ADOintro

        TD3. Assembleur 80x86

 TD 3 ADOintro. Assembleur 80x86
Complément de cours 1 : Architecture des processeurs 80x86 (INTEL)
Structure d’un ordinateur
[image: image1.jpg]Unicé centrale.

i Bus de données 16bits

Conter de.

la cellule R

1
Advesse dela
cellue

e

s de dornges gbits

enfsjed_cpume
Ccoeur de Tord)

Rt de T mamore
permanent, Laréc par
Fordilors de I i zoue

Unité de traitement
AuE)

T

[ T

Uit de contdle

rnipom machine e cours
atlours donnis

[0 o1 e
[t 00001236553

@

(trecharche Mz, yrice
aureg ) enme

@)1a dbcode

)1a pusse s ot

[Ererr—

Uniés pérphériques

Furmeant  fuc de c

uneé entrélinput), unk
ez 3w, un rthme b
rebées 3 Fuc par Tinterm.
ul sont connecter 30 b

!

fruniquer avec aeérieur

Sorte(output), uneé ent/sort(Ve)
p plus lnt qua e cpu et sont
[adsptataurs, de contriaurs

s systime

Bus systéme v

Frent des v Facees s o ot e
e b ot s it ot mlbie e e




Bus d’adresses (20bits) : Utilisé par le cpu (unité centrale – Central Processor Unit) pour adresser une case mémoire ou un port I/O, le cpu calcule d’abord l’adresse physique (20bits) puis la positionne sur le bus d’adresse

Bus de données (16bits) : transfert des informations entre la mémoire et le cpu 

Bus de commande : circulation des signaux de commande

[image: image2.jpg]Unicé centrale.

i Bus de donnses 16bits amhz

Conterde
lacellde S
1
Advesse dela
cellue

*3e WP travaile en
mode pré-recherche

e

Rt de T mamore
permanent, Laréc par
Fordilors de I i zoue

enfsjed_cpume
Ccoeur de Tord)
ey
Décode les Tt les
exéate

T

pase 1T

[ T

Ramipgm maching o cours

ar ot donndes

[0 o1 e
[t 00001236553

B
b es échanges, les
ad.phys. 120 5041
Recherche s 1 on HC*3

N

Corecherhe Mz, b
aureg ) enme
@11a dicode
Is passe s ot

s de données sbits 4,77mhe ——————
Ui déchange

Inter

Farmeent  fuc de co

uneé entrélinput), unk
ez o3, 3 un rehme o
rebées 3 Tuc par Titarm,

Uniés pérphériques

ages oy contrdlews

A
Sorte(output), uneé ent/sort(Ve)
p plus lnt qua e cpu et sont
[adsptataurs, de contriaurs

*2 el possdent des ports 1O de
ehitssur leauels o cpu peur lre et
écrie (chaque ports possident une
achesse sur 16bits)

Bus systéme v

rent des vl Fcees s o o e
e b ot s it ot mlbie e e




Les registres
Zones mémoires processeur pour stocker des informations afin d’y accéder plus rapidement que par des accès à la mémoire centrale (RAM).  

Les registres généraux
AX, BX, CX et DX sont à usage général et servent à stocker temporairement une information de 16 bits.

Chacun de ces registres est divisible en 2 registres de 8 bits. Exemple pour AX :  AH = octet de poids fort de AX.  AL = octet de poids faible de AX.
AX (accumulateur) : instructions d’I/O et certaines opérations arithmétiques.
BX (registre de base) : peut être aussi utilisé comme registre d’adressage lors de l’adressage direct à la mémoire.

CX (compteur) : peut être aussi utilisé comme compteur de boucles

DX : peut être aussi utilisé pour contenir les adresses des ports pour les instructions I/O.
Les registres d’index et pointeurs
SI et DI peuvent être utilisés comme registres généraux de données mais le plus souvent sont utilisés avec les instructions spécialisées de manipulation des chaînes de caractères et aussi comme registres d’adressage (indexé).

