FILIERE INFORMATIQUE D'ENTREPRISE
EXAMEN PROBATOIRE

SESSION MARS 2004
LES MODELES

D'EXECUTION REPARTIE
Par :
DOMINIQUE BOULET
Professeur responsable :
BERNARD MORAND

I
INTRODUCTION
4
II
PRINCIPE DES DIFFERENTS MODELES
4
1
MODELE CLIENT / SERVEUR
4
2
MODELE DE COMMUNICATION PAR MESSAGE
5
3
MODELE DE COMMUNICATION PAR EVENEMENT
6
4
MODELE A COMPOSANT
7
5
MODELE A BASE DE CODE MOBILE OU AGENT MOBILE
7
a
Code "à la demande"
7
b
Agent mobile
8
6
MODELE A MEMOIRE "VIRTUELLE" PARTAGEE OU A OBJET DUPLIQUE
8
a
Modèle à mémoire dupliquée
8
b
Modèle à objet dupliqué
9
III
MISE EN ŒUVRE DES DIFFERENTS MODELES
9
1
MODELE CLIENT / SERVEUR
9
a
Client / serveur « traditionnel »
9
b
Client / serveur « à objet »
10
c
Client / serveur "Web"
11
d
Client / serveur "de donnée"
11
e
Client / serveur "à composant"
12
2
MODELE DE COMMUNICATION PAR MESSAGE
12
a
"Middleware" à messages : MOM
12
b
Deux extensions au modèle de base
13
3
MODELE DE COMMUNICATION PAR EVENEMENT
13
a
"Publish / Subscribe"
13
b
Java Message Service
15
4
MODELE A COMPOSANT
15
a
Java Bean
16
b
EJB
16
5
MODELE A BASE DE CODE MOBILE OU AGENT MOBILE
16
a
Modèle à code mobile :
16
b
Modèle à agent mobile
17
c
Les systèmes à agents mobiles actuels :
17
6
MODELE A MEMOIRE "VIRTUELLE" PARTAGEE OU A OBJET DUPLIQUE
18
a
Modèle à mémoire dupliquée
18
b
Modèle à objet dupliqué
19
III
EVALUATION DES DIFFERENTS MODELES
19
1
MODELE CLIENT / SERVEUR
19
a
Modèle client / serveur "traditionnel"
19
b
Client / serveur "à objet"
20
c
Les limites du modèle client–serveur
20
2
MODELE DE COMMUNICATION PAR MESSAGE
21
3
MODELE DE COMMUNICATION PAR EVENEMENTS
21
4
MODELE A BASE DE CODE MOBILE OU AGENT MOBILE
21
5
MODELE A MEMOIRE PARTAGEE OU OBJET DUPLIQUE
22
a
Modèle à mémoire partagée
22
b
Modèle à objet dupliqué
22
c
Limites et perspectives
22
6
MODELE A COMPOSANTS
22
III
CONCLUSION
23
ANNEXE A : GLOSSAIRE
24
ANNEXE B : REFERENCE
25

I INTRODUCTION

La demande en applications réparties : commerce électronique, flots de données, etc... est de plus en plus forte car les entreprises ou organismes doivent avoir accès ou partager des ressources et des informations de plus en plus distantes.
L'amélioration des débits dans les réseaux connectés (Internet, et les Intranet), l'augmentation des performances des processeurs et des matériels, la baisse des coûts de connections et des appareils électroniques ont permis de réaliser des applications réparties de plus en plus performantes.
Les environnements d'exécution répartie constituent le support indispensable aux développements d'applications réparties. L'utilisation de ces environnements connaît une croissance importante due à l'extension des domaines d'applications des systèmes répartis.

Du plus ancien paradigme, l'échange de messages, aux plus récents, agents mobiles et composants, nous allons exposer les différents principes, la mise en œuvre et l'évaluation de ces différents modèles.

II PRINCIPE DES DIFFERENTS MODELES
1 MODELE CLIENT / SERVEUR

[image: image1.png]

[image: image2.wmf]

[image: image3.wmf]
[image: image4.wmf]

[image: image5.wmf]

[image: image6.wmf]
Ce modèle fait appel à des services distants au travers d’un échange de messages (les requêtes) plutôt que par un partage de données (mémoire ou fichiers).
Deux entités :

-
Le serveur est un programme offrant un ensemble de services exécutables sur un réseau (par extension, machine offrant un service). Il gère suivant des priorités les requêtes. Il exécute les requêtes émises par les clients. L'exécution des services peut être séquentielle ou parallèle. Il peut mémoriser l'état du client.

