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Préambule
Dans une première partie, on donne les notions essentielles relatives à la description des polyèdres: dimension, faces, facettes, points extrêmes, représentation minimale.

Dans une deuxième partie, on donne quelques méthodes pour résoudre les problèmes d’optimisation combinatoire décrits à l’aide de programmes linéaires de grande taille c’est-à-dire décrits comme la minimisation ou la maximisation d’une forme linéaire sur un polyèdre comportant un grand nombre de contraintes ou un grand nombre de variables. 

A la fin, on propose des exercices parcourant les différents points abordés dans les parties précédentes.

Polyèdres
On considère l’espace Rd , pour un entier d positif, muni du produit scalaire euclidien défini pour tout x, y de Rd  par 

.

Espaces affines de Rd 
Définition: A , une partie de Rd , est un espace affine si: 


Définition: une combinaison affine est un point de Rd  de la forme 

 et où p est un entier quelconque.
Remarquer que pour p=2 on retrouve une combinaison de la forme 

.

Proposition: soit A un espace affine, A est stable par combinaison affine de ses points.

démonstration: récurrence sur p.
En translatant A d’un point quelconque x de A on obtient un sous-espace vectoriel comme le montre la proposition suivante.

Proposition: soit A un espace affine, il existe un unique sous-espace vectoriel L de Rd t.q. A=L+x où x est un point de A quelconque.

démonstration : soit x(A. Montrons que L=A-x est un sous-espace de Rd. Soient y1, y2(A, (1, (2 deux réels. On considère la combinaison linéaire z suivante :
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La somme des 3 premiers termes étant une combinaison affine de points de A, z est dans L=A-x.

Montrons que L est indépendant du choix de x. Soient x(A, x((A et L=A-x, L(=A-x(. Soit y(A, considérons l’élément z de L( suivant : 
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. La somme des 3 premiers termes étant une combinaison affine de points de A, z est dans L=A-x. On a donc démontré que L((L. L’inclusion inverse se montre de manière similaire.

(
On dira que L est le sous-espace parallèle à A.

Une intersection d’espaces affines étant encore un espace affine, on définit l’enveloppe affine d’une partie quelconque de (d  de la façon suivante.

Définition: étant donné M une partie de Rd , AffM , l’enveloppe affine de M, est le plus petit espace affine contenant M c’est-à-dire l’intersection de tous les espaces affines contenant M.

Proposition: AffM est l’ensemble des combinaisons affines de points de M.

démonstration: l’ensemble des combinaisons affines de M est un espace affine donc contient AffM par définition.

AffM étant un espace affine, une combinaison affine de ses points et en particulier des points de M est dans AffM , ce qui montre l’inclusion inverse.

(
Définition: la dimension d’un espace affine est la dimension de l’unique espace qui lui est parallèle.

On notera dimA la dimension de l’espace affine A.

Définition: 

 points de Rd  sont affinement indépendants si 

 ou de façon équivalente si 

 sont linéairement indépendants.

Exemple : les 3 points de R2 
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 sont affinement indépendants. En effet, le système 
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 admet une unique solution (1=(2=(3=0. Par ailleurs, si on retranche le premier point aux 2 autres on obtient 
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 qui sont linéairement indépendants.

De ces deux définitions, il découle que la dimension d’un espace affine A est égal au nombre maximum de points affinement indépendants de A moins 1.

La proposition suivante montre que pour parcourir AffM, les combinaisons affines d’une famille de points affinement indépendants de M suffit.

Proposition: si n+1 est le nombre maximum de points affinement indépendants de M, alors AffM est l’ensemble des combinaisons affines d’une famille de n+1 points de M affinement indépendants.

démonstration: M contient un maximum de n+1 points affinement indépendants, mettons 

. Soit une combinaison affine 

 de points de M (avec la somme des 

 valant 1 et éventuellement des 

 nuls pour i=1,…,n+1), alors un 

 peut s’exprimer comme combinaison affine des 

. En remplaçant son expression on obtient une nouvelle combinaison affine où 

 ne figure plus. 

(
Corollaire : si n+1 est le nombre maximum de points affinement indépendants de M, alors la dimension de AffM est n.

démonstration : d’après la propriété précédente, AffM = Aff{

} où 

 sont des points de M affinement indépendants. Donc tout point de AffM est combinaison affine de 

 et le nombre maximum de points affinement indépendants de AffM est n+1 et dim(AffM)=n.