SP et BP accèdent aux données de la pile (SS : SP = sommet de la pile et BP accède à des données dans la pile).
CS (Code Segment) et IP pointeur d’instruction : CS : IP = adresse de l’instruction suivante à exécuter. (CS contient la partie haute de l’adresse)
Les registres de segments
CS, DS, ES et SS permettent de calculer l’adresse Physique d’une donnée (en spécifiant la partie haute de l’adresse) à partir de son adresse logique
Le registre des indicateurs
FR est un masque de 16 bits dont 9 seulement sont significatifs; ils représentent à tout moment l’état logique du cpu (processeur – Central Processor Unit) et décrivent la manière dont se sont déroulées certaines opérations.
Flags de contrôle qui modifient le fonctionnement du cpu
IF quand il est à 1 le cpu peut être modifié par des événements extérieurs 

TF quand il est à 1 le cpu fonctionne en mode pas à pas

DF permet de modifier la mise à jour des registres d’index lors des opérations de manipulation de chaînes de caractères

Flags indicateurs d’état
CF à 1 il indique la retenue lors de la dernière opération arithmétique
PF à 1 nombre de bits pair

SF à 1 résultat négatif (entier signé)

ZF à 1 résultat nul ou opérandes égaux
OF à 1 il indique qu’il y a eu débordement

AF à 1 indique une retenue

Plus d’informations

http://www.google.fr/url?sa=t&source=web&cd=1&ved=0CB8QFjAA&url=http%3A%2F%2Fentraide-epfc.sirenacorp.be%2Fscript.redirDownload.php%3FID_download%3D103%26url%3Ddownload%2F2007_01_12_Rsumerdassembleur.doc&rct=j&q=architecture%208086&ei=4VQOTdySMJGo8QPBvM2DBw&usg=AFQjCNFof1l86I105-h5-N_DvadhXay-xg&cad=rja
Complément de cours 2 : Jeu d’instructions 80x86
I ) introduction
On peut diviser les instructions du 8086/88 en 6 groupes comme suit :
·      Instructions de transfert de données.

·      Instructions arithmétiques.

·      Instructions de bits (logiques).

·      Instructions de sauts de programme.

·      Instructions de chaîne de caractères.

·      Instructions de contrôle de processus.

·      Instructions d'interruptions.

II ) Les instructions de transfert de données
Elles sont divisées en 4 sous- groupes comme le montre le tableau suivant :
	Usage
	Nom
	Fonction

	Général
	MOV

PUSH

POP

PUSHA

POPA

XCHG

XLAT
	Transfert d’octets ou de mots

Chargement de la pile

Déchargement de la pile

Chargement de tous les registres dans la pile

Déchargement de tous les registres dans la pile

Echange d’octet ou de mot

Translation d’octet

	Entrées-Sorties
	IN

OUT
	Entrée de mot ou d’octet

Sortie de mot ou d’octet

	Adresses
	LEA

LDS

LES
	Chargement de l’adresse effective

Chargement du pointeur avec DS

Chargement du pointeur avec ES

	Indicateurs
	LAHF

SAHF

PUSHP

POPF
	Transfert des indicateurs dans AH

Rangement de AH dans les indicateurs

Chargement des indicateurs dans la pile
Déchargement des indicateurs de la pile


II-1 ) Les instructions d'usage général

II-1-1 ) MOV 
Copie de données (un  octet  ou  un  mot)  d'un registre vers un autre registre ou d'un registre vers une case mémoire, sa syntaxe est comme suit :

Exemples
Syntaxe : MOV destination, source

MOV   AX, BX     ; Copie du contenu d'un registre 16 bits vers un registre 16 Bits : 
(BX) → AX
MOV   AH, CL     ; Copie du contenu d'un registre 8 bits vers un registre 8 bits : 
(CL) → AH
MOV   AX, Val1   ; Copie du contenu d'une case mémoire 16 bits vers AX : 

(Val1) → AX
MOV   Val2, AL   ; Copie du contenu de AL vers une case mémoire d'adresse Val2 : 
(AL) → Val2
Remarques
· Il  est  strictement  interdit  de  transférer  le  contenu  d'une  case mémoire vers une autre case mémoire 
· On n'a pas le droit aussi de transférer un registre segment vers un autre registre segment sans passer par un autre registre.
II-1-2 ) PUSH
Elle permet d'empiler les registres du CPU sur le haut de la pile

