SOLUTIONS 4
1) Voici les fonctions du #1 :
A) int occurences(int * tab, int taille, int celuila)

 { int *ptr;

int nombre = 0;

 for (ptr=tab; ptr < (tab+taille); ptr++)

 if (*ptr == celuila)
nombre++;

 return nombre;

 }

B) int nb_de_fois(int * tab, int debut, int fin, int celuila)

 { int j;

 int nombre = 0;

 for (j = debut; j < fin; j++)

 if (tab[j] == celuila)
nombre++;

 return nombre;

 }

C) int moitie_egaux(int * tab, int taille)

 { int i, mid;

 mid = (taille % 2) ? (taille/2)+1 : (taille/2);

 for (i=0; i< taille/2; i++){

 if (nb_de_fois(tab, 0, (taille/2), tab[i])

 != nb_de_fois(tab, mid, taille, tab[i]))
 return 0;

 }

 return 1;

 }

D) int nb_uniques(int * tab, int taille)

 { int i, nbUn = 0;

 for (i=0; i<taille; i++)

 if (occurences(tab, taille, tab[i]) == 1)
nbUn++;

 return nbUn;

 }

2) RÉPONSE : 4 3 2 1 0
3)
5 2 5

2 7

5 5
4) int mélange (int * i1, int * i2, int * i3)

{ int temp = *i1;

 *i1 = *i3;

 *i3 = *i2;

 *i2 = temp;

 return *i1 + *i2 + *i3;

}

5) A) int main(void)

 { long x = 5, y = 2;
 //mystere (&x, *y); printf("%ld", x); version originale

 mystere (&x, y); //version corrigée
 printf("%ld", x); //version corrigée

 x = 3; y = -2;

 //mystere (*x, y); printf("%ld", x*y); version originale

 mystere (&x, y); //version corrigée
 printf("%ld", x*y);

 //ATTENTION : ici on multiplie la variable « x » avec y == -2

 return 0;

 }

 B) 32 16
/* librairie utile pour les exercices 6 & 7 */
#include <string.h>
6) A - int nb_voyelles((const char* s){

int i, nb_voy = 0,

taille = strlen(s);

for (i=0 ; i<taille; i++)

 if ((s[i]== ’A’) || (s[i]== ’a’) ||

 (s[i]== ’E’) || (s[i]== ’e’) ||

 (s[i]== ’I’) || (s[i]== ’i’) ||

 (s[i]== ’O’) || (s[i]== ’o’) ||

 (s[i]== ’U’) || (s[i]== ’u’) ||

 (s[i]== ’Y’) || (s[i]== ’y’))

nb_voy++;

return nb_voy;

 }

 B - int compte_conjoint(const char* s1, const char* s2){

int i, j, nb = 0,

taille1 = strlen(s1), taille2 = strlen(s2);

for (i=0 ; i<taille1; i++) //pour chaque lettre de s1..

 for (j=0 ; j<taille2; j++)

if (s1[i] == s2[j]) {

 nb++;

 break; //sortir du «for j» pour pas compter 2 fois

}

return nb;

 }

7)
A) void enleveStr(char *s1, int i, int j)

 (do (

 j++;

 s1[i] = s1[j];

 i++;

(while (s1[j] != ’\0’);

 (
B) void brasseStr(char *s1, int i)

 (char stemp[i+1];

 int j;

 /* faire une copie des i premiers caractères de s1 à stemp */

 for (j=0; j < i; j++)

 stemp[j] = s1[j];

 stemp[j] = ’\0’;
//fermer la chaîne

 /* enlever les i premiers caractères de s1 */

 enleveStr(s1, 0, i-1);

 /* ajouter la chaîne stemp à la fin de s1 avec « strcat » */

 strcat(s1, stemp);

 (
C) void boucleStr(char *dest, char *src, int nb, int dim)

 (int copies = 0, l = strlen(src);

 dest[0] = ’\0’;

//vider la chaîne

 /* déterminer le nombre de fois que « src » peut être copié dans « dest ».
 Il faut laisser une place de plus pour le ’\0’. */

 while (((dim-1) - copies*l) >= l)

 copies++;

if (copies > nb) copies = nb;

 /* on fait « copies » copies de « src » dans « dest » */

for (; copies > 0; copies--)

 strcat(dest, src);

 (
PAGE
1

