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CHAPITRE III : Ordre et comparaison.
I) Nombres et ordre.
1) Règles sur les comparaisons.
L’inégalité
[image: image1.wmf]ab

<

s’illustre sur un axe par le fait que le point A, d’abscisse a, est avant le point B, d’abscisse b, lorsque l’on parcourt l’axe dans le sens positif.

Comparaison de nombres décimaux : 

1) On regarde leur signe (on peut peut-être conclure). 

2) On compare les parties entières (on peut peut-être conclure). 

3) On compare les parties décimales (on peut conclure). 

Exemples :
1) 
[image: image2.wmf]3,821,08

-<

 (signe).

2) 
[image: image3.wmf]4,1641,6

<

 (parties entières).

3) 
[image: image4.wmf]2,6782,7

<

 (parties décimales).

Comparaison de nombres rationnels en écriture fractionnaire:

Soient a,b,c trois nombres décimaux positifs.
1) Les nombres 
[image: image5.wmf]a
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et 
[image: image6.wmf]b

c
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 sont rangés dans le même ordre que a et b.
2) Les nombres 
[image: image8.wmf]c
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et 
[image: image9.wmf]c

b
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sont rangés dans l’ordre contraire de a et b.
Exemples :

1) 
[image: image11.wmf]35

77

<

 car 
[image: image12.wmf]35
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.

2) 
[image: image13.wmf]1313
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>

 car 
[image: image14.wmf]2123
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.
Définition : (méthode de la différence.)
 Soient a et b deux nombres réels quelconques :
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Comparer deux nombres revient à étudier le signe de leur différence.
Exemples :

[image: image17.wmf]g

Comparer les fractions 
[image: image18.wmf]8
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et
[image: image19.wmf]7
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.
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  donc
[image: image21.wmf]87
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[image: image22.wmf]g

Comparer les deux nombres
[image: image23.wmf]p

et
[image: image24.wmf]3
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Avec la calculatrice : 
[image: image25.wmf]31,40
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->

;

 donc 
[image: image26.wmf]30
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->

 soit
[image: image27.wmf]3
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Sans la calculatrice : 
[image: image28.wmf]32
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 et 
[image: image29.wmf]2
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 donc
[image: image30.wmf]3
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. (comparaison à un nombre intermédiaire.)

  
[image: image31.wmf]g

 x étant un réel négatif, comparer
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et 
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d’où si 
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Théorème : comparaison à un nombre intermédiaire.
Soient a, b et c trois nombres réels :




Si 
[image: image41.wmf]ab
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et si
[image: image42.wmf]bc

<

, alors
[image: image43.wmf]ac
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.

Preuve : 
[image: image44.wmf]ab

<

 et 
[image: image45.wmf]bc
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 donc 
[image: image46.wmf]0
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 et
[image: image47.wmf]0
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[image: image48.wmf]()()0
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 car la somme de nombres négatifs est négative donc 
[image: image49.wmf]0
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, cad 
[image: image50.wmf]ac
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Exemples :

[image: image51.wmf]g

Comparer les deux nombres
[image: image52.wmf]8
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et
[image: image53.wmf]5
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[image: image54.wmf]87
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Théorème : Soient a, b, c et d quatre nombres réels :




Si 
[image: image57.wmf]ab
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, alors 
[image: image58.wmf]acbc
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 ;




Si 
[image: image59.wmf]ab
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et 
[image: image60.wmf]cd
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, alors
[image: image61.wmf]acbd
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.

On peut ajouter un même nombre aux deux membres d’une inégalité sans changer le sens de cette inégalité.

On peut ajouter, membre à membre, des inégalités de même sens.

On ne peut pas soustraire, membre à membre, des inégalités.
Preuve :

[image: image62.wmf]ab
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 donc 
[image: image63.wmf]0
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 d’où 
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<

 donc 
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Exemples :


[image: image72.wmf]g

Comparer 
[image: image73.wmf]3
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et 
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  d’où  
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Comparer les deux nombres
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Or 
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  d’où 
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Théorème : Soient a, b et c trois nombres réels :
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Preuve :

[image: image87.wmf]ab
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 donc 
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Si 
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, alors 
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 soit 
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 cad 
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Si 
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[image: image97.wmf]()0

cab

->

 soit 
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Exemples : 


[image: image100.wmf]g

Comparer
[image: image101.wmf](
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 d’où 
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Théorème : Soient a, b, c et d quatre nombres réels strictement positifs :




Si
[image: image107.wmf]ab
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et
[image: image108.wmf]cd
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, alors
[image: image109.wmf]acbd
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On peut multiplier, membre à membre, des inégalités de même sens dont les membres sont positifs.

On ne peut pas diviser, membre à membre, des inégalités.

Exemple:


[image: image110.wmf]g

Comparer
[image: image111.wmf]23

et
[image: image112.wmf]3
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On a vu que 
[image: image113.wmf]3
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et
[image: image114.wmf]23
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  d’où  
[image: image115.wmf]23

<
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2) Comparer les carrés, racines carrées et inverses de nombres.

