LP 15 Premier principe de la thermodynamique

Energie interne. Conséquences

Introduction: On considère un système 
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On peut en principe traiter l'énergie totale du système 
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. De plus, cette énergie obéit au lois de conservation et d'invariance d'un système isolé. 

Cependant, pour un système macroscopique, il est impossible de connaître en détail les divers arrangements microscopiques 
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. Il faut donc "inventer" des grandeurs thermodynamiques, au niveau macroscopique pour pallier l'absence de prise en compte détaillée du comportement microscopique.

A) Energie interne, premier principe de la thermodynamique:


1) Description d'un système macroscopique:

Considérons un système macroscopique quelconque. Dans le cadre d'une description macroscopique, son état d'équilibre, c'est-à-dire lorsque rien, au niveau macroscopique, ne semble fluctuer, est décrit par un nombre assez restreint de paramètres. Par exemple, pour un gaz maintenu confiné dans une enceinte, un état d'équilibre peut être décrit par le nombre de molécules présentes dans l'enceinte, par la pression qui y règne, par le volume et la température de la pièce. Pour un solide, il en est de même, et les paramètres macroscopiques de description sont les mêmes.

Par ailleurs, lorsque l'on modifie de l'extérieur un des paramètres caractérisant l'état d'équilibre, il se produit une modification de l'état macroscopique du système, c'est-à-dire des divers paramètres, jusqu'à un nouvel état d'équilibre. Par exemple, lorsque l'on augmente la température d'un gaz contenu dans un ballon, on constate une dilatation de ce gaz.

Cependant, en toute rigueur, le système est décrit par 6N paramètres, où N est le nombre de constituants élémentaires du système, chacun ayant une position et une vitesse à un instant t donné. Il faut donc trouver une correspondance entre ces 6N paramètres et les quelques paramètres macroscopiques qui caractérisent le système.


2) Energie d'un système macroscopique:

On peut écrire, si on considère que le système est constitué de N constituants élémentaires (atomes, molécules…) que l'énergie totale de ce système vaut 
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, où 
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désigne la vitesse de déplacement de l'ensemble du gaz. On peut donc définir une énergie interne microscopique comme 
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En toute rigueur, du fait des chocs très nombreux entre les diverses particules, cette énergie varie en permanence. Cependant, en raison de l'existence d'un état d'équilibre macroscopique observable, on peut dire que cette énergie fluctue autour d'une valeur moyenne, caractérisée uniquement par les quelques variables macroscopiques 
[image: image7.wmf]E
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Par ailleurs, dans le référentiel du système (
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), cette énergie est constante tant que le système reste isolé, c'est-à-dire qu'il n'échange pas d'énergie avec l'extérieur.

3) Fonction énergie interne U.

On peut donc définir une fonction énergie interne, qui ne dépend que des paramètres macroscopiques, c'est-à-dire qui est une fonction d'état, extensive, c'est-à-dire que 
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, reliée à l'énergie totale microscopique par:
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Par ailleurs, tout comme E elle obéit au principe de conservation, c'est-à-dire que pour un système 
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 et donc que pour un système isolé, on a 
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. Par ailleurs, U étant une fonction d'état, si un système évolue entre deux états caractérisés par les mêmes valeurs des variables macroscopique, c'est-à-dire qu'il effectue un cycle, on a également 
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Nous allons voir qu'il n'existe en fait que deux moyens d'apporter de l'énergie à un système.

B) Echanges d'énergie:


1) Notion de travail, échange d'énergie par travail:



a) Forces de pression

On considère le dispositif suivant:
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Le travail fourni au système (compté positivement) vaut ici, pour un déplacement dx du piston:
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Ceci est la forme la plus générale du travail fourni par les forces de pression.

Cependant, pour une transformation quasistatique, c'est-à-dire où le système est en permanence en équilibre avec le milieu extérieur, on a 
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Et le travail échangé lors de la transformation vaut:
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Remarque: on a noté le travail élémentaire 
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 et non 
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car 
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 dépend du chemin suivi. En effet, considérons une transformation 
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 dans un diagramme 
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On voit par ailleurs que "le travail d'un système" n'a aucun sens. Celui-ci ne caractérise qu'un échange d'énergie.

