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Electricité générale

I) Rappels préliminaires

I.1) Vocabulaire

· Conducteur : partie du circuit

· Nœuds : connexion de plusieurs conducteurs

· Circuit : ensemble de conducteurs et de matériels alimentés à partir de la même origine et protégés contre les surintensités par le ou les mêmes dispositifs de protection.

· Masse : partie conductrice d'un matériel électrique susceptible d'être touchée par une personne, qui pas normalement sous tension mais peut le devenir en cas de défaut d'isolement des parties actives de ce matériel" 

· Point froid ou potentiel de référence : potentiel par rapport auquel on va mesurer les diverses tensions du circuit. 

· Terre : le décret du 14 novembre 1988  indique :" Masse conductrice de la terre, dont le potentiel électrique en chaque point est considéré comme égal à zéro.

Remarque : fréquemment les GBF qui alimentent les montages ont leur point froid relié à la masse elle-même reliée à la terre, d’où les confusions faites sur ces différents termes.

I.2) Les lois de Kirchhoff

I.2.1) Lois des nœuds  

	Un courant électrique est une circulation de porteurs de charges électriques (électrons ou ions)  L'intensité du courant électrique est la grandeur qui quantifie le débit de charge en un point du circuit.
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	L'intensité est une grandeur algébrique (avec un signe). C'est une variable de flux.

La somme de toutes les intensités des courants entrant dans un nœud de circuit est nulle.
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I.2.2) Lois des mailles  
	La somme des tensions effectuée en parcourant une maille est nulle.

 En effet 
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I.3) Conventions  

	On flèche la tension à côté du dipôle  et le courant sur le fil le parcourant avec : 

· la tension et le courant dans le même sens pour une convention générateur 

· la tension et le courant dans le sens opposés pour une convention récepteur
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II) Circuits en régimes variables :

II.1) Dipôles passifs, actifs, lois générales associées :

II.1.1) Dipôles passifs

	Dipôle
	Résistance
	Bobine
	Condensateur

	Schéma
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Le courant suit la forme de la tension
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On n’observe jamais de discontinuité de courant aux

bornes d’une bobine
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On n’observe jamais de discontinuité de tension aux

bornes d’un condensateur.



	Loi d’ohm
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	Association série :
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	Association parallèle :
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	Précautions 
	Le constructeur prescrit Pmax dont on déduit Imax et Umax.

Cette puissance dissipée sous forme de chaleur est responsable de la destruction du composant.

http://labo.ntic.org/R_caract/R_caract.html
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	Le constructeur prescrit Imax En cas de dépassement, même très bref, on risque de "saturer" le circuit magnétique, ce qui provoque une diminution brutale de la valeur de l'inductance pouvant entraîner une surintensité.
	Le constructeur prescrit Umax. à ne pas dépasser sous peine de destruction.

D'autre part les condensateurs électrochimiques sont polarisés

	Addendum
	La résistance d'un conducteur homogène non idéal de section s et de longueur 
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	Modèle plus réaliste
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II.1.2) Dipôles actifs

	Source Parfaite
	de tension 
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la tension est imposée quel que soit i
	de courant 
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le courant est imposé quel que soit u

	Source dépendante
	de tension 
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	Précautions
	La puissance délivrée est limitée.

Associations 

· En série  : 
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· En parallèle : il est interdit de placer en parallèle deux sources de tensions délivrant des tensions différentes. Le courant de circulation serait en effet infini.

Remarque

Rendre  passive une source de tension consiste à poser ETH = 0 c'est à dire que l'on transforme la source de tension en fil 
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	La puissance délivrée est limitée.

Associations 

· En  parallèle  : 
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· En série : il est interdit de placer en série deux sources de courant délivrant des courants d'intensités différentes.

· Une coupure du circuit doit être considérée comme une source de courant nul c'est à dire imposant :I = 0 quelque soit u.

Remarque

Rendre  passive une source de courant consiste à transformer la source de courant en coupure du circuit:
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	De courant
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	 Source Réelle
	La caractéristique U en fonction de I est une droite ne passant pas par l’origine

Mesure de {E0 ,r} modèle de Thévenin du générateur:

· E0:tension à vide  (I=0) 

· r: valeur absolue du coefficient directeur de la droite 
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· Icc intensité du courant de court-circuit (U=0) : 
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Modèle équivalent de Thévenin
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Modèle équivalent de Norton


II.1.3) Théorème de superpositions :

Puisque les circuits étudiés sont linéaires, ils en possèdent les propriétés. La principale est la superposition qui peut se traduire de la manière suivante : la réponse globale d’un montage soumis à plusieurs stimuli est la somme des réponses partielles correspondant à chaque stimulus.