Syntaxe : PUSH  SOURCE

Exemple :
[image: image3.jpg]Etat initial

R

|
Il

PUSH AX

R

—§
I

55
66





II-1-3 ) POP
Elle permet de dépiler les registres du CPU sur le haut de la pile

Syntaxe : POP  destination

Exemple

[image: image4.jpg]Etat initial POP AX





III ) Instructions arithmétiques
Les  instructions  arithmétiques  peuvent  manipuler  quatre  types  de nombres :
· Les nombres binaires non signés

· Les nombres binaires signés.

· Les nombres décimaux codés binaires (DCB), non signés.

· Les nombres DCB non condensés, non signés.

Les instructions arithmétiques sont divisées en quatre sous-groupes comme le montre le tableau suivant :
	Usage
	Nom
	Fonction

	Addition
	ADD

ADC

INC

AAA

DAA
	Addition sur un octet ou un mot

Addition sur un octet ou un mot avec retenue

Incrémentation de 1

Ajustement ASCII

Ajustement décimal

	Soustraction
	SUB

SBB

DEC

NEG

CMP

AAS

DAS
	Soustraction sur un octet ou un mot

Soustraction sur un octet ou un mot avec retenue

Décrémentation de 1

Mettre un octet ou un mot en négatif
Comparaison d’octets ou de mots

Ajustement ASCII

Ajustement décimal

	Multiplication
	MUL
IMUL

AAM
	Multiplication d’octet ou de mot non signé
Multiplication  d’octet ou de mot signé

Ajustement ASCII

	Division
	DIV

IDIV

AAD

CBW

CWD
	Division d’octet ou de mot non signé

Division d’octet ou de mot signé

Ajustement ASCII

Conversion d’un octet en un mot

Conversion d’un mot en double mots


III-1 ) Addition
III-1-1 ) ADD: (Addition)
Syntaxe :    ADD   Destination, source

Elle permet d'additionner le contenu de la source (octet ou un mot) avec celui de la destination le résultat est mis dans la destination

  Destination <---------- Destination  +  source

Exemples
ADD AX, BX   ; AX = AX + BX (addition sur 16 bits) 
ADD AL, BH   ; AL = AL + BH (addition sur 8 bits)

ADD AL, [SI] ; AL = AL + le contenu de la case mémoire pointée par SI

ADD [DI], AL ; le contenu de la case mémoire pointé par DI est additionnée avec AL, le résultat est mis

             ; dans la case mémoire pointée par DI

III-1-3 ) INC : (Incrémentation)
Syntaxe :    INC    Destination

Elle permet d'incrémenter le contenu de la destination : 
  Destination <----------  Destination  +  1

Exemples
INC AX     ; AX = AX +  1 (incrémentation sur 16  bits). 

INC AL     ; AL = AL +1 (incrémentation sur 8 bits).

INC [SI]   ; [SI] = [SI] + 1 le contenu de la case mémoire pointée par SI sera incrémenté
III-2 ) Soustraction 
III-2-1 ) SUB : (Soustraction)
Syntaxe :    SUB   Destination, source

Elle permet de soustraire la destination de la source (octet ou un mot)  le résultat est mis dans la destination

  Destination <---------  Destination  --  source

Exemples
SUB AX, BX   ; AX = AX - BX (Soustraction sur 16 bits)

SUB AL, BH   ; AL = AL - BH (Soustraction sur 8 bits)

SUB AL, [SI] ; AL = AL - le contenu de la case mémoire pointé par SI

SUB [DI], AL ; le contenu de la case mémoire pointée par DI est soustraite de AL , le résultat est mis

             ; dans la case mémoire pointée par DI

III-2-3 ) DEC : (Décrémentation)
Syntaxe :    DEC   Destination

Elle permet de décrémenter le contenu de la destination 

Destination   <----------- Destination  -  1
Exemples
DEC AX    ; AX = AX - 1 (décrémentation sur 16  bits). 

