corrigé  mathématiques e m lyon 2002 option économique

exercice 1

1°) a) K2 = (I.

b) K((K) = I, donc K est inversible et K(1 = (K.

c) Supposons que K admette une valeur propre réelle (, et soit X non nul un vecteur propre associé à la valeur propre ( (ici X est une matrice-colonne à 4 éléments). Alors KX = (X, donc

K2X = KKX = K(X = (KX = ((X = (2X.

Mais d'autre part K2X = (IX = (X. Par conséquent

(2X = (X

((2 + 1)X = 0

(2 + 1 = 0

Un tel nombre (réel !) n'existe pas, par conséquent K n'admet pas de valeur propre réelle...

Malgré tout, cette méthode est plus rapide que la résolution du système habituel (K ( (I)X = 0...

2°) a) M2 = (aI + bK)(aI + bK) = a2I + baK + abK +b2K2 = (a2 ( b2)I + 2abK.

((a2 + b2)I + 2aM = ((a2 + b2)I + 2a(aI + bK) =  ((a2 + b2)I + 2a2I + 2abK) = (a2 ( b2)I + 2abK.

Donc M2 = ((a2 + b2)I + 2aM.

b) On en déduit :

M2 ( 2aM = ((a2 + b2)I.

M(M ( 2aI) = ((a2 + b2)I.

(a, b) est différent de 0, donc a2 + b2 est différent de 0, donc
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Donc M est inversible, et
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c) La matrice proposée est :
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Son inverse est donc :
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3°) a) x v1 + y v2 + z v3 + t v4  est égal à 0 ssi :

x (1, 0, 0, 0) + y (1, 1, 0, 1) + z (0, 0, 1, 0) + t ((1, 1, 0, 0) = 0

(On va chercher les valeurs de v2 = f(e1) et v4 = f(e3) respectivement à la première et troisième colonne de K)

x + y  ( t = 0, y + t = 0, z = 0, y = 0

x = y = z = t = 0

La famille C est donc libre ; comme R4 est de dimension 4, ceci prouve que C est une base de R4.

b) f(v1) = f(e1) = v2
f(v2) = f(f(e1)) = fof(e1) = (e1 = (v1 : en effet, la matrice de fof dans la base canonique est K2, 

et K2 = (I.

f(v3) = f(e3) = v4
f(v4) = f(f(e3)) = (e3
Par définition de  K', on a donc :
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c) v1 = (1, 0, 0, 0), v2 = (1, 1, 0, 1), v3 = (0, 0, 1, 0), v4 = ((1, 1, 0, 0), donc
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d) D'après la théorie du changement de base : K' = P(1KP.

exercice 2

I. 1°) 
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On a utlisé l'identité géométrique, ce qui est licite car (x est différent de 1.

2°) Sur [0, +([, x + 1 est positif, et

x2n ( 1 ( 0 ( x2n ( 1 ( x ( 1

Pn est donc strictement décroissante sur [0, 1], strictement croissante sur [1, +([. Pn(0) = 0 et Pn(x) est équivalent en +( à son terme de plus haut degré x2n, donc Pn(x) tend vers +( quand x tend vers +(.

3°) Pn(0) = 0 et Pn est strictement décroissante sur [0, 1], donc Pn(1) < 0.

4°) a) 
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b) Pour n = 1 : P1(x) = (x + x2/2, P1(2) = 0 ( 0.

Si l'entier n est tel que Pn(2) ( 0, alors d'après a) :
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La conclusion en résulte, d'après le principe de récurrence.

5°) Sur l'intervalle [1, +([, Pn est continue et strictement croissante, Pn(1) < 0 et Pn a pour limite +( en +(. Par conséquent l'équation Pn(x) = 0 d'inconnue x appartenant à [1, +([ admet une unique solution xn. De plus Pn(1) < 0 et Pn(2) ( 0, donc 1 < xn ( 2.

6°) Il n'y a pas d'autre choix que d'utiliser la méthode de dichotomie :

program escl ;

var a, b, c : real ;

function P(x :real) : real ;

begin P := (x + x*x/2 ( x*x*x/3 + x*x*x*x/4 ; end ;

BEGIN

a:= 1 ; b := 2 ;

repeat c:= (a + b)/2 ; if P(c) < 0 then a:= c else b:= c ; until (b ( a < 0.001) ;

writeln(c) ;

END.