L’intensité du courant circulant dans une branche (resp. la tension de branche) d’un réseau contenant plusieurs branches est égale à la somme algébrique des intensités (resp. tensions) créées dans cette branche par chaque générateur supposé seul (les autres étant éteints).

Remarque : Il y a autant de cas à superposer que de générateurs intervenant dans le réseau.
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U = U’ + U’’ 
et 
I = I’ +I’’  

http://www.univ-lemans.fr/enseignements/physique/02/electri/superpos.html
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II.1.4) Théorème de Thévenin

Vu de ces deux points A et B , tout générateur (ou plus généralement réseau linéaire actif) peut être remplacé par un générateur décrit dans le MET par:

	· la f.é.m. de ce générateur, égale à la tension à vide uAB0 calculée entre les deux points A et B : E0 (parfois notée ETH ou U0 ou UAB0).
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	· la résistance interne r de ce générateur est égale à la résistance équivalente du réseau vue des points A et B calculée en réduisant les électromoteurs à leur seule résistance interne


En remplaçant les générateurs :




* de tension par un court circuit


* de courant par un circuit ouvert
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II.1.5) Théorème de Norton

Toute portion de circuit comprise entre 2 bornes A et B et qui ne contient que des éléments linéaires peut être modélisée par un unique générateur équivalent de Thévenin ou de Norton. 

	· le générateur de Norton équivalent égal au courant de court circuit calculé entre les deux points A et B : ICC (parfois notée I0). 
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	· la résistance interne r de ce générateur est égale à la résistance équivalente du réseau vue des points A et B (même méthode que précédemment)
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Conseils pour la recherche d’un modèle :

· Il faut dessiner un schéma pour le calcul de E0 et un autre pour celui de z
· Pour le calcul de E0, la charge doit être débranchée (et supprimée du schéma) pour bien mettre en évidence la tension à vide

· Pour le calcul de ICC, la charge doit être court-circuitée (et supprimée du schéma) pour bien mettre en évidence le courant de court circuit

· Pour le calcul de z , le schéma ne doit comporter aucune source de tension (remplacée par un court-circuit) et aucune source de courant (remplacée par un circuit ouvert) 

Applets

	Approche du théorème de Thévenin :

http://labo.ntic.org/thevenin1/thevenin1.html
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	Thévenin et Norton 

http://www.univ-lemans.fr/enseignements/physique/02/electri/thevenin.html
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	Comment appliquer le théorème de Thévenin

http://labo.ntic.org/thevenin2/thevenin2.html
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II.1.6) Théorème de Millman :

[image: image264.emf] 
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Si l’on cherche la tension dans un nœud d’un montage connaissant les tensions « avoisinantes » , le méthode de Millman peut être rapide et efficace mais souffre parfois d’une certaine lourdeur et n’est donc à employer que pour des cas où les classiques lois nœuds, lois des mailles s’avèrent fastidieuses.

La méthode de Millman démontre que:
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 ce qui donne dans ce cas particulier 
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II.1.7) [image: image265.emf] 
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. Théorème de Kennelly :

Une maille triangulaire peut se transformer en étoile équivalente :
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Une maille en étoile  peut se transformer en maille triangle équivalente :
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http://www.univ-lemans.fr/enseignements/physique/02/electri/kennell.html
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II.2) Description énergétique des circuits électriques

II.2.1) Définitions

Un dipôle est traversé par un courant i(t) et soumis à la tension u(t) notés en convention récepteur.

Puissance : La puissance électrique instantanée absorbée s’exprime par :
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Energie : L’énergie dans le dipôle à l’instant t s’exprime par :
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II.2.2)  Remarques

De par sa définition sous une forme intégrale, l’énergie est une fonction continue du temps. On n’observe jamais de discontinuité d’énergie électrique dans un dipôle. Cette remarque est valable pour tous les phénomènes physiques de l’univers.

Une puissance positive signifie que le dipôle « reçoit » de l’énergie car elle augmente (dérivée >0).

En respectant la convention de signe établie :

• L’élément est passif si w(t) est positive ou nulle (dissipation énergétique),

• L’élément est actif sinon (l’énergie provient de sources internes au dipôle).

II.2.3) Expression de la puissance et de l’énergie pour les dipôles élémentaires

	
	Puissance
	Energie

	Résistance
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	Condensateur
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	Inductance
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Pour ces éléments, on remarque que l’énergie est toujours positive. Cette propriété est caractéristique des éléments passifs.