DEC AL    ; AL = AL - 1 (décrémentation sur 8 bits). 

DEC [SI]  ; [SI] = [SI] - 1 le contenu de la case mémoire pointée par SI sera décrémenté
III-2-5 ) CMP : (Comparaison)
Syntaxe :    CMP  Destination   , Source

Elle soustrait la source de la destination , qui peut être un octet ou un mot, le résultat n'est pas mis dans la destination. En effet cette instruction touche  uniquement  les  indicateurs  pour  être  testé  avec  une  autre instruction ultérieure de saut conditionnel.
Les indicateurs susceptibles d'être touché sont : AF, CF, OF, PF, SF, ZF

Donc cette instruction va nous permettre de comparer deux nombres comme le montre le tableau suivant :

[image: image5.jpg]Opérande non signé Opérande signé
OF SF 2zF CF |OF SF ZF CF
Source < destination | - = 0 0/T 0 o E
Source = destination | - - 0 0 -
Source > destination | - : 0 o1 1 o =





III-3 ) La multiplication :

III-3-1 ) MUL : (Multiplication pour les nombres non signés)
MUL  effectue  une  multiplication  non  signée  de  l ‘opérande  source  avec l'accumulateur :

                  Syntaxe : MUL   Source
· Si la source est un octet alors elle sera multipliée par l'accumulateur AL, le résultat sur 16 bits sera stocké dans le registre AX.

· Si  la  source  est  un  mot  alors  elle  sera  multipliée  avec l'accumulateur AX,  le résultat de 32 bits sera stocké dans la paire des registres AX et DX

En conclusion :

[image: image6.jpg]Multiplication | Opérande 1 Opérande 2 Résultat

Octet x Octet AL Registre ou memoire | AX

Mots x Mots AX Registre ou memoire | DX AX

Mots x Octet AL= Octet, AH=0 | Registre ou memoire | DX AX





III-4 ) La division

III-4-1 ) DIV : (Division des nombres non signés)
Syntaxe :   DIV  Source

Elle  effectue  une  division  non  signée  de  l'accumulateur  par  l'opérande source :

Exemples
· Si l'opérande est un octet : alors on récupère le quotient dans le registre AL et le reste dans le registre AH.

· Si l'opérande est un mot : alors on récupère le quotient dans le registre AX et le reste dans le registre DX

a)     

MOV AH, 00h

MOV AL, 33H

MOV DL, 25H

DIV DL    
b)     

MOV AX, 500H

MOV CX, 200H

DIV CX     

IV ) Les instructions logiques ( de bits )
Ils  sont  divisés  en  trois  sous-groupes  comme  le  montre  le tableau suivant :
[image: image7.jpg]Usage Nom |Fonction
Togique NOT _|Inversion logique sur un octet ou un mot
AND  |Et logique
OR  [oulogique
XOR |Ou exclusif
TEST |Et logique sans résultat, affecte|
uniquement les indicateurs du registre des
flags.
Décalages SHL _|Décalage logique & gauche
SAL  |Décalage arithmétique & gauche
SHR  |Décalage logique & droite
SAR  |Décalage arithmétique & droite
Rotation ROL _|Rotation & gauche
ROR  [Rotation & droite
RCL [Rotation & gauche & travers le bit de
retenue
RCR | Rotation & droite & travers le bit de

retenue





Syntaxe des instructions de rotation et de décalage :  
Exemple : Décalage logique à droite

SHR  destination, compteur

Exemple
         SHR AX, 1

; décale le contenu de AX, noté (AX) d’un cran vers la droite :




; réalise une division par 2 de (AX)



; l’ancien LSB est perdu à cause du décalage; le nouveau MSB est un 0.
V-1 ) Branchement inconditionnel

V-1-1 ) CALL : notion de procédure :
La notion de procédure en assembleur correspond à celle de fonction en langage C, ou de sous-programme dans d'autres langages.

[image: image8.jpg]instruction A

instruction B Caleut
caLL Calc\ll/ instruction C
instruction D

RET

FIG. — Appel d'une procédure.