(
On pourra remarquer que l’écriture d’un point de AffM en fonction d’une famille fixée de points affinement indépendants est unique (c’est-à-dire les 

 sont déterminés de façon unique).

Exemple : soit M l’ensemble des 3 points de R2 
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 et A=AffM. 
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 admet pour solution  (1=(2=1,(3=(2. Donc ces 3 points ne sont pas affinement indépendants. Par contre 
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 sont affinement indépendants. Donc A=Aff
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. Donc le nombre maximum de points affinement indépendants de A est 2 et dimA=1.

Définition: une application 

 est affine si 


Proposition: une application affine 

 préserve les combinaisons affines c’est-à-dire 

.

démonstration: récurrence sur p.

Proposition: une application affine 

  est la somme d’une application linéaire et d’une application constante.

démonstration: poser 

 . On vérifie que 

 est linéaire.

En dimension finie, toute application linéaire étant continue, il en résulte la proposition suivante.

Proposition: une application affine est continue.

Lorsque la dimension de l’espace d’arrivée est e=1 on parle de fonction affine. D’après ce qui précède, une fonction affine est de la forme 

 sont des constantes réelles. Les fonctions affines permettent de définir des ensembles particuliers de Rd .

Définition: si 

 est une fonction affine non constante alors la partie de Rd  
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 est appelée hyperplan de Rd .

Il est facile de vérifier qu’un hyperplan est un espace affine et que donc l’intersection d’hyperplans est un espace affine. Réciproquement, tout espace affine propre (c’est-à-dire inclus strictement dans Rd ) est l’intersection d’hyperplans comme le montre la proposition suivante.

Proposition: un espace affine propre ((Rd) est l’intersection d’un nombre fini d’hyperplans.

démonstration: soit A un espace affine propre et L l’espace parallèle, L≠ Rd  sinon A serait Rd . En considérant une base de l’orthogonal de L on établit que 

 où B est la matrice dont les lignes sont les vecteurs de base engendrant 

≠{0}. En translatant L d’un point a de A, on en déduit que 

 et finalement 

 en posant b=Ba.

(
Proposition: la dimension de l’espace affine 

 (avec b=Ba pour un a de A) est égale à d-rangB.

démonstration: l’espace parallèle à A est 

 et l’on sait que 

 (L étant le noyau de l’application linéaire B).

(
En particulier, un hyperplan est de dimension d-1.

Définition: si 

 est une fonction affine non constante alors 

={x : ((x((0( et 

={x : ((x((0( sont appelés demi-espaces fermés de Rd . On définit de même demi-espaces ouverts en excluant des ensembles précédents 

 c’est-à-dire en considérant 

 et 

.

Ensembles convexes de Rd 
Définition: C , une partie de Rd , est convexe si: 


Définition: une combinaison convexe est un point de Rd  de la forme 

 et 

 pour tout i (p étant un entier quelconque).
Remarquer que pour p=2 on retrouve une combinaison de la forme 

 avec 

.

Proposition: soit C un ensemble convexe, C est stable par combinaison convexe de ses points.

démonstration: récurrence sur p.
Une intersection d’ensembles convexes étant encore un ensemble convexe, on définit l’enveloppe convexe d’une partie quelconque de (d  de la façon suivante.

Définition: étant donné M une partie de Rd , ConvM , l’enveloppe convexe de M, est le plus petit ensemble convexe contenant M c’est-à-dire l’intersection de tous les ensembles convexes contenant M.

Proposition: ConvM est l’ensemble des combinaisons convexes de points de M.

démonstration: l’ensemble des combinaisons convexes de M est un ensemble convexe donc contient ConvM par définition.

ConvM étant un ensemble convexe, une combinaison convexe de ses points et en particulier des points de M est dans ConvM , ce qui montre l’inclusion inverse.

(
Définition: la dimension d’un ensemble convexe est la dimension de son enveloppe affine.

On notera dimC la dimension de l’ensemble convexe C.

Proposition : la dimension d’un convexe C est égale au nombre maximum de points affinement indépendants de C moins 1.

démonstration : la dimension de C est, par définition, la dimension de AffC et la dimension de AffC est, par le corollaire du chapitre précédent, le nombre maximum de points affinement indépendants de C moins 1.

(
La proposition suivante montre que pour parcourir ConvM, il n’est pas nécessaire de considérer toutes les combinaisons convexes de points de M. 