Théorème : Soient a et b deux réels positifs :




Si 
[image: image117.wmf]ab
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, alors
[image: image118.wmf]22
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Si 
[image: image119.wmf]ab
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, alors
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Si
[image: image121.wmf]0
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, alors
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Autrement dit, le passage au carré et à la racine carrée de deux nombres positifs ne change pas l’ordre, mais le passage à l’inverse change l’ordre de l’inégalité.
Preuve :
 
[image: image123.wmf]g
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  d’où  
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Autre méthode : 
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  d’où
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  d’où 
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  d’où 
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Exemples :

Remarque : Si 
[image: image136.wmf]22

ab

£

, avec
[image: image137.wmf]0
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et
[image: image138.wmf]0

b
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,  alors 
[image: image139.wmf]ab
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.
Ainsi si les nombres sont positifs et comportent des radicaux, on peut comparer leurs carrés.
Exemple: comparer
[image: image140.wmf]18

 et 
[image: image141.wmf]42

+

.

 
[image: image142.wmf]18

>0 et 
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d’où 
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3) Comparer
[image: image148.wmf]23
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Théorème : Soit a un nombre réel positif :




Si 
[image: image151.wmf]1
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[image: image152.wmf]23
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Si 
[image: image153.wmf]01
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, alors
[image: image154.wmf]32
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II) Intervalles de
[image: image155.wmf]¡

.
1) Intervalles bornés et non bornés.
Définition : a et b sont deux nombres réels tels que
[image: image156.wmf]ab

<

.


L’ensemble des nombres réels x vérifiant la double inégalité
[image: image157.wmf]axb
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est appelé intervalle fermé de
[image: image158.wmf]¡

.


On le note
[image: image159.wmf][

]

;

ab

.


Les nombres a et b sont les bornes de l’intervalle
[image: image160.wmf][

]

;

ab

.



[image: image161.wmf]ba
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 est l’amplitude de l’intervalle
[image: image162.wmf][
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Représentation sur un axe gradué :

Rappel : L’ensemble des nombres réels
[image: image163.wmf]¡

est l’ensemble des abscisses des points d’une droite graduée (sur laquelle est choisi un repère (O ; I))

Soient A d’abscisse a, B d’abscisse b et M d’abscisse x.

[image: image164]
Soient a et b deux réels tels que
[image: image165.wmf]ab
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.

	Intervalles bornés
	Intervalle
	Ensemble des réels x tels que…
	Représentation sur la droite graduée

	Fermé
	
[image: image166.wmf][
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[image: image167.wmf]axb
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	Semi-ouvert (à droite)
	
[image: image168.wmf][
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;
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[image: image169.wmf]axb

£<


	

	Semi-ouvert (à gauche)
	
[image: image170.wmf]]
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	Ouvert
	
[image: image172.wmf]]
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[image: image173.wmf]axb
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	Intervalles non bornés
	Intervalle
	Ensemble des réels x tels que…
	Représentation sur la droite graduée

	Fermé
	
[image: image174.wmf][
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	Ouvert
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	Fermé
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	Ouvert
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Remarque : 
[image: image182.wmf]g



[image: image183.wmf]+¥

et 
[image: image184.wmf]-¥

 ne sont pas des nombres ; ce sont des symboles. 

Du côté de ces deux symboles, qui se lisent « plus l’infini » et « moins l’infini », le crochet de l’intervalle est toujours ouvert.
        
[image: image185.wmf]g
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[image: image188.wmf]g
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[image: image191.wmf]g


[image: image192.wmf]]

[

;

-¥+¥=

¡


 
[image: image193.wmf]g

L’ensemble vide ne contient aucun élément ; il se note
[image: image194.wmf]Æ

, sans accolades, ni                 parenthèses. 

       
[image: image195.wmf]g

Un ensemble contenant un seul réel a se note
[image: image196.wmf]{

}

a

ou
[image: image197.wmf][
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Applications:

1) Dans chacun des cas, dire à quel intervalle appartient le réel x, puis le dessiner :

a) 
[image: image198.wmf]32
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b) 
[image: image199.wmf]1,54

x
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c) 
[image: image200.wmf]3

x

>


      2)Traduire par des inégalités l’appartenance du réel x à chacun des intervalles suivants :



a) 
[image: image201.wmf]]
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b)
[image: image202.wmf][
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      3)  Sachant que
[image: image203.wmf][
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, déterminer un encadrement de x. 
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 se traduit en inégalités par 
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[image: image206.wmf]6312
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[image: image207.wmf]24
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on obtient alors : 
[image: image208.wmf]42
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2) Intersection et réunion de deux intervalles.

Définitions 

          
[image: image209.wmf]g

L’intersection de deux intervalles I et J est l’ensemble des réels appartenant à I et à J.