-
Le client est un programme qui émet des requêtes (demandes de service) et attend la réponse. Son mode d'exécution est synchrone. Il est toujours l’initiateur du dialogue.
Vu coté client :

Vu coté serveur

Deux messages au moins sont échangés :

-
Le premier message correspond à la requête. Il est celui de l’appel de procédure, porteur des paramètres d’appel.

-
Le second message :
correspond à la réponse. Il est celui du retour de procédure, porteur des paramètres résultats.

2 MODELE DE COMMUNICATION PAR MESSAGE

Le mode de communication est asynchrone. L'émission est non bloquante. La réception est bloquante, elle est en attente jusqu'à réception d’un message.
Le mode de communication entre processus ou agent est soit directe soit indirecte via des "portes" (boites aux lettres). Les messages peuvent être typés

Réalisation d'un échange asynchrone

[image: image7.png]0]

Réalisation d'une interaction de type "client-serveur"

[image: image8.png]0]

[image: image9.png]0]

3 MODELE DE COMMUNICATION PAR EVENEMENT

Le concept de base : nous avons des événements et des réactions. Les réactions sont les traitements associés à l’occurrence d’un événement. Nous avons une association dynamique entre un événement et une réaction. L’émetteur est indépendant des «consommateurs » d’un événement. La communication est anonyme.

4 MODELE A COMPOSANT

Un composant est un module logiciel autonome pouvant être installé sur différentes plateformes. Un composant comporte des entrées et des sorties pour établir des connexions. Un composant exporte différents attributs, propriétés ou méthodes.

Un composant possède des propriétés déclarées qui permettent de le configurer et qui le rende capable de s'auto décrire.

Les composants sont les briques de bases configurables pour permettre la construction d'applications par composition.

5 MODELE A BASE DE CODE MOBILE OU AGENT MOBILE

Ces programmes peuvent se déplacer d’un site à un autre. Ils sont utilisés pour rapprocher le traitement et les données, réduire le volume de données échangées sur le réseau et répartir la charge.
a Code "à la demande"
La mobilité est dite "faible", seul le code exécutable est mobile.

b Agent mobile
Les agents mobiles sont des processus incluant du code et des données. Ils peuvent se déplacer entre des machines pour réaliser une tâche. L'agent est un objet actif. Il peut communiquer avec d'autres agents, se déplacer en fonction de ses besoins et suivre un itinéraire.
Sa mobilité est "faible", le code exécutable et les données modifiées sont mobiles. Sa mobilité est "forte", le code exécutable, les données et le contexte d'exécution sont mobiles.

6 MODELE A MEMOIRE "VIRTUELLE" PARTAGEE OU A OBJET DUPLIQUE

Ce modèle permet la simulation d’une mémoire globale partagée d’objets. Le système prend en charge le chargement « à la demande » des copies des données, et la gestion de la cohérence des données partagées répliquées.

a Modèle à mémoire dupliquée

C'est une extension aux systèmes répartis des méthodes de partage de la mémoire commune, du système de fichiers, de la mémoire virtuelle.
b Modèle à objet dupliqué

Il fournit des objets partagés par couplage dans les espaces d'adressage des structures d'exécution réparties (couplage virtuel).
III MISE EN ŒUVRE DES DIFFERENTS MODELES
1 MODELE CLIENT / SERVEUR
a Client / serveur « traditionnel »

· RPC

RPC ONC de Sun et RPC DCE de Open Group sont les deux normes principales :
Les modèles RPC sont orientés programmation procédurale. Ils limitent le travail du programmeur en offrant des programmes qui décrivent la fonction et génèrent le stub et le skeleton. Ils fonctionnent essentiellement avec TCP et UDP.

Le modèle RPC DCE est équivalent à ONC avec en plus de la sécurité et des threads.

XML RPC et SOAP sont deux autres normes, dont la représentation des données est en XML:

Principe de réalisation [Birrel & Nelson 84]

L’opération à réaliser est présentée sous la forme d’une procédure (le service) située sur un site distant, dont le client demande l’exécution.
Rôle des talons :
Talon client ou stub:

Il reçoit l'appel en mode local, "emballe" les paramètres et transforme l'appel local en appel distant en envoyant un message. Il attend les résultats en provenance du serveur, "déballe" les paramètres résultats et les retourne au programme client.
Talon serveur ou skeleton:
Il reçoit l'appel sous forme de message, "déballe" les paramètres d'appel. Il fait réaliser l'exécution sur le site serveur par la procédure de service invoquée. Il "emballe" les paramètres résultats et les retransmet par message.

b Client / serveur « à objet »

-
RMI

Technologie spécifique Java : RPC en Java, orienté objet.
Elle utilise les propriétés de l'objet: encapsulation, modularité, réutilisation, polymorphisme et composition.