Proposition: étant donné M une partie de Rd , ConvM est l’ensemble des combinaisons convexes de points de M affinement indépendants.

démonstration : soit z la combinaison convexe de points de M suivante : 
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 et (i>0 pour tout i , p étant un entier quelconque (dans la somme on ne considère que les termes associés à un (i non nul). Si les xi ne sont pas affinement indépendants cela implique qu’il existe un vecteur ((0 t.q. 
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 entraîne qu’il existe au moins un (i>0. On a donc réécrit z sous forme d’une combinaison convexe avec au moins un terme de moins dans la somme. On peut réitérer jusqu’à ce qu’il n’y ait plus dans cette somme que des xi affinement indépendants.

(
Il faut remarquer que contrairement à l’enveloppe affine, l’enveloppe convexe n’est pas forcément obtenue avec une famille fixée de points de M affinement indépendants.

Par exemple, soit 
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 est dans ConvM mais ne peut s’exprimer sous forme d’une combinaison convexe avec les 3 points affinement indépendants que sont 
[image: image21.wmf]÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

1

0

,

0

1

,

0

0

.

De la proposition précédente, on déduit le corollaire suivant connu sous le nom de théorème de Carathéodory.

Corollaire: si la dimension de ConvM est n alors ConvM  est l’ensemble des combinaisons convexes d’au plus n+1 points de M .

démonstration: on a Aff(ConvM)=AffM et si dim(ConvM)=n alors M contient au plus n+1 points affinement indépendants.

(
Lorsque M est de cardinal fini, l’enveloppe convexe de M donne lieu à des définitions d’ensembles particuliers.

Définition: un polytope est l’enveloppe convexe d’un nombre fini de points. Si les points sont affinement indépendants le polytope est appelé simplexe.

Intérieur relatif des convexes de Rd 
Dans R3 l’intérieur d’un disque inscrit dans un plan est vide. Par contre relativement au plan on peut dire que l‘intérieur du disque n’est pas vide. C’est pourquoi il est plus intéressant de considérer la topologie d’un convexe relativement à son enveloppe affine.

Etant donné un convexe C de Rd , on muni l’espace affine AffC de la topologie de Rd  induite sur AffC c’est-à-dire U est un ouvert de AffC ssi il existe U’ un ouvert de Rd  t.q. 

.

Définition: l’intérieur relatif d’un convexe C, noté riC, est l’intérieur de C dans AffC c’est-à-dire le plus grand ouvert de AffC contenu dans C.

Remarquons qu’avec cette définition, l’inclusion d’un convexe dans un autre convexe n’entraîne pas (sauf si leurs enveloppes affines coïncident) l’inclusion de leurs intérieurs relatifs. Considérer par exemple un carré et ses côtés: l’intérieur relatif d’un côté est un segment ouvert qui n’est pas inclu dans l’intérieur du carré.

Dans notre exemple introductif nous avons vu que l’intérieur relatif du disque est non vide. Cette propriété se généralise. Démontrons d’abord le lemme suivant.

Lemme: soit S un simplexe de Rd  alors riS est non vide.

démonstration: soit 

  avec 

 affinement indépendants. Un point x de AffS admet une décomposition unique 

 avec 

. Donc associer à x ses coordonnées 

 dans 

 est une application (l’image de x est unique) de AffS dans l’hyperplan de Rk  d’équation 

. Notons 

 cette application. On remarque que 

 est affine donc continue. Notons H l’hyperplan de Rk  d’équation 

 et considérons 

 ouvert de H (comme intersection d’un ouvert de (k  et de H). 

 est un ouvert de AffS et 

. De plus 

 est non vide puisqu’il contient le point 

.

(
Proposition: soit C un convexe (non vide) de Rd  alors riC est non vide.

démonstration: soit n la dimension de C (C non vide contient au moins un point et est au moins de dimension 0) donc C contient n+1 points affinement indépendants et donc contient un simplexe S  enveloppe convexe de n+1≥1 points affinement indépendants de C. Alors AffS=AffC donc riC contient riS qui est non vide d’après le lemme précédent et qui est un ouvert de AffC. 

(
Avec la topologie induite, F est un fermé de AffC ssi il existe F’ un fermé de Rd  t.q. 

. Mais AffC étant un fermé (comme intersection d’hyperplans si propre ou Rd  sinon) 

 est aussi un fermé de Rd  . Donc finalement les fermés de AffC sont les fermés de Rd  inclus dans AffC. Cela entraîne que les fermetures d’un convexe relativement à Rd  et relativement à AffC sont les mêmes. On notera clC la fermeture du convexe C.

lemme (dit d’accessibilité): soit C un convexe de Rd  alors pour tout x0 de riC et tout x1 de clC le segment ouvert 

 est inclus dans riC.

démonstration: par définition de riC, il existe un ouvert de AffC inclus dans C et qui contient x0 , soit il existe 

 est inclus dans C.