On le note  
[image: image210.wmf]IJ

I

. (
[image: image211.wmf]I

se lit inter)




Si 
[image: image212.wmf]xI

Î

et 
[image: image213.wmf]xJ

Î

, alors 
[image: image214.wmf]xIJ

Î

I

.

[image: image215.wmf]g

La réunion de deux intervalles I et J est l’ensemble des réels appartenant à I ou à J (ou aux deux à la fois). 
On le note  
[image: image216.wmf]IJ

U

.  (
[image: image217.wmf]U

se lit union) 




Si 
[image: image218.wmf]xI

Î

ou 
[image: image219.wmf]xJ
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, alors 
[image: image220.wmf]xIJ
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.
Exemples :

1) Pour 
[image: image221.wmf][

]
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 et 
[image: image222.wmf]]
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, déterminer 
[image: image223.wmf]IJ
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et 
[image: image224.wmf]IJ

U
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Méthode :On représente les intervalles I et J sur un schéma :


[image: image225]

[image: image226.wmf]g

L’intersection 
[image: image227.wmf]IJ

I

est l’ensemble des réels représentés deux fois.

[image: image228.wmf]g

La réunion 
[image: image229.wmf]IJ

U

est l’ensemble des réels représentés au moins une fois.
Ainsi 
[image: image230.wmf][
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2) Pour 
[image: image232.wmf][
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[image: image233.wmf][
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, déterminer
[image: image234.wmf]IK
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et
[image: image235.wmf]IK
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[image: image236]
Ainsi 
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 l’écriture ne se simplifie pas ici.
Remarque : 
[image: image239.wmf]g

Une intersection d’intervalles de
[image: image240.wmf]¡

est toujours un intervalle. 

[image: image241.wmf]g

Une réunion d’intervalles de
[image: image242.wmf]¡

n’est pas toujours un intervalle. C’est un      intervalle lorsque l’intersection n’est pas vide.

En effet : 
[image: image243.wmf][
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 .  Ce n’est pas un intervalle étant donné qu’il y a un « trou » entre 5 et 6.

III) Valeur absolue et distance.

1) Valeur absolue d’un nombre réel.
Définition : Soit M le point d’abscisse x sur une droite graduée d’origine O.



On appelle valeur absolue de x la distance OM, elle se note
[image: image244.wmf]x
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On écrit
[image: image245.wmf]xOM
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Si
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Conséquence : D’après la définition, on a immédiatement que :
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Exemples : 
[image: image251.wmf]2323
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  et 
[image: image252.wmf]23(23)1
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Remarques : 

[image: image253.wmf]g

 la valeur absolue d’un nombre réel est toujours positive et de plus, on a également que
[image: image254.wmf]xx
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pour tous les nombres réels x. 
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La racine carrée du carré d’un nombre est égale à la valeur absolue de ce nombre :
[image: image256.wmf]2
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Exemples : 
[image: image257.wmf]g

 
[image: image258.wmf]2

(2)22

-=-=




[image: image259.wmf]g
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2) Distance entre deux réels.
Définition : Soient A et B deux points d’abscisse a et b sur une droite graduée d’origine O.
On appelle distance de a à b la distance AB ; elle se note
[image: image261.wmf]ab
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Si
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Conséquence : 
[image: image266.wmf]  si 
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Exemples : 
[image: image267.wmf]g

La distance de -3 à 4 est égale à
[image: image268.wmf]34

--

, cad à
[image: image269.wmf]7

-

, donc à 7.  

[image: image270.wmf]g

La distance de
[image: image271.wmf]11

à 3 est égale à
[image: image272.wmf]113
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, cad à
[image: image273.wmf]113
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 puisque la différence
[image: image274.wmf]113
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est positive.   
3) Résoudre une équation ou une inéquation avec valeur absolue.

Propriétés :


[image: image275.wmf]g

Si
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Si
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Applications : 

1) En utilisant la distance, résoudre les inéquations suivantes :

a) 
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b) 
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.

2) Résoudre :

      a)
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b) 
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4) Valeurs approchées d’un réel à la précision e.

Définition : Soit e est un nombre postitif.


On appelle valeur approchée d’un nombre réel x à la précision e (on dit aussi : à e près) tout nombre a tel que
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 et on peut écrire :
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.
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Exemples : 1,4 est une valeur approchée de
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 à 0,1 près (10-1 près)

car 1,4 – 0,1 ( 
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 ( 1,4 + 0,1
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Applications :

1) 
a) Compléter l’inégalité :
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x

-£

 de façon à traduire que 2,35 est une valeur approchée de x à
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10

-

près. 

b) Compléter l’inégalité :
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x
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 de façon à traduire que 2,1 est une valeur approchée de x à 
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près. 

2) Parmi les nombres suivants quels sont ceux qui sont une valeur approchée de 0,109 à 
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10

-

près :


0,11 ;

0,1 ;

0,118 ;

0,108 ;

0,12 ;

0,099. 
Emilie Bouchez
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