Un programme Java obtient une référence vers un objet ("pointeur") et exécute ce programme. C'est un objet distant.

Grâce aux stubs, cet objet distant s'utilise comme un objet local.

Il existe deux versions:

RMI – JRMP: version d'origine, spécifique à Java.

RMI – IIOP: plus récente, compatible avec CORBA.
-
CORBA
Le client et le serveur peuvent être écrits dans des langages différents.
IDL est un langage d’interface qui permet de définir des objets intermédiaires (CORBA) existant dans un serveur intermédiaire « broker ». L’IDL suffit à invoquer une méthode sur un objet (notion d’interface-contrat).
Les appels de méthodes transitent par des ORB. Les ORB constituent un bus logiciel qui communique avec un ensemble de protocoles standardisés (IIOP, GIOP)

CORBA propose plusieurs services dont le service de nommage hiérarchique réparti CosNaming normalisé par l'OMG.
c Client / serveur "Web"
[image: image10.wmf]
[image: image11.wmf]
[image: image12.wmf]
La requête est conforme à HTTP1.1 (méthodes "get"et "post") ~URL + paramètres (normalisé).
Le serveur Web résout le nommage et active un traitement coté serveur (servlet, CGI-bin, jsp…)

Le serveur répond en renvoyant un « stream » dont il déclare le type (HTML ou autre…)
d Client / serveur "de donnée"

Coté client : le code de l'application n'est pas lié aux données, nous avons la séparation des données et des traitements.

Le médiateur gère les requêtes, les caches et les connexions.

-
Environnement Applicatif Commun (CAE) de l’X/OPEN

L'objectif de CAE est la portabilité des applications.
L'interface applicative CLI répond au standard des appels SQL depuis un programme (C, Cobol, ...) Elle assure la connexion et la déconnexion. Elle gère la préparation et l'exécution des requêtes.
-
ODBC

Coté client : le code de l’application n'est pas lié aux données, nous avons la séparation des données et des traitements.

Le médiateur (DBLib) gère la préparation et la communication des requêtes, les caches, la connexion et la déconnexion.
-
ODMG

ODMG est utilisé pour les bases de données à objets basés sur le modèle OMG. Le langage de définition de données ODL est basé sur l'IDL de l'OMG. Le langage de requêtes OQL est une évolution de SQL.
e Client / serveur "à composant"
Le modèle des composants répartis est basé sur l'approche orienté objet. Comme un objet, un composant est une entité logique. Il contient des données et est capable d'exécuter des opérations sur celles-ci. Une partie des opérations est accessible à l'environnement du composant et constitue son interface. L'appel d'une opération par des utilisateurs du composant, des programmes ou d'autres composants de l'environnement se fait par la transmission d'un message. L'interface prend en charge ce message et dirige la requête vers la procédure associée à l'opération demandée. La procédure retourne éventuellement un message de réponse à l'appelant. Le concept de polymorphisme permet au composant de traiter de la même façon des composants différents qui offrent des services similaires.
2 MODELE DE COMMUNICATION PAR MESSAGE
Ce modèle est mis en œuvre dans les environnements de type "micro-noyau", "UNIX", programmation parallèle comme PVM et/ou MPI et enfin "industriel" d'intégration d'applications comme MOM.
a "Middleware" à messages : MOM
MOM est une couche de logiciel sur le système hôte
· Le message
Il est composé d'un identifiant unique, d'une structure et de paramètres tels que la durée de vie, la priorité et la sécurité.

-
Les queues de messages

Les queues de messages possèdent un identifiant unique. Elles sont persistantes. Elles sont partagées par les applications et leur modes de réception est variable.

b Deux extensions au modèle de base

-
Communication de groupe

Un groupe est un ensemble de récepteurs identifiés par un nom unique. Le système gère dynamiquement l'arrivée et le départ de chaque membre dans le groupe. Différents types de communications sont menés dans le groupe, 1 à N et N à N.
-
Communication anonyme

C'est une désignation associative dans laquelle les récipiendaires d'un message sont identifiés par leurs propriétés et non par leur nom. L'émetteur et les récepteurs des messages sont indépendants.
3 MODELE DE COMMUNICATION PAR EVENEMENT
a "Publish / Subscribe"

[image: image13.png]0]

[image: image14.png]0]

L’émetteur envoie anonymement un message basé sur un sujet (subject – based) ou sur un contenu (content – based).
Plusieurs récepteurs peuvent s’abonner à un sujet ou un contenu.
-
Modèle synchrone « pull » :

La réception des messages se fait de manière explicite. Les clients viennent « prendre » périodiquement leurs messages sur le serveur ou boîte aux lettres.
-
Modèle asynchrone « push » :

La réception des messages se fait de manière implicite. Une méthode prédéfinie (réaction) est attachée à chaque type de message (événement).