Soit 

 un point du segment ouvert 

.

On va montrer que l’ouvert de AffC, 

 est inclus dans C. Noter que x étant dans AffC, O contient x.

Soit 

.

Soit l’ouvert de Rd  
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Considérons le point 

 . 

 est dans AffC et satisfait 

 , donc 

 est dans C et par suite z=(1-()z0+(z1 est dans C par convexité de C. 

On a montré que l’ouvert O de AffC qui contient x est inclus dans C et donc x est dans riC. Finalement le segment 

 est dans riC.

(
On peut donner maintenant une caractérisation géométrique de l’intérieur relatif.

Proposition: soit C un convexe (non vide) de Rd  alors 

 ssi 

 (autrement dit tout segment [y,x] peut être prolongé dans C au delà de x)

démonstration. Sens nécessaire: soit 

. La droite 

 est dans AffC. En prenant 

 et 

 alors 

 et donc z est dans C et de plus x est dans le segment 

.

Sens suffisant: prenons y dans riC (non vide), si y=x alors c’est terminé sinon il existe z de C t.q. 

. Par le lemme d’accessibilité le segment 

 est dans riC et par conséquent x aussi.

(
Définition: le bord relatif d’un convexe C, noté rbC, est le complémentaire de riC dans la fermeture de C c’est-à-dire rbC=clC-riC.

Faces d’un convexe de Rd  

On rappelle que pour x,y(Rd  le segment (x,y( est l’ensemble des points z de la forme z=(1-()x+(y avec 0(((1. Le segment ouvert (x,y( est obtenu en restreignant ( à 0(((1 (les extrémités x, y sont exclues).

Définition: soit C un convexe fermé de Rd  . Une partie F de C est une face de C si F est convexe et si pour tout x, y distincts de C t.q. le segment ouvert 

 rencontre F alors x, y appartiennent à F, autrement dit : x(y(C et (x,y((F(( ( x,y(F.

Dans la suite, on considérera toujours C un convexe fermé.

C lui-même est une face de C dite face impropre. Une face propre est une face non vide différente de C.

Définition: un point x de C t.q. {x} est une face de C est appelé point extrême de C. 

Un point extrême n’est dans l’intérieur relatif d’aucun segment de C. ExtC désigne l’ensemble des points extrêmes de C.

Un point extrême est une face de dimension 0. 

Définition: une facette de C est une face de C de dimension dimC-1≥0.

Proposition: une face est fermée.

démonstration : soit F une face de C et soit x(clF. F est convexe, donc il existe x0(riF (riF est non vide) et par le lemme d’accessibilité, le segment ouvert (x0,x( est dans riF donc dans F. Comme F est une face cela entraîne que x(F. On a donc montré que clC(C. Comme la fermeture de C ,clC ,contient C, cela entraîne que C=clC et que C est fermé.

(
Cette dernière propriété permet de parler légitimement de face de face.

Proposition: soit F une face de C et G inclus dans F. G est une face de C ssi G est une face de F.

démonstration: remarquons d’abord que G face de F ou C entraîne que G est convexe.

Supposons G face de C, alors soit x,y de F t.q. 

 rencontre G comme x,y sont dans C et que G est une face de C cela entraîne x,y appartiennent à G. 

Supposons G face de F, alors soit x,y de C t.q. 

 rencontre G , comme G est dans F le segment rencontre F et comme F est face de C cela implique que x,y sont dans F , maintenant comme G est une face de F  cela implique que x,y sont dans G.
(
En considérant des ensembles G réduits à un point, on établit le corollaire suivant.

Corollaire: soit F une face de C, alors 

.

Proposition: soit F une face d’un convexe C t.q. F≠C alors F est incluse dans rbC.

démonstration : supposons que F ne soit pas incluse dans rbC. Cela signifie que F contient un point y de riC. Soit x(C, le segment de x à y peut être prolongé dans C au delà de y et il existe donc un point z de C t.q. y((x,z((C (caractéristique géométrique de l’intérieur relatif). Donc (x,z( contient y un point de F  et comme F est une face, cela entraîne que x, z sont dans F. On a montré que C(F et donc C=F. Donc si C(F alors F est incluse dans rbC.

