est le premier terme et d le dernier terme, la somme des n termes consécutifs de a à d d’une suite géométrique de raison q ( différent de 1 ) est :

S = 
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Il en résulte que 1 + q + q² + q3 + … + qn = 
[image: image13.wmf]q

1

q

1

1

n

-

-

+


Feuille d’exercices

Ex et algorithme

II. Le raisonnement par récurrence

La somme des naturels de 1 à n est égale à 
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. On peut vérifier l’exactitude de ce résultat pour n = 2, n = 3 … Mais même si on la vérifie jusqu’à n = 100, cela ne démontre pas qu’elle est vraie pour tout n.

Pour effectuer cette démonstration, on dispose d’un outil particulier : l’axiome de récurrence.

L’idée du raisonnement par récurrence est simple et peut être imaginée ainsi : si l’on peut d’abord se placer sur un barreau d’une échelle, et si l’on peut ensuite passer d’un barreau quelconque à son suivant, alors on peut gravir tous les autres barreaux de cette échelle.

Axiome de récurrence :
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désigne une proposition qui dépend d’un entier naturel n.

Pour démontrer par récurrence qu’une proposition 
[image: image16.wmf]n
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est vraie pour tout entier naturel n, on procède en deux étapes, puis on conclut.

· Première étape : Initialisation : on vérifie que 
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 est vraie.

· Deuxième étape : Hérédité : on suppose que pour un entier naturel k quelconque, la propriété 
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 est vraie, et sous cette hypothèse, on démontre que la proposition 
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 est vraie.

· Conclusion : lorsque les deux étapes sont franchies, on conclut que la proposition 
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 est vraie pour tout entier naturel n positif.
Dans l’exemple précédent

· Première étape : Initialisation : la propriété est vraie pour n=1 ; 
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· Deuxième étape : Hérédité : on suppose que pour un entier naturel k quelconque, la propriété 
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 est vraie, et sous cette hypothèse, on démontre que la proposition 
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 est vraie donc que 
[image: image25.wmf]2

)

2

k

)(

1

k

(

S

1

k

+

+

=

+



[image: image26.wmf]2

)

2

k

)(

1

k

(

.....

)

1

k

(

2

)

1

k

(

k

)

1

k

(

S

S

k

1

k

+

+

=

=

+

+

+

=

+

+

=

+


· Conclusion : les deux étapes sont franchies (la propriété est vraie pour n=1 ; elle est héréditaire), on conclut que la proposition 
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 est vraie pour tout entier naturel n.

Pour démontrer par récurrence qu’une proposition 
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 est vraie pour tout entier naturel supérieur ou égal à 
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 est vraie au lieu de vérifier que 
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 est vraie, et lors de la deuxième étape, on suppose que 
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Attention, la première étape est une étape essentielle ! ! !
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Exemple 2 :
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Montrer par récurrence, que 
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Ex. 14 à 25 p.53

Ex. 26 à 29 p.53-54
Ex 53-57 p.56
Feuille d’exercices
III. Convergence de suites

1) Définitions

La suite (u EQ \o\al(\s\up-2(n))) converge vers le réel l, si tout intervalle ouvert contenant l contient tous les termes de la suite à partir d’un certain rang.

On écrit alors 
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 ou plus simplement lim u = l.

Autre formulation :
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Propriété :

Lorsqu’elle existe, la limite d’une suite est unique.

Si la suite (u EQ \o\al(\s\up-2(n))) ne converge pas, elle est divergente.
La suite (u EQ \o\al(\s\up-2(n))) diverge vers +∞ si tout intervalle du type ] a ; +∞[ contient tous les termes de la suite à partir d’un certain rang.

Elle diverge vers –∞ si la suite (-u EQ \o\al(\s\up-2(n))) diverge vers +∞.

On écrit alors 
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Autre formulation :

Quel que soit A, il existe un entier N, tel que pour tout n > N on a u EQ \o\al(\s\up-2(n))( ]A ; +∞[

Ou …….
u EQ \o\al(\s\up-2(n)) > A

2) Suites de référence

Des suites convergentes vers 0 : 
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Des suites divergentes vers +∞ : (n EQ \o\al(\s\up4(p);)), (
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Les suites arithmétiques de raison non nulle sont divergentes vers +∞ ou –∞.


Si r > 0, alors lim u = +∞

Si r < 0, alors lim u = -∞.
Suites géométriques de raison q.

