Stabilité des systèmes échantillonnés
Un système échantillonné de fonction de transfert
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, ou N et D sont des polynômes en z, est stable si tous ses pôles sont à l’intérieur de cercle de centre O et de rayon unité.

Si  zi pôle de H (z) (D (zi)=0), le système est stable 
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Il est à remarquer qu’il s’agit de stabilité aux points d’échantillonnage, le système peut présenter des instabilités cachées.

· Critère de jury

Ce critère permet d’étudier la stabilité d’un système échantillonné sans calculer les pôles.

Ceci s’avère très utile quand D(z) contient des paramètres, ou quand son degré est élevé.

Soit D(z(=a0+ a1z+a2z2+…+anzn ,  avec an>0.

On construit le tableau suivant :
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Avec :
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Pour que D(z) ait ses racines à l’intérieur du cercle unité, il faut et il suffit que soient vérifiées les (n+1) conditions suivantes :

· D(1) >0,

· D(-1)>0 si n est pair, D(-1)< 0 si n est impair, 
· 
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· Critère de Routh

Pour pouvoir exploiter le critère de Routh, très utilisé pour l’étude de la stabilité des systèmes linéaires continus, on effectue le changement de variable suivant :
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Ou encore
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Ce qui permet de transformer l’intérieur du cercle unité en le demi-plan gauche en w.

Le dénominateur devient :

                                      D’(z)=a’0+a’1w+…+an’wn.

Ce dernier polynôme a ses racines dans le demi plan gauche si et seulement si les relations suivantes sont vérifiées :

· Tous les coefficients de D’(z) sont de même signe, soit strictement positifs,a’i>0,

· Les (2n-1) termes de la première colonne du tableau suivant sont strictement positifs,

	N°ligne

	1
	a’n
	a’n -2
	a’n -4
	…

	2
	a’n -1
	a’n -3
	a’n -5
	…

	3
	b 0
	b 1
	b 2
	

	4
	c 0
	c 1
	…

	..

..


	
	

	2n-3
	d 0


Avec :
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Stabilité des systèmes continus
Soit¨l’équation d’état suivantes
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En appliquant la transformée de laplace on trouve :

         pX(p)=AX(p)+BU(p)

         Y(p)=CX(p)+DU(p)

((pI-A) X(p)=BU(p)

     X(p)= (pI-A)-1BU(p)
En multipliant par le vecteur C

      CX(p)= C(pI-A)-1BU(p)  

or on a  Y(p)=CX(p)+DU(p)  ( CX(p)= Y(p)-DU(p)

Y(p)=[ C(pI-A)-1B-D]U(p)  

[image: image46.wmf]1

()

()

()

()()

()det()

Yp

CpIABD

Up

YpCadjpIAB

UppIA

-

=-+

-

=

-


Le dénominateur de la fonction de transfert est égale au polynôme caractéristique de la matrice A : 
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Ainsi les pôles de la fonction de transfert sont les valeurs propre de la matrice A

Conclusion :
un système décrit par son équation d’état est stable si les valeurs propre de la matrice A sont a partie réel négative .
Stabilité des systèmes discret
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[image: image50.wmf] Le dénominateur de la fonction de transfert est égale au polynôme caractéristique de la matrice A :
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Ainsi les pôles de la fonction de transfert sont les valeurs propre de la matrice A

Conclusion :
un système décrit par son équation d’état est stable si les valeurs propre de la matrice A sont a module inférieur a un (à l’intérieur du cercle unité) .

Commande par retour d’états ou placement des pôles.

Cas continu

Position de problème

Soit le système décrit par l’équation  d’état 
[image: image52.wmf].

XAXBU

YCX

ì

ï

=+

í

=

ï

î

est dont le polynôme caractéristique est 
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On désire imposer au système le polynôme caractéristique
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· on applique au système une loi de commande par retour d’état ou placement de pôles U=-KX, avec K=[k1, k2, k3 ,…, kn ].
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Le placement des pôles permet d’imposer la dynamique du système en BF

Equation d’état du système en BF.


[image: image57.wmf]'

XAXBU

UKX

=+

ìü

íý

=-

îþ



[image: image58.wmf]Þ



[image: image59.wmf](

)

'

XABKX

=-



[image: image60.wmf]Þ
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Le placement de pole consiste à imposer les valeurs propres 
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On calcule le polynôme caractéristique de 
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Et en identifie
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exemple1 :
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Exemple II
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On impose le polynôme caractéristique
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on ne peut pas choisir arbitrairement les pôles imposer en BF
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· Le système n’est pas commandable

Conclusion :

Pour pouvoir effectuer un placement de pôles par retour d’état, il faut que le système en B.O soit C.

· Placement des pôles pour un système sous forme compagnons
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On impose les polynômes caractéristiques :
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Applications

Exercice 1
1-Etudier la stabilité de ce système décrit par l’équation d’état suivant :
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 Solution :
C’est le cas de valeurs propres complexe conjuguées : 

P1=-2+3j

p2=-2-3j

Le deux valeurs propres sont à partie réelle négative donc le système est stable. 
Exercice 2

soit le système linéaire discret décrit par l’équation d’état suivante :
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Etudier en fonction de 
[image: image79.wmf]a

la commandabilité,  L’observabilité et la stabilité de ce système.
 Exercice 3
On considère le système continu suivant :
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¨
· Le système est-il stable ? commandable ? observable ? 

· Calculer une loi de commande par retour d’état U(t)=-KX(t) telle que le système en boucle fermée possède un coefficient d’amortissement ζ=0.6 et une pulsation naturelle ω0=10 rad/s
Exercice 4

Soit le système défini par la fonction de transfert :
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1. donner une représentation d’état sous forme compagnon de ce système.
2. étudier la stabilité du système.

Exercice 5

Soit le système continu défini par l’équation d’état suivante :
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1. Etudier la stabilité, la commandabilité et l’observabilité de ce système.

2. Calculer une loi de commande par retour d’état qui permet d’imposer au système les pôles -5 et -7.

3. déterminer, pour ce système, l’équation d’état d’un observateur possédant un pole double égale à -10.
Exercice 6

On considère l’équation d’état Discrète suivante :
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· Etudier la stabilité de ce système.
· Calculer la fonction de transfert Y(z)/u(z).
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