II. 1°) D'après I 1°), Pn est une primitive de la fonction sous le signe intégrale, donc :
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2°) On utilise la définition de xn, le 1°), puis la relation de Chasles : 


[image: image13.wmf]ò

ò

ò

+

-

+

+

-

=

+

-

=

=

n

n

x

1

n

2

1

0

n

2

x

0

n

2

n

n

dt

1

t

1

t

dt

1

t

1

t

dt

1

t

1

t

0

)

x

(

P


On a donc :
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3°) Soit g(t) = t2n ( 1 ( n(t2 ( 1) ; g'(t) = 2nt2n(1 ( 2nt = 2nt(t2n ( 1) > 0 sur ]1, +([. g est donc strictement croissante sur [1, +([. g(1) = 0, donc g est positive ou nulle sur [1, +([, donc, sur [1, +([ :

t2n ( 1 ( n(t2 ( 1)  

4°) xn appartient à [1, +([, donc sur [1, xn], on a :

t2n ( 1 ( n(t2 ( 1)
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On a par conséquent :
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D'où le résultat voulu en prenant la racine carrée de ces deux nombres, car xn ( 1 > 0.

5°) Par encadrement : la suite (xn ( 1) converge vers 0, et donc la suite (xn) converge vers 1.

exercice 3

1°) a) Pour tout x appartenant à [0, 1[ :
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b) Il s'agit de démontrer la formule de Pascal.
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On peut préférer une démonstration combinatoire : 

le nombre de parties à k + 1 éléments d'un ensemble à n + 1 éléments E = {a1, a2, ... , an, b} est :
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Parmi ces parties, certaines contiennent b, elles sont au nombre de Cnk. Les autres ne contiennent pas b, elles sont au nombre de Cnk+1. La conclusion en résulte.

c) Après ces hors-d'œuvre, une question qui demande du soin ; pour k entier et x dans [0, 1[, le nombre xsk(x) + xsk+1(x) est successivement égal à :
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Ne pas perdre de vue que c'est k qui est fixé, et n qui varie...

d) La propriété à établir est vraie pour k = 0 et k = 1 d'après a). Supposons la vraie pour k, avec k appartenant à N. Alors, d'après c) :

(1 ( x)sk+1(x) = xsk(x)
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La conclusion en résulte, par récurrence.

3°) a) N prend ses valeurs dans N*, et, pour tout n appartenant à N*, P(N = n) = (4/5)n(1(1/5) par indépendance des tirages successifs. N suit donc la loi géométrique de paramètre 1/5 ,et 
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b) Sachant N = n, on a X = k ssi on obtient k succès (obtenir la boule noire) au cours de n épreuves identiques et indépendantes. Par conséquent :
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c) On utilise la formule des probabilités totales avec le système complet d'événements (N = n), n appartenant à N* :
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d) Même argument, pour tout k appartenant à N* :
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e) Sous réserve de convergence absolue :
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f) Pour tout k appartenant à N, P(X ( k) = 1 ( P(X > k) = 1 ( P(X ( k + 1), donc
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3°) a) Montrons d'abord que F est continue en a. La limite à gauche de F en a est égale à 0, la limite à droite de F en a est égale à F(a), or F(a) est égale à 0, en effet :
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Les limites à droite et à gauche de F en a sont toutes deux égales à F(a), donc F est continue en a.

* F est continue ]((, a[ (fonction nulle), sur ]a, +([ (somme de deux fonctions continues), et en a, donc F est continue sur R.

* F est de classe C1 sur ]((, a[ (fonction nulle) et sur ]a, +([ (somme de deux fonctions de classe C1).

* La limite de F en (( est 0, la limite de F en +( est 1, car
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* Pour tout x appartenant à ]a, +([ :
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F est donc croissante sur R.

* F est donc la fonction de répartition d'une variable aléatoire à densité Y.

b) On a :
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Y admet donc pour densité f telle que :
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c) Une primitive G de g est :
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On a effectué une intégration par parties avec 
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u et v sont de classe C1 sur R. On obtient donc la sympathique expression : (la constante induite par a n'a pas d'importance, une primitive de f est définie à une constante près)
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d) Sous réserve de convergence :
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La convergence est assurée car f est continue sur [a, +([ et G(x) tend vers 0 quand x tend vers +(.On trouve :
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