Elle est appelée automatiquement à chaque occurrence de l’événement. L’occurrence d’un événement entraîne l’exécution de la réaction associée.

Différentes implantations :

· serveur centralisé (Hub & Spoke) : le serveur centralise la gestion des événements. Le protocole de communication est point-à-point

· serveur réparti (Snowflake) : le serveur répartit la gestion des événements. Le protocole de communication est point-à-point. Chaque serveur connaît un ensemble d’autres serveurs.

· serveur réparti (bus logiciel) : il est très proche de l’architecture "Snowflake". Les serveurs se connaissent tous et sont adaptés aux LANs. Le protocole de communication est multicast.

b Java Message Service

JMS est une API Java d’accès uniforme aux systèmes de messagerie telles IBM MQSeries, Novell, Oracle, Sybase, Tibco.
Le protocole de communication est point-à-point, du type Publish / Subscribe

4 MODELE A COMPOSANT
Les différents modèles de composants:
· Modèles orientés client / IHM

OLE, COM, ActiveX de Microsoft, Java Beans de SUN
· Modèles orientés serveur / métier

COM+, MTS de Microsoft, Entreprise Java Beans de SUN

a Java Bean
Un Java Bean est un composant réutilisable que l'on peut manipuler visuellement dans un environnement de développement (plateformes Java).

Par leur adhésion à un modèle d'interaction standard, les Java Beans peuvent être convertis (enveloppés) dans d'autres modèles de composants (OLE/COM/ActiveX, etc…

Un Java Bean exporte différentes propriétés (attributs publics) et communique par évènement. Tous les Beans sont persistants.
b EJB
Un serveur EJB est un conteneur avec des services configurables de répartition, de transaction distribuée (JTA), de nommage (JNDI), de concurrence (serveur multi-thread), de persistance (activation / passivation / pooling par JDBC), et de sécurité (géré par le conteneur).
Ces services appellent des méthodes fournies par le Bean au moment opportun.
Le développeur écrit ses « objets métiers » en se conformant au modèle.

5 MODELE A BASE DE CODE MOBILE OU AGENT MOBILE
a Modèle à code mobile :
· Postscript

Le code est exécuté par des machines physiques ou virtuelles.
Le travail est reporté sur différents sites.

· SQL

Le code est exécuté par un interpréteur SQL.
Le code est déplacé vers le serveur de base de données.

· Applets

Le programme exécutable est inclus dans une page HTML.
L'exécution est effectuée sur le site qui télécharge la page HTML.

b Modèle à agent mobile
· Agents notificateurs / réactifs
Ils attendent une information ou un évènement, ils préviennent l'usager ou déclenchent une action.
· Agents itinérants
Ils réalisent une suite d'interaction avec des serveurs. Ils privilégient les accès locaux.
· Agents d'adaptation
Ils sont les extensions des fonctions du service. Ils s'adaptent aux besoins spécifiques des clients.
c Les systèmes à agents mobiles actuels :
· Sur Java

Aglets (IBM), Odyssey (General Magic Inc), Concordia (Mitsubishi), Voyager (Object Space), MOA (OSF / OpenGroup)

· Autres environnements :
Agent Tcl (Dartmouth College), Ara (Université de Kaiserslautern), Tacoma (Université de Troms0 et Cornell)

6 MODELE A MEMOIRE "VIRTUELLE" PARTAGEE OU A OBJET DUPLIQUE
a Modèle à mémoire dupliquée

· SMP

Il gère le partage de la mémoire commune et du cache associé à chaque processeur. Il en assure la mise à jour immédiate (write through) ou retardée (write back).

-
NFS

Il gère le partage d'un système de fichier et du cache NFS sur les sites clients.
Il en assure les invalidations périodiques.

