COURS D’ARCHITECTURE DES ORDINATEURS
Chapitre 5 : Exceptions et interruptions.

I) Gestion des interruptions :

L’environnement extérieur est très important, il faut en tenir compte. Quand le CPU travaille, il se s’intéresse pas au monde extérieur. Il a un fonctionnement synchrone (les instructions sont exécutées les une après les autres.

Le monde extérieur est aléatoire et imprévisible, on dit qu’il est asynchrone.(par ex : le temps de réponse de l’utilisateur est aléatoire) . Il y a un problème de synchronisation entre le CPU et le monde extérieur, il y a deux solutions : soit le programme attend la donnée arrive, soit le CPU lit quelque part si la donnée est prête. Si elle n’est pas prête, le CPU attend jusqu’à qu’elle le soit. 99% du temps, le CPU attend, il fait un travail de fond en attendant les instructions données par le monde extérieur, il exécute ces instructions et retourne a son travail de fond.

On parle alors d’un programme piloté par un flot de contrôle (ici contrôle à le sens de pilote), contrairement aux programmes piloté par un flot de donnée. La prise en compte des événements extérieurs s’appelle interruptions et exceptions. Termes dépendants des constructeurs, certains ne parlent que d’interruptions, une interruption est liée à un événement externe, la source est un périphérique, ce sont des événements asynchrones.

Les exceptions ou « interruption interne » sont parfaitement synchrone avec le CPU et sont liées au développement d’un programme. (ex : Anomalies détectées par le CPU (dépassement de pile), appel au système d’exploitation, division par zéro, défaut de page mémoire et défaut de parité mémoire.) (Rappel : un système d’exploitation est un programme qui remplace une machine physique en machine virtuelle, ce programme fournit des services et possèdent deux modes de fonctionnement : le mode utilisateur et le mode superviseur.)

Les interruptions viennent des événements extérieurs et sont liées aux périphériques. (Ex : requête de dispositifs d’Entrée/Sortie, défaut de parité mémoire.)

 On ne peut gérer un événement que si on est prêt avant, sa gestion est prévue mais sa date est inconnue. Pour une source donnée, on utilise toujours la même procédure. Il faut que l’arrêt du CPU soit propre (il doit finir l’instruction en cours). Il faut que l’on puisse reprendre la suite des instructions, pour cela on sauvegarde l’instruction que l’on vient de finir. Le CPU doit identifier la source de l’événement, il le fait grâce à un numéro, et alors le CPU lance la procédure (routine d’interruption) de l’adresse correspondante. Quelque part (dans la mémoire) il y a une table où chaque numéro d’événement correspond à une adresse de procédure.

Sur le CPU il y a une broche qui sert à ces événements, le CPU vérifie à la fin de chaque instruction si le bit de cette broche est à 1 ou à 0. Dés qu’il est à 1, le CPU sauvegarde l’adresse de retour (le compteur de programme), et le registre d’états. Il y a un autre endroit où l’adresse de la procédure est stocké : le contrôleur d’entrée/sortie, il est à l’écoute des périphériques, des interruptions et les signale au CPU. Il faut synchroniser et donc mémoriser l’événement. S’il y a plusieurs événements arrivent durant la même instruction, le contrôleur les stocke dans une file et fait le tri par priorité.

Les événements sont caractérisés par 3 éléments :

-le numéro (identificateur) = vecteur d’interruption (flèche qui oriente la bonne procédure)

-l’adresse de la procédure

-la priorité

Une interruption comporte deux parties :-interruption propre, sans donnée

 -traitement des données.

Le CPU exécute à un instant donné l’instruction pointé par le compteur de programme, à la fin de chaque instruction le CPU vérifie l’état d’interruption (1 bit). Quand il y a interruption, il faut sauvegarder le contexte (les copies des registres, mais pas obligatoire de sauvegarder les variables du programme interrompu.)

Dés que le CPU reçoit une interruption, il va sauvegarder les registres du CPU (données, adresses, PC, SR (registre d’états),…). Il faut sauvegarder le registre d’état (où il y à les résultats des opérations arithmétiques et logiques).

-Identification des IT :

Différents types d’IT et pour chacune un traitement idoine.

Dans la mémoire il y a une table de vecteur d’interruption où sont stockées toutes les adresses mémoire des procédures correspondante à un numéro d’IT. On parle alors d’interruption vectorisé.

Après la sauvegarde du PC et du SR, le CPU entame un cycle de lecture avec les contrôleurs d’interruptions.