La résistance tient une place particulière car sa puissance est toujours positive, elle ne peut la restituer, on dit que c’est un élément dissipatif (c’est le phénomène irréversible appelé effet Joule).

La puissance dans le condensateur et l’inductance peut être positive ou négative : ces deux éléments peuvent emmagasiner et restituer de l’énergie. On dit que ces éléments sont réactifs (ils peuvent restituer l’énergie emmagasinée).

III) Circuits en régime périodique (permanent):

Une grandeur est dite périodique si elle se reproduit identique à elle-même au bout d’un temps T. Les signaux alimentant les charges sont souvent périodiques mais pas forcément sinusoïdaux, ils présentent alors de nombreux harmoniques.

III.1) Notions d’harmoniques et conséquences

La prolifération des équipements électriques utilisant des convertisseurs statiques a entraîné ces dernières années une augmentation sensible du niveau de pollution harmonique des réseaux électriques. De nombreux effets des harmoniques sur les installations et les équipements électriques peuvent être cités. Les effets les plus importants sont l’échauffement, l’interférence avec les réseaux de télécommunication, les défauts de fonctionnement de certains équipements électriques et le risque d’excitation de résonance :

III.2) Notations

· x ou x(t) : grandeur variable au cours du temps,

· <x> = Xmoy = 
[image: image73.wmf]X

 = X0 : valeur moyenne de la grandeur

· 
[image: image74.wmf]ˆ
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 valeur de crête.

· Xeff = X (sans indice) = valeur efficace

· U et I valeurs efficaces de tension ou de courant.

· X: nombre complexe pouvant être associé à une grandeur x(t) fonction sinusoïdale du temps. 

III.3) Décomposition en série de Fourier d’un signal périodique:

Un résultat mathématique nous indique qu’un signal périodique x(t) peut être écrit sous la forme d’une somme infinie de fonctions sinusoïdales temporelles. Ceci s’exprime sous la forme :
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On appelle harmonique de rang n, le signal sinusoïdal de rang n.

Les coefficients de Fourier 
[image: image76.wmf]ˆ
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 représentent l’amplitude des harmoniques successifs.

L’harmonique de rang 1 (premier harmonique) est appelé le fondamental.

Le signal x(t) peut être écrit comme combinaison linéaire de fonctions Sinus et Cosinus
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On regroupe deux à deux les an et bn ce qui donne
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Le graphe représentant les coefficients de Fourier en fonction de leur rang est appelé spectre en fréquence du signal s(t).

Remarque pratique : l’appareil permettant d’observer le spectre d’un signal périodique est appelé analyseur de spectre.

Conclusion : Le théorème de superposition permet d’utiliser les principaux termes de cette décomposition afin de décomposer l’étude d’un circuit linéaire alimenté en régime périodique quelconque en somme de circuit alimenté en régime sinusoïdal

[image: image81.emf] 

Représentation tridimensionnelle d'un signal périodique.

Plus d’info et des exemples de signaux classiques décomposés sur le formulaire mathématique

Si 
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Ce qui donne pour une tension sinusoïdale:
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Avec UDC, UAC+DC, et UAC les valeurs mesurées par un multimètre.



III.4) Valeur moyenne appelée aussi offset, décalage, composante continue

[image: image266.emf]A 2  
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La valeur moyenne d'une grandeur périodique se calcule par la méthode des aires. 
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ou dit de façon plus mathématique 
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Elle se mesure avec 

· Appareils analogiques : appareils magnétoélectriques notés 
[image: image87.wmf]I

.

· Appareils numériques : en position DC ou  
[image: image88.wmf]---

.

· Oscilloscope: En passant de la position DC à AC, le décalage du signal est égal à la valeur moyenne de la tension visualisée.

III.5) Valeur efficace:

III.5.1) Valeur efficace du signal:

I (ou U) est l’intensité du courant continu qui dissiperait la même puissance que i(t) (ou u(t)) à travers une résistance.

http://www.geogebratube.org/student/m19737
[image: image89.png]



La valeur efficace est relative à la puissance véhiculée (en effet P=Ri2 = u2/R).

La valeur efficace X est la racine de la valeur moyenne du carré de la valeur instantanée, on représente d’abord 
[image: image90.wmf]2
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 , puis on calcule la calcule la valeur moyenne de x2(t) , enfin on calcule la racine de 
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Donc  
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Cette valeur efficace vraie est aussi notée :


- valeur efficace TRMS (True Root Mean Square),


- valeur efficace DC (Direct Current),


- valeur efficace RMS-DC. 