-
UNIX

Il gère le partage de la mémoire virtuelle, des segments (suite de pages) et de la mémoire centrale par couplage.

b Modèle à objet dupliqué
-
Modèle à espace de tuples
Le modèle de programmation LINDA est basé sur un espace partagé de données contenant des tuples. Un tuple est une séquence de champs qui contiennent une variable ou une valeur. Les tuples de l'espace partagé ne contiennent que des valeurs. La communication est basée sur l'appariement d'un tuple patron (qui mélange valeurs et variables) avec les tuples de l'espace partagé.
Un autre exemple basé sur ce modèle : JavaSpaces

JavaSpace est un espace de tuples (entrée). Chaque entrée est un ensemble de champs, chaque champ contient une référence à une instance Java
-
Modèle à objet réparti partagé
Ce modèle est un espace d'objets répartis partagés.
L'interface de programmation est un langage à objet "étendu".
Il existe plusieurs modes de réalisation

Objets répliqués (exemple : Javanaise)

Objets à image unique (exemple : Guide)

III EVALUATION DES DIFFERENTS MODELES

1 MODELE CLIENT / SERVEUR

a Modèle client / serveur "traditionnel"

· RPC

· Traitement des défaillances due au réseau, au client ou au serveur :
· Congestion du réseau ou du serveur : la réponse ne parvient pas avant une date fixée par le client (système temps critique)

· Panne et / ou congestion du réseau ou du serveur

· Panne du client pendant le traitement de la requête

· Panne du serveur avant ou pendant le traitement de la requête

· Erreur de communication

Le traitement de l'erreur est variable, il dépend du mécanisme de reprise mis en œuvre :
· Indéfini

· Au plus une fois : le délai expire, il y a envoi d'une erreur et absence de mécanisme de reprise.
· Au moins une fois : le délai expire, la requête est re-émise, il est possible d'exécuter plusieurs fois le service. Ce mécanisme est acceptable si l'opération est idempotente.
· Exactement une fois la requête et / ou la réponse est re-émise si nécessaire, et les « doublons ». sont éliminés. Ce mécanisme est idéal.
· Traitement de l’hétérogénéité dans la représentation des données :
La conservation des données est nécessaire si les sites client et serveur n’utilisent pas le même système de codage (big / little endian) ou utilisent des formats internes différents (pour les types de base : caractères, entier, flottants, …).
Il existe plusieurs solutions :
· l'utilisation de la syntaxe abstraite de transfert ASN1.

· la représentation externe commune XDR de SUN (non optimale si la représentation pour le client et le serveur est identique).

· le choix d'une représentation locale ou parmi n pour le client et la conservation par le serveur.

· la négociation client serveur.
· Traitement de la désignation et de la liaison

· Il existe deux problèmes:

· la désignation du site d’exécution, du serveur, de la procédure
· la possibilité de reconfiguration des services de traitements des pannes, de la régulation de charge, …
· Les solutions sont dans la mise en œuvre :
-
dans la mise en œuvre statique de la localisation du serveur connue à la compilation.
-
dans la mise en œuvre dynamique de la localisation déterminée à l’exécution (au premier appel). Cette localisation permet de séparer la connaissance du nom du service de la sélection de la procédure. Celle-ci va l’exécuter et permettre l’implémentation retardée.
· Il reste les problèmes de sécurité dont l'authentification du client et du serveur et la confidentialité des échanges.
b Client / serveur "à objet"
Les problèmes sont dus à la cohabitation de plusieurs langages à objets (C++ / Java).
Avec RMI : seul le langage Java est possible. Les objets « remote » sont des objets Java.
CORBA est indépendant du langage de programmation et utilise un langage pivot IDL. Les objets « remote » sont des objets CORBA. CORBA est une solution ouverte et évolutive grâce à l'OMG. Son architecture est modulaire grâce à l'OMA. L'ORB permet l'interopérabilité entre les composants hétérogènes.
c Les limites du modèle client–serveur

Le modèle de structuration permet de décrire l’interaction entre deux composants logiciels malgré l'absence de vision globale de l’application.
Son schéma d’exécution répartie est élémentaire grâce à l'appel synchrone et palie de ce fait, l'absence de propriétés portant sur la synchronisation, la protection et la tolérance aux pannes.
Le modèle RPC est un mécanisme de « bas niveau ». Des services additionnels sont nécessaires pour la construction d’applications réparties (désignation, fichiers répartis, sécurité, etc.).
Les Outils de développement sont limités à la génération automatique des talons. Il n'existe pas ou peu d’outils pour le déploiement et la mise au point d’applications réparties
2 MODELE DE COMMUNICATION PAR MESSAGE