Si –1 < q < 1, alors lim q EQ \o\al(\s\up4(n);) =  0 donc toute suite géométrique de raison q ( ]-1 ; 1[ converge vers 0.

Si q > 1, alors lim q EQ \o\al(\s\up4(n);) =+∞ donc toute suite géométrique de raison q > 1 diverge , 

vers +∞ si son premier terme est positif, 

vers –∞ si son premier terme est négatif.

Si q =  1, alors lim 1 EQ \o\al(\s\up4(n);) = 1 donc toute suite géométrique de raison 1 converge vers son premier terme.

Si q ≤ -1, alors (q EQ \o\al(\s\up4(n);)) n’a pas de limite et donc toute suite géométrique de raison q, q ≤ -1 diverge.

Exemples :
Démontrer que la suite 
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( On démontre par récurrence que pour tout a réel positif et pour tout entier n : 
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Ex. 55  p.56

IV. Opérations sur les limites
On considère deux suites u et v de limites connues.

1) Limite d’une somme.

	Limite de (un),
	l
	l
	l
	+∞
	-∞
	+∞

	Limite de (vn) 
	l’
	+∞
	-∞
	+∞
	-∞
	-∞

	Limite de (un + vn)
	l + l’
	+∞
	-∞
	+∞
	-∞
	FI


2) Limite d’un produit.

	Limite de (un),
	l
	l≠0
	(∞
	0

	Limite de (vn) 
	l’
	(∞
	(∞
	(∞

	Limite de (un  vn)
	l
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3) Limite d’un quotient.

	Limite de (un),
	l
	l≠0
	l
	(∞
	0
	(∞

	Limite de (vn) 
	l’≠0
	0 sans changer de signe
	(∞
	l’
	0
	(∞

	Limite de
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Attention si le dénominateur tend vers 0 en changeant de signe, le quotient n’a pas forcément de limite ‼ !

Ex. 30 à 35  p.54

Ex. 40 -43 à 46  p.55

V. Théorèmes sur les limites

1) Théorèmes de comparaison

Théorème des gendarmes (admis)
Soit (un), (vn) et (wn) trois suites.

Si on a, à partir d’un certain rang un ≤ vn ≤ wn et lim u = lim w = l, alors lim v = l.

Si on a, à partir d’un certain rang 
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et si lim v = 0 alors lim u = l.

Théorème ( suites divergentes à l’infini)

Soient u et v deux suites.

Si à partir d’un certain rang, u EQ \o\al(\s\up-2(n)) ≤ v EQ \o\al(\s\up-2(n)) et si lim u = +∞ alors lim v = +∞.

Si à partir d’un certain rang, u EQ \o\al(\s\up-2(n)) ≤ v EQ \o\al(\s\up-2(n)) et si lim v = -∞ alors lim u = -∞.

Dem :

└ N1, ┐n>N1,, un ≤ vn
┐ A>0, └ N2 , ┐ n > N2, un >A


Donc pour tout n ≥ max(N1 ;N2), on a vn > A.

Ex. 36 à 39  p.54

Ex 58

VI. Convergence et suites monotones

1) Suites majorées-minorées

Définitions :

Soit u une suite définie pour tout entier n.

Dire que la suite u est minorée signifie qu’il existe un réel m tel que : pour tout entier naturel n, 
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Dire que la suite u est majorée signifie qu’il existe un réel M tel que : pour tout entier naturel n, 
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Dire que la suite u est bornée signifie que u est à la fois minorée et majorée

Exemples :

1) Soit la suite définie pour tout n ≥ 1 par 
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2) Soit la suite définie pour tout n ≥ 0 par u0 =1 et 
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2) Etude de suites monotones

Théorème :

Toute suite croissante non majorée a pour limite +∞.

Toute suite décroissante non minorée a pour limite –∞.

Dem :

Il faut démontrer que lim un =+ ∞ càd que : ┐A, └ N ☻ É, ┐n ≥ N, un > A

Or comme u est non majorée, pour tout A ☻ Ë , └ N’ ☻ É , uN’ > A

Et comme u est croissante, alors pour tout n >N’, on a un > uN’

Et donc un > A, d’où lim u = +∞.

Théorème : (admis)

Toute suite croissante majorée est convergente.

Toute suite décroissante minorée est convergente.

Ex 41 p.55

Ex. 47 à 52  p.55

Ex 59

Ex. 61…  p.54

Ex p.58-59
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