La procédure est nommée calcul. Après l'instruction B, le processeur passe à l'instruction C de la procédure, puis continue jusqu'à rencontrer RET et revient à l'instruction D.

Une procédure est une suite d'instructions effectuant une action précise, qui sont regroupées par commodité et pour éviter d'avoir à les écrire à plusieurs reprises dans le programme.

Les procédures sont repérées par l'adresse de leur première instruction, à laquelle on associe une étiquette en assembleur.

L'exécution d'une procédure est déclenchée par un programme  appelant. Une procédure peut elle-même appeler une autre procédure, et ainsi de suite.

Instructions CALL et RET

L'appel d'une procédure est effectué par l'instruction CALL.

CALL adresse_debut_procedure
L'adresse est sur 16 bits, la procédure est donc dans le même segment d'instructions. CALL est une nouvelle instruction de branchement inconditionnel. La fin d'une procédure est marquée par l'instruction RET.
V-1-2 ) RET :
RET ne prend pas d'argument ; le processeur passe à l'instruction placée immédiatement après le CALL.

RET est aussi une instruction de branchement : le registre IP est modifié pour revenir à la valeur qu'il avait avant l'appel par CALL. Comment le processeur retrouve-t-il cette valeur ? Le problème est compliqué par le fait que l'on peut avoir un nombre quelconque d'appels imbriqués, comme sur la figure suivante :

[image: image9.jpg]Proc 1 Proc 2

CALL Proc 1 / CALL Proc / 3
“\\7 RET \ RET





L'adresse de retour, utilisée par RET, est en fait sauvegardée sur la pile par l'instruction CALL. Lorsque le processeur exécute l'instruction RET, il dépile l'adresse sur la pile (comme POP), et la range dans IP.

L'instruction CALL effectue donc les opérations :
· Empiler la valeur de IP. A ce moment, IP pointe sur l'instruction qui suit le CALL.

· Placer dans IP l'adresse de la première instruction de la procédure (donnée en argument).

Et l'instruction RET : 

· Dépiler une valeur et la ranger dans IP.

Remarque 1 :

Si la procédure appartient au même segment que le programme principal elle est dite de type NEAR sinon elle est dite de type FAR, la différence entre eux c'est que dans le premier cas le processeur doit empiler une seule valeur dans la pile c'est le registre IP mais dans le deuxième cas il faut empiler le registre IP ainsi que le registre segment CS et bien sur il les dépilera pendant le retour de la procédure.

Remarque 2 : Passage de paramètres

En général, une procédure effectue un traitement sur des données (paramètres) qui sont fournies par le programme appelant, et produit un résultat qui est transmis à ce programme. Plusieurs stratégies peuvent être employées :

1. Passage par registre : les valeurs des paramètres sont contenues dans des registres du processeur. C'est une méthode simple, mais qui ne convient que si le nombre de paramètres est petit (il y a peu de registres).

2.  Passage par la pile :  les  valeurs  des  paramètres  sont  empilées. La procédure lit la pile.

V-1-3 ) JMP : (Saut inconditionnel)
        Syntaxe :                        JMP cible

Si le JMP est de type NEAR alors IP = IP + Déplacement

Si le JMP est de type FAR  alors CS et IP sont remplacés par les nouvelles valeurs obtenues à partir de l'instruction.

JMP  transfert,  sans  condition,  la  commande  à  l'emplacement  de destination. L'opérande Cible peut être obtenu à partir de l'instruction elle- même (JMP direct) ou à partir de la mémoire ou à partir d'un registre indiqué par l'instruction.