L'envoi de message est asynchrone. La désignation du destinataire est explicite ou anonyme. Les connexions sont du type 1 à 1, 1 à N ou diffusion. L'émetteur et le destinataire sont indépendants car le récepteur n'est pas forcément actif.
Ce modèle est simple, il n'y a pas d'inter blocage. Les problèmes résident dans la propagation des erreurs, et des outils de développement qui sont peu évolués et de bas niveau.
Dans le domaine de la sécurité, la confidentialité peut être assurée par l'encodage des messages et l'intégrité assurée par le contrôle d'accès aux messages.
Dans le domaine de la tolérance aux pannes, la garantie de délivrance des messages est sujette à la perte et à la duplication des messages.
3 MODELE DE COMMUNICATION PAR EVENEMENTS
Ce modèle connaît des problèmes de portabilité et d’interopérabilité car l'interface applicative et les protocoles sont propres à chaque système. Chaque infrastructure est propriétaire. L'ECMA essaye de normaliser le modèle.
Les outils de développement restent sommaires
4 MODELE A BASE DE CODE MOBILE OU AGENT MOBILE
· La mobilité présente deux intérêts:

· le premier d'ordre tactique est un signe d'efficacité, il privilégie les interactions locales. Les messages à distance sont diminués car il est parfois plus judicieux d’amener le code aux données que les données au code.

· le deuxième d'ordre stratégique permet l'extension des fonctions d’un serveur et l'adaptation d'un serveur aux besoins spécifiques des clients.

· Plusieurs problèmes concernent la mobilité :

· l'hétérogénéité du code, des données et du système avec comme solutions possibles l'homogénéité de l’environnement ou la gestion par une machine virtuelle.

· la capture de l’état d’un agent avec comme solution délimiter l’ensemble des objets à déplacer avec l’agent.

· la capture de l’état de la pile d’exécution avec comme solution la migration faible ou forte.
· Les problèmes concernant l'utilisation des ressources partagées avec comme solutions possibles l'utilisation de référence à distance, la copie, ou la liaison par équivalence.
· Deux problèmes concernent la sécurité :

-
l'attaque d’un hôte par un agent mobile avec comme solutions possibles le confinement de l’exécution par le matériel, par le logiciel ou l'authentification de l’agent pour limiter ses droits d’accès.

-
l'attaque d’un agent par un hôte, pas de solution possible sans le concours de celui-ci. Une solution potentielle est de brouiller le code de l'agent.
5 MODELE A MEMOIRE PARTAGEE OU OBJET DUPLIQUE
a Modèle à mémoire partagée

Les avantages sont la simplicité dû à la distribution « transparente », l'efficacité obtenu avec l'utilisation des paradigmes usuels de la programmation concurrente.
Il reste les difficultés d'utilisation des outils de développement existants comme les langages, les compilateurs, les debbuggeurs pour la mise au point, …et à la mise en œuvre efficace d’une mémoire partagée distribuée.

b Modèle à objet dupliqué
Les intérêts du modèle à objet dupliqué résident dans la simplification et l'efficacité du portage d’applications (les accès sont locaux) et du développement (la distribution est transparente).

· modèle à espace de tuples :
C'est un modèle simple pour écrire des applications reparties. La coordination entre applications reparties et le découplage entre le client et le serveur simplifient son utilisation.
Ce modèle nécessite le partage d’une interface (comme RMI).
Ce modèle peut être utilisé comme client / serveur : requêtes distantes depuis tous les clients ou comme objets dupliqués : localité des accès à la base.
· Modèle à objet réparti dupliqué :
Un objet reparti ne se déplace pas physiquement, seules ses références sont échangées. Il n’est accédé qu’au travers de ses méthodes. Il peut être désigné de plusieurs manières, exemple : pointeur long. Il est utilisé à travers un pointeur.
c Limites et perspectives

· Il n'existe pas de protocole universel. Pour utiliser les protocoles adaptés aux besoins spécifiques des applications, il faut connaître parfaitement l'environnement. La spécialisation des protocoles existants obligerait l'utilisation de nombreux protocoles de cohérence et rendrait le système plus complexe.
· Le coût du maintien de la cohérence des objets dupliqués dépend de la sémantique des applications et de l’environnement d’exécution.
Initialement la cohérence était séquentielle, puis elle est devenue faible pour des raisons d’efficacité. La mise en œuvre était simple. Récemment la course à l’efficacité a rendu les systèmes de plus en plus complexes pour des gains de plus en plus marginaux.
Il faut adapter la stratégie de mise en œuvre du partage aux besoins des applications et aux conditions de l’environnement d’exécution. Il reste à solutionner la gestion du partage en mode déconnecté.
6 MODELE A COMPOSANTS
Un composant est un module logiciel autonome et réutilisable.