Elle se mesure avec 

· Cas des appareils analogiques: On utilise des appareils ferromagnétiques (Symbole: 
[image: image93.wmf]å

 ou 
[image: image94.emf] 

) qui tendent à disparaître.

· magnétoélectrique à redresseur (symbole 
[image: image95.emf] 

 ), qui tend aussi à disparaître

· Cas des appareils numériques: On utilise des appareils « RMS ». (Parfois en position AC+DC). Attention certains appareils ne mesurent une valeur efficace que si la grandeur est sinusoïdale.

Rq : Dans le seul cas d’un signal sinusoïdal : 
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Remarque : Un appareil de mesure atténue les éventuels harmoniques de fréquence supérieure à sa bande passante. Si ces harmoniques ont des valeurs efficaces non négligeables, la valeur efficace mesurée sera inférieure à la valeur efficace réelle de la grandeur considérée.

III.5.2) Valeur efficace de l'ondulation.

On peut écrire : 
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 ou ondulation de
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La valeur efficace de 
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[image: image104.wmf]ond
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 est appelée :


- valeur efficace de l'ondulation (AFNOR),


- valeur efficace RMS,


- valeur efficace AC (Alternating Current).

On remarque que : 
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Cette relation est utile lorsqu'on utilise un appareil qui ne peut mesurer que 
[image: image106.wmf]x

 et 
[image: image107.wmf]ond

X

 alors que l'on veut connaître la valeur efficace vraie.

Avertissement : On rencontre fréquemment des emplois abusifs du terme "efficace vrai", comme, par exemple, "efficace vrai pour l'alternatif seulement". Il est donc nécessaire d'être vigilant.

III.6) Facteur de forme et taux d’ondulation:

Pour quantifier la valeur efficace par rapport à la valeur moyenne, on définit 

· le facteur de forme d’un signal s(t) par :
[image: image108.wmf]2
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· le taux d'ondulation :  
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Cette grandeur est parfois utile dans les redresseurs pour quantifier les deux grandeurs produites

Le terme suivant est surtout utilisé pour décrire l'ondulation du courant d'un hacheur. Il est utilisé dans tous les ouvrages récents traitant du sujet, bien qu'il puisse prêter à confusion avec la composante alternative.

ondulation (parfois appelé : facteur d'ondulation) : ond = (Imax  - Imin ) / 2.

En toute rigueur ce terme devrait être appelé amplitude de l'ondulation.

III.7) Le facteur de crête :
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III.8) Taux de distorsion harmonique 

Si une tension sinusoïdale alimente un dipôle non linéaire le courant sera déformé et donc fourni en harmoniques.

Son expression mathématique du courant est de cette forme 
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La puissance active est alors égale à : 
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III.8.1) Taux Individuel de l’Harmonique de rang h 
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ou Ih représente la composante harmonique de rang h, I1 représente la composante fondamentale,

III.8.2) Taux de distorsion harmonique THD ou TDH

On quantifie la déformation d’un signal par rapport à une sinusoïde par le taux de distorsion harmonique : Dans le cas d’un courant on notera 
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la puissance réactive mesurée par EDF est alors : 
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  donc on connaît aussi la puissance déformante D qui est d’ailleurs égale à 
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Et la puissance déformante est liée au Taux de distorsion harmonique : on peut en effet montrer que :
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III.8.3) Taux Global de Distorsion harmonique  ou facteur de distorsion total DF

De même on définit plus rarement le taux global de distorsion 
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III.9) Puissances en régime périodique:

En régime périodique, il existe encore plusieurs types de puissances. Les éléments réactifs créent des déphasages entre les tensions et les courants (entre les composantes spectrales en fait, voir chapitre sur les harmoniques) ce qui justifie encore les notions de puissances actives et réactives.

III.9.1) Puissances active:

Pour un récepteur quelconque, alimenté par une tension quelconque v(t) périodique de période T, et traversé par un courant i(t), la puissance active ou moyenne s’écrit uniquement à partir de la formule :
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Donc la puissance moyenne est due à l’influence de la valeur moyenne et de chaque harmonique :
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Cette puissance est uniquement due aux éléments dits actifs (résistances et éléments mécaniques), c’est à dire aux éléments qui consomment réellement de l’énergie.