V-2 saut conditionnel 
JC : (Saut si retenue)



Si  CF=1  alors  IP  =  IP  +  déplacement

JE/JZ : (Saut si égal/Si zéro)


Si  ZF=1  alors  IP  =  IP  +  déplacement

JNC : (Saut si pas de retenue)


Si  CF=0  alors  IP  =  IP  +  déplacement

JNE/JNZ : (Saut si non égal ) Non zéro)

Si  ZF=0  alors  IP  =  IP  +  déplacement

JNO : (Saut si pas de débordement)

Si  OF=0  alors  IP  =  IP  +  déplacement

JNP/JPO : (Saut si pas de parité/ Si parité impaire)
Si  PF=0  alors  IP  =  IP  +  déplacement

JNS : (Saut si pas de signe)


Si  SF=0  alors  IP  =  IP  +  déplacement

JO : (Saut si débordement)


Si  OF=0  alors  IP  =  IP  +  déplacement

JP/JPE: (Saut si parité (paire)) 


Si  PF=1  alors  IP  =  IP  +  déplacement

JS : (Saut si signe (négatif))


Si  SF=1  alors  IP  =  IP  +  déplacement

V-3 ) Les instructions de boucle

V-3-1) LOOP : (boucle) :
Elle décrémente le contenu de CX de 1. Si (CX) ≠ 0 alors IP = IP + déplacement. Si (CX) = 0 l'instruction suivante est exécutée.

[image: image10.jpg]Exemple:

MOV AX, 05
MOV CX,05
INCAX

LOOP Début
MOV BX, AX.

8 SICX<0




L'exécution de l'instruction MOV BX, AX sera faite après l'exécution de la boucle 5 fois.

V-3-2) LOOPE  /  LOOPZ : (boucle si égale ou si égale à zéro) : Le registre CX est décrémenter de 1 automatiquement

Si CX est différent de zéro et ZF=1 alors IP = IP + déplacement

[image: image11.jpg]Exemple

MOV AX, 03
MOV CX, 6
DEBUT:  ADD DH, DL <\
INC AX \ sicx=0
Et AL=06
CMP AL, 06

LOOPZ DEBUT
€> MOV AH, 03





V-3-3 ) LOOPNE / LOOPNZ : (boucle si égale ou si égale à zéro) : Le registre CX est décrémenter de 1 automatiquement

Si CX est différent de zéro et ZF=0 alors IP = IP + déplacement

Exemple :
[image: image12.jpg]MOV AX, 03

MOV CX, 6
DEBUT:  ADD DH, DL \
INC AX \ ]5; X0
CMP AL, 06

LOOPZ DEBUT
MOV AH, 03

SICX=0
Ou AL=06





VII ) Les instructions de commande du processeur 
Ces instructions agissent sur le processeur et ses indicateurs (Flags) ils sont en nombre de 12 comme le montre le tableau suivant 

[image: image13.jpg]Tndicateur (FLAGS)

Met & 1 'autorisation dinterruption
Met & 0 l'autorisation dinterruption

Synchronisation

Halte jusqu'a interruption ou RESET
Attente jusqu'a broche TEST passe & 0
Pour un coprocesseur

Verrouillage des bus pendant Ia
prochaine instructions

Sans opération

NOP

Pas d’opération





VII-1 ) Indicateurs :

VII-1-1/ STC :

Met CF à 1 ; les registres d'indexation SI et/ou DI sont alors automatiquement décrémentés par les instructions de chaîne de caractère.

VII-1-2 ) STI :

Met IF à 1, permettant ainsi au CPU de reconnaître des demandes d'interruption masquables apparaissant sur la ligne d'entrée INTR.

VII-2 ) Synchronisation :

VII-2-1 ) HALT :

Maintient le processeur dans un état d'attente d'un RESET ou d'une interruption externe non masquable ou masquable (avec IF=1).

VII-2-2 ) WAIT :

Met le CPU en état d'attente tant que sa ligne de TEST n'est pas active. En effet toutes les cinq périodes d'horloge le CPU vérifie est ce que cette entrée est active ou non, si elle est active le processus exécute l'instruction suivante à WAIT.

VII-2-3 ) ESC :

L'instruction Escape fournit un mécanisme par lequel des coprocesseurs peuvent recevoir leurs instructions à partir de la suite d'instructions du 8086.

VII-2-4 ) LOCK :

Elle utilise dans les systèmes Multiprocesseur en effet elle permet le verrouillage du bus vis-à-vis des autres processeurs.

VII-3 Sans opération :

VII-3-1 ) NOP (No operation) :

Le CPU ne fait rien on peut s'en servir pour créer des temporisations.