[image: image1.png]Processeur Logiciel
1) Acceptation del'IT
2) Identification de 1T
3) Sawegarde des registres PC et SR
4) Activation de 2 routine d'interrution
= | Routine 41T

- sauvegarde registres (pust)

- taiternent spécifique acquittement physique

- restitution regitre (pop)

return flom T

<= (restaure FC & SR)

5) Retour exécution du prograrne interrorapu.

Pour réaliser cet acquittement, il faut répondre au contrôleur d’ITou aux périphériques que l’IT à été prise en compte, pour cela on utilise une instruction d’écriture. (Ex : pour le 68000 on utilise move et Intel on utilise Output)

[image: image2.png]RAM

Routine
1m0

-] PIC CPU

— int =

adesse routine IT0
adesse routine [T

4
-

registres

Cette table est protégée, on ne peut accéder à cette table.

-Gestion des priorités :

Deux manières de gérer cette file d’attente :

-utiliser un arbitre, il y a deux types d’arbitres : -centralisé (archi Maître-Esclave)

 -réparti : guirlande

-propriétés définies au niveau du contrôleur (programmable)

-Guirlande : Daisy Chain

Priorité élevée au plus proche du CPU, autorisation d’IT se propage de proche en proche. Plus on se rapproche du CPU, plus on est prioritaire.

-Masquage d’interruption

Les CPU ont une ou plusieurs entrées de signaux d’interruption.

-Interruption externe (ES) (1 broche sur X86, 3 sur 68K) : peut être masqué (CLI X86) ou démasqué (STI X86).

-NMI : Nom Maskable Interrupt : IT externe toujours prise en compte. (utilisée pour défaillance matérielle)

-IT logicielles, non masquables, appel des primitives de l’OS (pas d’entrées, générées par instruction INT X86, TRAP 68K)

[image: image3.png]Reset

CPU

Les broches NMI et Reset sont non-masquable et ont des priorités plus importantes.

-Architecture X86 :

Interruptions externes : entrée INTR.

Interruptions répercutées, hiérarchisées par PIC (pourra être mis en cascade , 64 niveaux)

[image: image4.png]1 Pic cPU
] int]
1 PIC —
Contrdleur —
ES1 =
N
—
Contrdleur

ES2

1ère IT prioritaire : Horloge IRQ0

2ème IT prioritaire : Clavier IRQ1

IRQ2 n’existe pas.

Un driver est un ensemble d’IT.

Le masquage d’une IT se fait en général par un bit placé dans le SR (registre d’état). Pour masquer une IT, on positionne (set) ce bit et pour démasquer , on le dépositionne (reset).Le CPU va regarder ce bit pour savoir s’il y a une IT.

Sur le 8086 il n’y a qu’une broche qui sert à savoir s’il y a une IT et c’est le contrôleur d’IT qui donne le numéro, l’adresse et la priorité.

Sur le 68K, il y a 3 broches, on présente un signal accompagné de sa priorité (avec 3 broches, on a donc 8 niveaux de priorité.). Le CPU prend l’IT si la priorité de celle-ci est supérieur à celle du travail de fond. Il faut mémoriser la priorité du travail de fond, pour cela on utilise 3 bits qui sont placés dans le SR.

[image: image5.png]Adresse

Data

68K

=

-Le mode DEBUG :

Le mode debug est une exception. En temps normal, on utilise pas ce mode debug car il consomme du temps (à cause du traitement de cette IT). Mais parfois on en a besoin pour optimiser un programme. Le CPU doit donc avoir deux modes de fonctionnements : le mode normal et le mode debug. Quand on fait du développement , de la mise au point, on le fait sur une machine différente qui n’utilise pas le système d’exploitation. Pour savoir quand on passe en mode debug, on positionne un flag dans le SR : le trap flag.

-Table de vecteurs d’IT :

L’adresse de procédure est repérée grâce au vecteur d’IT , il va récupérer cette adresse dans la table. Cette table est en mémoire centrale, à l’origine à une adresse fixe : à l’adresse 0. Elle contient 256 entrées, soit 256 sources d’IT (interruption + exception) (Ex : Intel possède 64 interruptions extérieurs et 192 exceptions). Il n’y a pas de notion de priorité dans cette table mais il y a des emplacements statiques et dynamiques. Certaines IT sont statiques, situées en emplacement physique et fixés par le constructeur (ex : division par zéro, mode debug).

Les autres sont “libres”, c’est le programmeur qui entre dans le contrôleur d’E/S les instructions pour renvoyer l’adresse correspondante au numéro d’IT et donne la priorité.