III.9.2) Puissance apparente

Les grandeurs v(t) et i(t) étant périodiques, on les caractérise toujours par leurs valeurs efficaces V et I.

On définit alors encore la puissance apparente comme la grandeur nommée S :  
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III.9.3) Facteur de puissance

Il apparaît ainsi toujours une notion de facteur de puissance qui s'écrit : 
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III.9.4) Facteur de déplacement ou cos(
Il mesure le déphasage du fondamental de la tension par rapport au courant
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III.9.5) Puissance réactive

La puissance n’étant définie qu'en régime sinusoïdal, il faut considérer la décomposition en sinusoïdes dites "harmoniques" des grandeurs.
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Si l’une des grandeurs (tension ou intensité) est sinusoïdale alors la puissance réactive n’est due qu’à la fréquence fondamentale (à la fréquence f) du courant ou de la tension: 
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III.9.6) Puissance déformante

On appelle D la puissance dite "déformante". Cette puissance est liée à la présence d’harmoniques dans le courant ou la tension, c'est à dire au fait que l'un ou l'autre est non sinusoïdal. 

Si les courants et les tensions sont sinusoïdaux, alors D=0. 

Les diverses puissances sont liées par la relation     
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On peut donc donner une représentation à trois dimensions de la participation de la puissance déformante dans la puissance apparente :
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Rappel : dans le cas d’une tension sinusoïdale : 
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III.9.7) Réglementation : 
1) Réglementation : 
D’après le contrat EMERAUDE d’EDF, les deux parties (fournisseur et récepteur) doivent s’engager à respecter les normes limitant les perturbations harmoniques. De son côté, EDF s’engage à ce que les taux individuels de tension harmonique, exprimés en pourcentage de la tension fondamentale V1 pour les réseaux HTA (1 à 50 kV), ne dépassent pas les seuils donnés dans le tableau ci-dessous.

[image: image129.emf]
Engagement EMERAUDE sur les harmoniques de tension (réseaux HTA)

Concernant les réseaux HTB (plus de 50 kV), EDF s’engage à ne pas dépasser les seuils donnés dans le tableau  suivant :

[image: image130.emf]
Engagement EMERAUDE sur les harmoniques de tension (réseaux HTB)

Les règles de limitation des courants harmoniques recommandées aux clients par EDF à travers le contrat EMERAUDE sont données dans le tableau ci-dessous:

[image: image131.emf]
Limitation EMERAUDE des courants harmoniques

Pour un harmonique pair : 
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Pour un harmonique impair :
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Pour le taux de distorsion global de tension : THD < 1,6 %.

Il est d’usage de dire que, dans les installations industrielles, les tensions harmoniques dont le THD est inférieur à 5% ne produisent pas d’effet notable. Entre 5% et 7% on commence à observer des effets, et pour plus de 10% les effets sont quasi certains 

Concernant la puissance réactive, EDF autorise ses clients à en consommer, sans être facturé, jusqu’à 40% de la puissance active absorbée. Cela se traduit, pour des charges linéaires, par un facteur de puissance cos  > 0,928 ou par un angle de phase   > 21,8°.

2) Réglementation : la norme EN 50160
III.9.8) Les sources d’harmoniques et leurs traitements

Les courants harmoniques sont générés par les charges non linéaires c'est à dire absorbant un courant n'ayant pas la même forme que la tension qui les alimente.

· La plupart des charges connectées au réseau sont toutefois symétriques (les demi-alternances de courant sont égales et opposées). Les harmoniques de rang pair sont nuls.

· Les principaux générateurs d'harmonique de rang 3 sont les redresseurs monophasés à diodes avec filtrage capacitif. L'harmonique de rang 3 peut atteindre 80% du fondamental.

· Les charges triphasées, équilibrées, symétriques, non linéaires, sans raccordement au neutre ne génèrent pas d'harmonique de rang 3, ni d'harmoniques de rangs multiples de 3.

· Les charges triphasées, équilibrées, symétriques, non linéaires, avec raccordement au neutre génèrent dans ce conducteur, des courants harmonique de rang 3 et des courants harmoniques de rangs multiples de 3. La valeur efficace du courant de neutre peut être supérieure à celle du courant de phase (jusqu'à 1,732 fois la valeur du courant dans une phase).

· Pour remédier à la surcharge du conducteur de neutre, la solution la plus simple consiste à choisir une section de conducteur de neutre égale à 2 fois la section d'un conducteur de phase.

· D'autres solutions consistent à utiliser des réactances à couplage zig-zag ou des filtres accordés sur le rang 3.