Plus d’informations : 
http://www.technologuepro.com/microprocesseur/chap4_microprocesseur.htm
Complément de cours 3 : Interruptions système

Interruptions DOS

.Lecture d'un caractère (unique) au clavier avec écho   (avec écho signifie que le caractère tapé au clavier apparaît sur l'écran après la frappe)

Pas de nécessité de validation avec la touche "Entrée" : le caractère est acquis dès sa frappe au clavier.

Lecture d'un caractère frappé au clavier; après appel de l'interruption, le code ASCII du caractère est stocké dans le registre AL.

Paramètre d'entrée :
AH = 1

Appel d'interruption :
INT 21H

Paramètre de sortie : 
AL 

;  (AL) = code ASCII du caractère

Interruptions BIOS

.Affichage d'un caractère à l'écran 
Paramètres d'entrée :
AH = 0EH




AL = Code ASCII du caractère a afficher à l'écran

Appel d'interruption :
INT 10H

Paramètres de sortie : 
aucun

Complément de cours 4 : Codage ASCII

Codage ASCII des caractères

Le code ASCII du caractère '0' est 30h

Le code ASCII du caractère '1' est 31h

Le code ASCII du caractère '2' est 32h

...

Le code ASCII du caractère '9' est 39h

d'où l’algorithme de conversion chiffre ( code ascii :  code ascii = chiffre + 30h.
Exercice 1 : Programmation ASSEMBLEUR (ASM)
a) Installer le simulateur  8086 : Assembler with Microprocessor Simulator 8086 (fichier emu8086v408r.exe) téléchargeable à l’adresse : 

http://pcwin.com/Software_Development/Debugging/Assembler_with_Microprocessor_Simulator_8086/index.htm    (rubrique download)

b) A l’aide de l’émulateur 8086 (menu emulate) et des compléments de cours, réaliser et vérifier le fonctionnement des programmes suivants : (il est conseillé d’utiliser les registres généraux AX, BX, CX, DX ainsi que la pile) 
Calcul de la somme S des N premiers entiers

1- Sans Entrées/Sorties :
 0 < N < 100 
(N entier)

1a- Par itération : S = somme de i (de i = 1 à N) : chargement de N en dur et visualisation du résultat via l'émulateur

1b- Par formule de Gauss : S = N(N+1)/2 : chargement de N en dur et visualisation du résultat via l'émulateur

Test : N = 99; S = 4950 = 1356h

2- Avec Entrées/Sorties :
0 < N < 4 
(N entier)

2a- Par itération : S = somme de i (de i = 1 à N) : lecture de N au clavier et affichage du résultat à l'écran (utilisations des interruptions système)

Conseil : se placer en clavier Anglais pour l’acquisition de N au clavier

2b- Par formule de calcul : S = N(N+1)/2 : lecture de N au clavier et affichage du résultat à l'écran (utilisations des interruptions système)

Conseil : se placer en clavier Anglais pour l’acquisition de N au clavier

Test : N = 3; S = 6 = 0006h

3- Facultatif : Avec Entrées/Sorties : 0 < N < 10    (N entier)

3a- Par itération : S = somme de i (de i = 1 à N) : lecture de N au clavier et affichage du résultat à l'écran (utilisations des interruptions système)

Conseil : se placer en clavier Anglais pour l’acquisition de N au clavier

Test : N = 9; S = 45 = 002Dh

Calcul de la somme S2 des carrés des N premiers entiers

4- Calcul de la somme S2 des N premiers carrés des entiers

Sans Entrées/Sorties : 
N (entier) : 0 < N < 9 :

4a- Par itération : S2 = somme de (i*i) (de i = 1 à N) : chargement de N en dur et visualisation du résultat via l'émulateur

4b- Par formule : S2 = N(N+1)(2N+1)/6 : chargement de N en dur et visualisation du résultat via l'émulateur

Test 1 : N = 3; S2 =  14 = 000Eh

Test 2 : N = 8; S2 = 204 = 00CCh
__________





















TD3.



8