Il peut être composé visuellement donc dynamiquement pour former une application.
Il peut accéder à un objet RMI ou CORBA et se connecter à une base de données ou attacher une queue JMS.

La gestion de la sécurité est déléguée au maximum au conteneur.

Le conteneur est responsable de la cohérence entre l'état du bean et l'état sauvegardé dans la base de donnée.

Un composant ne gère pas la répartition automatiquement.

C'est une instance pas le composant qui est connectée et configurée.
III CONCLUSION

Tous ces paradigmes ont leurs avantages et leurs inconvénients.

Dans le cas des agents mobiles la sécurité reste le problème le plus important et le plus difficile à résoudre car il met tous les acteurs en jeu.
Les solutions propriétaires proposées par Microsoft et SUN, ne sont pas entièrement compatibles, le client devra choisir la solution la plus appropriée à ses besoins.
Les modèles agents mobiles et composants sont des technologies encore récentes, il y a peu de retour d'expérience. Le choix de ces technologies entraînera un coût plus élevé du développement, de la maintenance et de la mise en place de l'application.
Le développement d'outils de mise au point reste en suspend. La difficulté provient de la vision globale du système sur laquelle l'application répartie s'exécute.

La solution CORBA est actuellement la plus évoluée en terme de compatibilité et de technologie.
ANNEXE A : GLOSSAIRE
	ASN 1
	Abstract Syntax Notation number One

	CGI
	Common Gateway Interface

	CLI
	Call Level Interface

	COM
	Component Object Model

	CORBA
	Common Object Request Broker

	DCE
	Distributed Computing Environment

	DCOM
	Distributed Component Object Model

	DGC
	Distributed Garbage-Collection

	ECMA
	European Computer Manufacturers Association

	EJB
	Entreprise Java Bean

	GIOP
	General Inter-ORB Protocol

	HTML
	HyperText Markup Language

	IDL
	Interface Description Language

	IIOP
	Internet InterORB Protocol

	JDBC
	Java Database Connectivity

	JMS
	Java Message Service

	JNDI
	Java Naming and Directory Interface

	JRMP
	Java Remote Method Protocol

	JSP
	JavaServer Pages

	JTA
	Java Transaction API

	JVM
	Java Virtual Machine

	MOM
	Message Oriented Middleware

	MPI
	Message Passing Interface

	NFS
	Network File System

	ODBC
	Open Database Connectivity

	ODMG
	Object Database Management Group

	OLE
	Object Linking and Embedding

	OMG
	Object Management Group

	ORB
	Object Request Broker

	PVM
	Parallel Virtual Machine

	RDA
	Remote Data Access

	RMI
	Remote Method Invocation

	RPC
	Remote Procedure Call

	SOAP
	Simple Object Access Protocol

	SQL
	Structured Query Language

	TCP
	Transmission Control Protocol

	UDP
	User Datagram Protocol

	XDR
	External Data Representation

	XML
	Extensible Markup Language

ANNEXE B : REFERENCE
[1]
Modes de structuration d’applications reparties de Roland Balter

[2]
Introduction aux applications reparties de Noël de Palma, Roland Balter

[3]
Application reparties de Pascal Molli

[4]
Systèmes repartis par Samuel Tardieu

[5]
Modèles d’exécution de Daniel Hagimont

[6]
Code mobile : Principes et mise en œuvre de S. Krakowiak

[7]
Modèle à agents mobiles de Daniel Hagimont

[8]
Modèle à objets dupliques de Daniel Hagimont

[9]
Modèle à bus de message de Michel Riveil et André Freyssinet

[10]
Modèle à messages INRIA Projet Sardes

[11]
Les Modèles d'exécution répartie de Gérard Padiou, Mamoun Filali et Philippe Quéinnec

[12]
Système Répartis, Evolution et Etat de l'art de S. Krakowiak

[13]
Introduction aux applications réparties de S. Krakowiak
[14]
Applicabilité et performances des systèmes d'agents mobiles dans les systèmes répartis de Guy Bernard

[15]
Apport des agents mobiles à l'exécution répartie de Guy Bernard et Leila Ismail

[16]
Technologie du code mobile : état de l'art et perspectives de Guy Bernard

[17]
Applications réparties – Agents Mobiles de Koné à Université de LAVAL département d'informatique
[18]
CORBA : des concepts à la pratique de J.M. Geib, C. Gransart et P. Merle
[19]
Les technologies distribuées : CORBA, Java RMI, SOAP de B. Rey et V. Varin