On choisit le numéro parmi les emplacements libres. On doit regarder dans la table les numéros à emplacement dynamiques déjà utilisés. Les emplacements libres sont dans la base de données du S.E (Système d’Exploitation) (les emplacements statiques sont dans la documentation système et les emplacements dynamiques déjà utilisés sont stockés dans le S.E).

Quand on a choisit les numéros, on doit placer dans la table l’adresse de la procédure correspondante à l’IT. L’adresse doit être placée à un endroit libre en mémoire, pour savoir lesquels sont libres, on regarde la documentation système. Cette table n’a plus lieu d’être à un endroit fixe dans la mémoire. Le CPU doit connaître l’adresse de base de la table, qui est stockée dans un registre. C’est le S.E qui choisit cette adresse et qui peut la déplacer.

(Adr_mém = Adr_base + 4[image: image6.bmp] num_IT).

(N.B: Au démarrage, il y a masquage de toutes les IT avant que la table d’IT, la contrôleur d’IT,… ne soit en place).

Il faut protéger la table d’IT, le seul à pouvoir modifier cette table est le S.E, c’est lui qui installe les numéros d’IT. Il y a deux modes pour le S.E :

-le mode superviseur (on fait tout ce que l’on veut)

-le mode utilisateur (il y a des interdictions comme modifier la table d’IT).

Comment passe-t-on d’un mode à l’autre ?

-Superviseur [image: image7.bmp] utilisateur :

Initialement on se trouve en mode superviseur. Dans le SR il y a un bit (un flag) qui sert à savoir en quel mode on se trouve. Pour changer ce bit, on utilise une instruction.

-Utilisateur[image: image8.bmp] superviseur :

Quand notre programme est fini, on retourne vers le S.E . Si on accepte l’instruction de changement de mode, on doit arrêter le programme en cours pour éviter les instructions “mauvaises” (ex :virus, changement dans la table d’IT.). On arrête le programme grâce à une interruption. On définit alors une instruction qui génère une IT : on parle alors d’IT logiciel.

Toutes les routines d’IT font parties du S.E, les IT sont fournies par le fabricant.

-Exemple de routine d’IT (en général écrit en assembleur X86)

1ère étape : sauvegarde des registres PC et SR, passage en mode superviseur ; le CPU a récupéré le vecteur d’IT et va chercher l’adresse de la procédure dans la table d’IT pour la stocker ensuite de le PC.

C’est après la sauvegarde des registres que les IT sont démasquées

La routine d’IT est un producteur de données (l’écrivain) et le programme est le consommateur (le lecteur) .

Soit on lit, soit on écrit mais on ne peut pas faire les deux opérations en même temps.

Une ressource peut être de la mémoire, un fichier ou un équipement ; ici c’est de la mémoire. Une ressource critique est de la mémoire partagée, il y a plusieurs utilisateurs (producteur ou consommateur), au moins un de ces utilisateurs doit être un producteur et il n’y a non-simultanéité lecture-écriture.

Un programme ne sait pas quand il est interrompu, si durant l’interruption d’un programme une IT est activée (car elle est prioritaire), on place les données de cette routine est donc on écrase celle utilisées par le programme. Pour éviter cela, on doit empêcher la simultanéité en rendant les opérations séquentielles. L’IT est asynchrone, il faut masquer momentanément les IT pendant l’exécution du programme. Pour éviter de masquer les IT, on utilise le système de gestion de buffers circulaires. Lorsque les pointeurs de début est de fin se “touchent”, le buffer est plein et alors on utilise le masquage.

-IT logiciel

Evénement synchrone généré par le système, il fait des appels système. (Ex : intel utilise INT : interrupt) Le CPU ne peut donc pas récupérer le vecteur d’IT. Il faut alors mettre ce vecteur en arguments. (Ex : INT(10), INT(25),…)

LES IT LOGICIELS NE PEUVENT PAS ETRE MASQUEE.

-Reset

Le CPU à plusieurs sources d’IT : sur la broche int, IT périphériques (IT masquée), sur la broche NMI (Non Masquable Interrupt) et le bouton reset.

A la mise sous tension, le CPU s’initialise avec une adresse de début (toujours la même) qu’il stocke dans le PC, généralement à la fin du PC (Ex : Pentium FFFFFFF0h.) Le programme qui initialise le CPU est dans la ROM.

Le PC initial pointe sur la PROM.

La pile de trouve dans la RAM. Celui qui conçoit la carte mère et le CPU doit s’assurer qu’il y ait un minimum de RAM pour pouvoir stocker les données.

Quand on fait un reset, le contenu de la RAM n’est pas affectée.