IV) Circuits en régime sinusoïdal (permanent monophasé):

IV.1) Valeurs instantanées et vecteurs de Fresnel: 

IV.1.1) Valeurs  instantanées :
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-Vmax= V
[image: image136.wmf]2

 = Û = tension crête.(U tension efficace) et Imax= I
[image: image137.wmf]2

 = Î = intensité crête


-=2f pulsation  en rad.s-1, f=1/T fréquence en Hertz (Hz), T période en seconde (s) et t temps en s. u phase à l’origine; i phase à l’origine


A i (t ) ou u ( t ) on associe la représentation de Fresnel  : 
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 et le nombre complexe correspondant.
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IV.1.2) Déphasage:

On appelle  le déphasage de u tension par rapport à i intensité  =u/i=u-i.


 

IV.1.3) Représentation de Fresnel:

On représente donc chaque sinusoïde de pulsation  rad/s par un vecteur de longueur égale à la valeur efficace et décalé par rapport à l’origine de  rad 

Loi des nœuds: i= i1+i2+i3 donc 
[image: image143.wmf]123
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Loi des branches : u=u1+u2+u3 donc 
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Loi des mailles : Le long d’une maille la somme algébrique des tensions est nulle.

IV.1.4) Applet : 
	

	


	

	


	Somme de fonctions sinusoïdales de même période



	Somme de fonctions sinusoïdales





IV.2) Impédance :

On définit    
[image: image151.wmf]U
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 Pour un dipôle passif linéaire avec  
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Z impédance en Ohm () ; I en A ; U en V ; u et i en rad.

IV.3) Figures de Fresnel des dipôles simples:

On trace les figures de FRESNEL correspondant  à un résistor, une inductance pure et à un condensateur.

	symbole
	nom et unité
	déphasage u/i
	impédance Z
	figure de Fresnel
	Puissance P

(W)
	Puissance réactive Q (VAR)
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IV.4) Groupements d’impédances en sinusoïdal:

IV.4.1) En série :

L’impédance équivalente à plusieurs dipôles en série est donc :   Zéq = Z1 + Z2 + Z3  .  

i est commun on prend le courant i comme origine des phases.



IV.4.2) Groupements parallèles:

L’impédance équivalente à plusieurs dipôles en parallèles est donc 
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IV.5) Modèles de Thévenin et Norton:

Les lois du diviseur de courant et du diviseur de tension ainsi que les théorèmes de Thévenin, Norton et Millman peuvent être utilisés en régime sinusoïdal à conditions d'utiliser les nombres complexes images des courants et des tensions ainsi que les impédances complexes.

Le modèle de Thévenin d'un ensemble de dipôles linéaires est constitué d'une source de tension sinusoïdale en série avec une impédance :


[image: image159.emf] 
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Le modèle de Norton d'un ensemble de dipôles linéaires est constitués d'une source de courant sinusoïdale en parallèle avec une impédance :
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IV.6) Puissances:

IV.6.1) Puissance active:

La puissance active est la valeur moyenne de la puissance instantanée sur une période
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 Puissance active en Watt (W) et se mesure avec un wattmètre.



IV.6.2)  Puissance réactive:
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 Puissance réactive en V.A.R. 

IV.6.3) Puissance apparente:

La puissance apparente est donnée par le produit des valeurs efficaces U, I de u(t) et i(t) :
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 Puissance apparente en V.A. On trouve parfois la notation complexe 

IV.6.4) Notations complexes:
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IV.6.5) Facteur de puissance:

fp =cos = P/S ou P=S cos  avec le triangle des puissances 
[image: image168.wmf]222

SPQ

=+


IV.6.6) [image: image270.emf] 
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Relèvement du facteur de puissance:

Un condensateur placé en parallèle sur une installation inductive remonte le facteur de puissance de celle-ci : QC = -CV2. Si l’on veut passer d’une installation ayant un déphasage  à ’.

Le condensateur doit amener la puissance réactive 

- QC = Q - Q’ = P tan  - P tan ’ = CV2

Donc 
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IV.6.7) Théorème de Boucherot:

Pour une installation :

-la puissance totale est la somme des puissances : 
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-la puissance réactive  totale est la somme des puissances réactives  : 
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mais la puissance apparente St  de l’ensemble n’est pas la somme des puissances apparentes

D’où la méthode de Boucherot:

On calcule d’abord Ptotale = Pi   et Qtotale = Qi on déduit la puissance apparente de l’ensemble avec le triangle des puissances: 
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IV.7) Circuits linéaires en régime sinusoïdal: 

IV.7.1) Fonction de transfert:

L’association de dipôles linéaires dont l’impédance est liée à la fréquence (inductances, condensateurs) permet de réaliser des circuits dont l’une au moins des tensions a une valeur qui dépend de la fréquence d’excitation.