[20]
Systèmes répartis – RPC – RMI – CORBA de F. Rossi

[21]
Java RMI et Applications Distribuées de Pascal Molli

[22]
Des objets aux composants de Philippe Merle et Michel Riveill

[23]
Java Beans de Hafedh Mili

[24]
Avancées récentes en système répartis ... et leur impact sur les SGBD de S. Krakowiak

[25]
Cours Technologie Internet : Modèles de programmation de Jarle Hulaas

[26]
Mémoire distribuée partagée – INRIA laboratoire SIRAC

[27]
Problèmes de sécurité liés aux codes mobiles de Cédric Blancher

[28]
Une architecture pour les agents mobiles adaptables de S. Leriche et J.P. Arcangeli

[29]
Construction et Configuration d'Applications Réparties de Luc Bellissard

[30]
Conception et réalisation d'une mémoire partagée répartie de Jay Han
Client

Requête

Réponse

Service distant

Exécution du service

Sélection

Requêtes

Réponses

Serveur

Procédure proc(p_in, p_out)

début

fin

Client

Appel proc(p_in, p_out)

Appel (p_in)

Retour (p_out)

Réseaux

Poste client

(Applications)

Serveur (Réponses)

Poste client

(Applications)

Poste client

(Applications)

Poste client

(Applications)

Poste client

(Applications)

Processus émetteur

Envoyer (Id_bal, message)

Message = (Id_bal)

Processus récepteur

Msg = Receive(bal_S)

Serveur

Envoyer (bal_S,

Nom_service,

Paramètres)

Client

(nom_serv, param, bal_C)

bal_S

exec(nom_serv, param)

Envoyer (bal_C,

Résultat)

bal_C

(Résultat)

Canaux de communication

Nom (type) d'évènement

Réactions

Processus destinataires

Processus émetteurs

Nom (type) d'évènement

Nom (type) d'évènement

Evènements

Propriétés configurables

Contraintes techniques

Composants

A

s

y

n

c

S

y

n

c

A

s

y

n

c

S

y

n

c

Utilise

Fournit

Site A

Code exécutable

Code exécutable

Site B

Processus

Code exécutable

Processus

Site B

Code exécutable

Site A

Contexte

Processus

Site A

Contexte

Site C

Site B

Objets partagés

Appelant

Appel

Service RPC (talon client) (stub)

Protocole de communication

Client

Serveur

Protocole de communication

Service RPC (talon client) (skeleton)

Appel

Appelé

Retour

Retour

Réseau

Client

Envoyer

Recevoir

Serveur

Processus a

Publish(event)

Gestion des évènements et des abonnements

Subscribe(event, réaction)

Processus b

Réaction

2

1

3

Serveur centralisé ("Hub & Spoke")

Serveur reparti ("Snowflake")

Service réparti (bus logiciel)

Broker

Client

Client

Client

Client

Client

Client

Client

Client

Broker

Broker

Broker

Client

Client

Client

Client

S.E.

Services du

bus logiciel

Client

Client

Services du

bus logiciel

Client

Services du

bus logiciel

Machine A

Machine B

S.E.

Machine C

S.E.

Machine E

S.E.

Machine D

S.E.

Services du

bus logiciel

Services du

bus logiciel

Protocoles du bus logiciel

Provider Y

JVM

abcdesfghj

JMS

Client

JMS

JVM

Système hôte

Système hôte

MOM

Site A

Site B

Application

MOM

Interprète (ghostview)

Entrée

Client

Client

Provider X

Client

Client

%!PS

%%

%%EOF

Imprimante postscript

abcdesfghj

Requête SQL

Interprète SQL

Client

Serveur

SGBD

<HTML>

[…]

applet

MV Java

Client

Serveur

Chargement

Communication

Processeur

Cache

Mémoire commune

Cache

Processeur

MQ X

Segment

Processus Unix

Partition exportée

Mémoire centrale

Partition montée

MQ X

MQ X

MQ X

Application

Cliente

Référence de l'objet

Implantation de l'objet

Application

Serveur

Code de l'objet

Interface (IDL)

Référence + méthode + arguments

Résultat ou exception

Requête

Objet CORBA

BUS CORBA

Formulaire

HTML

HTML

Servlet

Site client

Programme client

Médiateur

Requête SQL

Résultats (tuples)

Programme serveur

Site serveur