Quelques cas particuliers:

· isobare : 
[image: image24.wmf](
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· isochore: 
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· transformation quasistatique fermée






b) Autres formes de travail

Il existe bien entendu d'autres manières de fournir du travail à un système:

· tension superficielle: 
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· travail électrique: 
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et bien d'autres exemples…


2) Echange d'énergie par transfert de chaleur:



a) Définition

Le travail, en thermodynamique, ne suffit par à décrire tous les échanges entre un système et son environnement.

En effet, 
[image: image28.wmf]W

dU

d

=

est en général faux car 
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est une fonction d'état alors que W dépend du chemin suivi. On doit donc rajouter une autre grandeur.

Par définition, le "reste" est appelé chaleur.



b) Expression de l'échange de chaleur; coefficients calorimétriques:

Si au cours d'une transformation quasistatique élémentaire 
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 le système échange et voit sa température varier de 
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où 
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est appelée capacité calorifique du système pour la transformation 
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Par exemple on définit 
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la capacité calorifique à volume constant et 
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à pression constante.

De manière générale, un système est décrit par trois variables donc deux sont indépendantes. Ainsi on peut écrire:
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3) Exemples de transfert de chaleur:



4) Premier principe de la thermodynamique:

Il s'énonce ainsi:

La variation d'énergie interne d'un système est égal à la somme du travail et de la chaleur reçue par le système.

Mathématiquement on a donc
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Remarque: le travail et la chaleur dépendent du chemin suivi pour passer de 1 à 2 alors que la variation d'énergie interne ne dépend que de ces états.

Pour une transformation infinitésimale, on peut également écrire:
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Remarque: il est fondamental de bien définir le système auquel on s'intéresse. En effet:


B) Conséquences du premier principe


1)Expression des coefficients calorimétriques:

Si on écrit:
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on en déduit alors que:
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En se servant du fait que dU est une différentielle totale, on peut également trouver une relation entre ces coefficients: 
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 Si on utilise l'expression de Q en variable T et P, on a:
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Introduisons alors la fonction enthalpie 
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 et donc les trois relations:
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Remarque: U et H on le même contenu physique et leur existence traduit le premier principe. Si on veut exprimer le premier principe:

· en variables T et V, on utilise U

· en variables T et P, on utilise H
2) Application au gaz parfait:

On a vu dans la leçon sur le G.P. que l'énergie du G.P. ne dépend que de la température, d'où on tire immédiatement que 
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De même on doit avoir 
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On peut également en déduire que 
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Soit la relation de Mayer: 
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Par ailleurs on a pour une adiabatique quasistatique:
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Or on a , d'après la relation de Mayer 
[image: image57.wmf]R

c

c

v

p

=

-

  donc 
[image: image58.wmf]1

1

-

=

-

=

g

v

p

v

c

c

c

R


Soit pour une adiabatique quasistatique:
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3) Détentes de Joule et de Joule Thompson.

Il existe deux transformations qui revêtent un intérêt historique fondamental, en particulier puisque les résultats de ces détentes on permis de valider le modèle du gaz parfait.



a) Détente de Joule:

Initialement, les deux compartiments sont isolés l'un de l'autre par un robinet, le premier contenant du gaz à la pression 
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, à la température 
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, pour un nombre de molécules n dans un volume 
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. L'autre est vide, de volume 
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On ouvre alors le robinet, de manière à ce qu'il n'y ait aucun échange de chaleur par frottement.

Les parois sont supposées adiabatiques, donc 
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. Par ailleurs, le travail que va fournir le gaz pour s'étendre va être nul, puisque 
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Si on suppose alors que le gaz est un gaz parfait, alors comme l'énergie interne ne dépend que de la température, on a 
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b) Détente de Joule Thompson:

Il s'agit d'une détente:

· isenthalpique 

· adiabatique

On a donc 
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 si le gaz est un gaz parfait. En pratique 
[image: image69.wmf]0

¹

D

T

, et le signe de la variation de la température dépend du gaz considéré.
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W=-A si sens rétrograde


W=A si sens direct
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