Ce type de circuit peut se mettre sous la forme d’un quadripôle :
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La fonction T() est couramment appelée fonction de transfert du quadripôle. Il est plus commode d’utiliser la transformation complexe et de définir T() telle que :
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T() est alors un nombre complexe dont le module et l’argument dépendent de la fréquence, donc de la pulsation. Il est donc entièrement défini par les expressions :

· De son module T = fT()

· De son argument  = f()

Afin de rendre compte des propriétés du quadripôle il est habituel  de tracer les deux courbes correspondant aux évolutions de son module et de son argument en fonction de la fréquence. Pour des raisons de commodité on préfère utiliser des échelles logarithmiques, d’où l’introduction du décibel. 

IV.7.2) Le décibel

· Décibel sonore

Au son le plus faible perceptible par l’oreille humaine (il s’agit évidemment d’une moyenne réalisée sur un « échantillon représentatif ») on fait correspondre la valeur de 0 Bel.. La puissance sonore correspondante est notée Pref. = 10-12 W.

· Un son de puissance 10. Pref. correspond à 1 Bel soit 10 décibels (dB).

· Un son de puissance 100. Pref. correspond à 2 Bel soit 20 dB.

· Un son de puissance 10 n. Pref. correspond à n Bel soit (10.n) dB.

· Décibel en électricité.

On définit, comme pour les sons, le gain en puissance d’un quadripôle par GP exprimé en Bel :
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Une tension u appliquée aux bornes d’une résistance R provoque la dissipation d’une puissance :
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Pour une tension de référence notée Vref  choisie arbitrairement, on peut calculer la valeur en décibel d’une tension V  à l’aide de la relation : 
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Cette échelle est le plus souvent utilisé pour la quantification du module du gain en tension d’un quadripôle :
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Cela revient à considérer que Vref = Ve.

Remarque : La valeur du gain en tension d’un quadripôle qui divise la tension par 
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(ce qui correspond à une puissance divisée par 2) est égale à :
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IV.7.3) Diagramme de Bode.

Il est constitué de deux courbes ;

· La courbe de gain où l’on trace le gain en fonction du logarithme de la pulsation (ou de la fréquence).

· La courbe de phase où l’on trace l’argument de T (en radians) en fonction du logarithme de la pulsation.

Propriété importante : Lorsqu’une fonction de transfert T peut s’écrire sous la forme du produit de 2 fonctions de transfert T1 et T2 alors son diagramme de Bode peut être tracé en faisant la somme des deux diagrammes de Bode de T1 et T2 :
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Afin de pouvoir exploiter la propriété précédente,  nous présentons ci-dessous les diagrammes de Bode des fonctions de transfert les plus élémentaires 

IV.7.4) Exemple d’étude d’une transmittance de passe bas.

La transmittance d’un passe bas est de la forme 
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Le module de T est 
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Donc le gain est 
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Et l’argument est 
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Il suffit d’étudier ce qui se passe pour diverses valeurs particulières
· Si ((0 alors 
· 
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· 
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· Si ((( alors

· 
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 ce qui tend vers moins l’infini avec une pente de -20 dB par décade ( -20 dB quand la fréquence est multipliée par 10)
· 
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· Si (=(0 alors

· 
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· 
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D’où le tracé du diagramme de Bode:
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IV.7.5) Filtres du premier ordre .

	
	Expression
	Schéma
	Bode 

	Passe Haut
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	Dérivateur
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	Intégrateur
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IV.7.6) Filtres du second ordre .

	
	Expression
	Bode
	Valeurs remarquables

	Passe Haut
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	Passe Bande
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	Passe Bas 
	
[image: image222.wmf]2

0

0

2

1

1

)

(

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

w

w

w

w

w

j

jm

A

j

T


	
[image: image223.wmf]G(dB)

f

j

(rad)

p

-

p


	
[image: image224.wmf]2

0

2

1

m

f

f

r

-

=



[image: image225.wmf]2

max

1

2

1

m

m

T

-

=



[image: image226.wmf]1

2

2

1

f

f

f

m

Q

r

-

=

=





IV.7.7) Filtres pour réseaux .

Plusieurs solutions existent pour limiter la propagation et l’effet des harmoniques dans les réseaux électriques :

_ l’augmentation de la puissance de court-circuit du réseau et l’utilisation de convertisseurs peu polluants qui ont pour effet de diminuer la distorsion harmonique,

_ l’utilisation de dispositifs de filtrage pour réduire la propagation des harmoniques produits par des charges non linéaires.

Le filtrage consiste à placer en parallèle sur le réseau d’alimentation une impédance de valeur très faible autour de la fréquence à filtrer et suffisamment importante à la fréquence fondamentale du réseau. Parmi les dispositifs de filtrage les plus répandus, on distingue le filtre passif résonnant et le filtre passif amorti ou passe-haut 

[image: image227.emf]

 [image: image228.emf]
Le filtre résonnant est un filtre très sélectif. Il peut se connecter en parallèle avec d’autres filtres résonnants.

Le filtre passe-haut compense les harmoniques supérieurs ou égaux à sa fréquence propre. Il peut se connecter en parallèle avec d’autres filtres résonnants. Ces dispositifs sont utilisés pour empêcher les courants harmoniques de se propager dans les réseaux électriques. Ils peuvent aussi être utilisés pour compenser la puissance réactive. Malgré leur large utilisation dans l’industrie, ces dispositifs peuvent présenter beaucoup d’inconvénients :

_ manque de souplesse à s’adapter aux variations du réseau et de la charge,

_ équipements volumineux,

_ problèmes de résonance avec l’impédance du réseau.

IV.7.8) Adaptation d’impédance 

Lorsque la résistance interne RS de la source est égale à celle de la charge RC, le transfert de puissance est optimal : on a adaptation d’impédance. 

C’est par exemple le cas si l’impédance de sortie d’un émetteur est égale à l’impédance de la charge constituée par l’antenne. 

Si l’impédance de charge RC + jXC est complexe, l’impédance du générateur doit être conjuguée pour avoir adaptation, soit Rs + jXs  = RC - jXC. 

Pour satisfaire à  cette condition, on peut intercaler entre la source et la charge un quadripôle composé d’inductances et de condensateurs qui réalisera la condition souhaitée à une fréquence de travail donnée.

Une utilisation du transformateur permet d’adapter les impédances : se référer au cours 

http://subaru2.univ-lemans.fr/enseignements/physique/02/electro/adapt.html
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IV.7.9) Adaptation de puissance
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L’adaptation en puissance se fait lorsque 
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En identifiant les parties réelles et imaginaires il en ressort deux conditions 
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IV.7.10) Liens utiles

	Circuit RLC Série

http://labo.ntic.org/RLC_serie/RLC.html
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	Filtres dérivateur et intégrateur : réponse temporelle

http://subaru2.univ-lemans.fr/enseignements/physique/02/electro/derive.html
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	Filtres  Courbes de gain et phase des filtres Pbas Phaut Double T ponté Wien Colpitts 3RCen cascade
http://subaru2.univ-lemans.fr/enseignements/physique/02/electro/filtrerc.html
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	http://hebergement.ac-poitiers.fr/l-cc-angouleme/coulomb-exos-phy/applets/filtres0/filtres0.htm
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	Valeur Gain et Phase CourbesT ; Pi ; T ponté ; double L

http://subaru2.univ-lemans.fr/enseignements/physique/02/electro/passifs.html
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	http://hebergement.ac-poitiers.fr/l-cc-angouleme/coulomb-exos-phy/applets/filtres1/filtres1.htm
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	L’application suivante :  

http://www.ta-formation.com/applets/adaptateur/Qadaptateur.htm 


propose un certain nombre de schémas pratiques de quadripôles adaptateurs d’impédance élévateurs ( si l’impédance de la charge est supérieure à celle de la source ) ou abaisseurs ( si l’impédance de la charge est inférieure à celle de la source).
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	http://hebergement.ac-poitiers.fr/l-cc-angouleme/coulomb-exos-phy/applets/filtres2/filtres2.htm
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V) Démonstrations

Démonstration : le théorème de Millman n’est qu’un cas particulier de la loi des nœuds :

Dans le montage ci-dessus la somme des courants est nulle : 
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Chaque courant est tel que :
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Donc : 
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Si on rassemble d’un coté les termes en VA : 
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Donc 
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 l’expression trouvée précédemment

Démonstrations : On pose 
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· Pour une résistance : 
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 EMBED MathType 5.0 Equation [image: image254.wmf]/

0

ui

j

=

et 
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· Pour une bobine : 
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· Pour un condensateur : 
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