(
Proposition: soit F une face d’un convexe C  alors 

.

démonstration : de façon évidente F(C(AffF. Maintenant soit x(C(AffF. 
[image: image23.wmf]å

=

l

=

p

i

i

i

x

x

,...,

1

 avec
[image: image24.wmf]

 EMBED Equation.3  [image: image25.wmf]1

,...,

1

=

l

å

=

p

i

i

 et xi(F pour i=1,…,p. Si (i(0 (i alors x(ConvF=F et c’est terminé. Supposons qu’il y ait des (i(0. On partitionne les i en I+=(i =1,…,p: (i(0( et I=(i =1,…,p: (i(0(. On pose 
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. X et Y sont combinaisons convexes de points de F et donc sont dans F. Par ailleurs 
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 et apparaît donc comme une combinaison convexe de x et Y puisque 
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. Donc le segment ouvert (x,Y( avec x(C et Y(C rencontre F en X. Comme F est une face de C cela entraîne que x, Y (F. On a donc montré que C(AffF(F.

(
De cette dernière proposition, on retrouve bien le fait qu’une face est fermée (comme intersection de deux fermés). Par ailleurs, cette proposition nous permet d’obtenir des résultats sur les dimensions des faces.

Corollaire1: soient G, F deux faces d’un convexe C t.q. G est strictement contenue dans F alors dimG<dimF.

démonstration : soit 2 faces de C t.q. G(F alors AffG(AffF. Maintenant si dimG=dimF alors AffG=AffF et F=C(AffF=C(AffG=G.

(
On en déduit une caractérisation des facettes.

Corollaire2: une facette est une face propre maximale (pour l’inclusion).

démonstration : soit F une facette de C et soit G une face de C t.q. F(G(C. Si F est strictement contenue dans G alors dimF<dimG et donc dimC-1(dimG soit dimC(dimG ce qui entraîne dimG=dimC et finalement G=C.

(
Etant donnée une fonction affine non constante ( t.q. ((x)≥0 pour tout x appartenant à C, on considère l’ensemble F=C((-1(0) où (-1(0)={x : ((x)=0}.

Proposition: F est une face de C.

démonstration : on applique la définition d’une face.

Ce type de face est appelée face exposée de C. On dira que F est la face de C induite par l’inégalité ((x)≥0.

Toutes les faces d’un convexe ne sont pas forcément exposées. Considérons par exemple l’ensemble C de R2 défini par l’ensemble des solutions du système d’inégalités suivant :
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Le point (0,0) est un point extrême de C et on ne peut trouver une droite (i.e. un hyperplan de R2 ) t.q. C soit situé d’un coté de la droite et t.q. (0,0) soit l’intersection de cette droite avec C.

Polyèdres de Rd 
Définition: un polyèdre est l’intersection d’un nombre fini de demi-espaces fermés.

Un polyèdre P de Rd est donc décrit par l’ensemble des solutions du système d’inégalités : 




où 

 est une forme linéaire définie sur Rd , 

 une constante réelle et I un ensemble d’indices de cardinal fini.

Note : une forme linéaire ( est une fonction de Rd dans R de la forme 
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 avec ai(R pour i=1,..,d. On assimilera par la suite une forme linéaire ( au vecteur 
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 lorsque l’on parlera de rang de formes linéaires.

Un polyèdre étant un convexe, fermé, il possède des faces (par exemple lui-même). On va chercher une caractérisation de ses faces.

1.
Caractérisation des faces d’un polyèdre 

Soit J un sous-ensemble de I et considérons l’ensemble 

 où les inégalités de J sont devenues des égalités. Il est facile de vérifier que F est une face de P.

La question que l’on se pose est: obtient-on de cette façon toutes les faces de P?

Proposition: soit F une face non vide d’un polyèdre P et soit J(I t.q. 
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démonstration: (

 par définition de J, ce qui entraîne 

 puisque le membre de droite est un espace affine.

( Montrons l’inclusion inverse. Nous allons d’abord montrer qu’il existe x0(F t.q. 
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. Par définition de J, pour tout i(I\J il existe x(i)(F t.q.
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. Si on note k=card(I\J), alors en prenant 
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 on a la propriété voulue. 

Soit 

. Si y=x0 c’est terminé, on a y(AffF.

Supposons y≠x0 .

Soient 

 et 

 avec 

 donné par :



 

(

 car 

) 

ou ((0 quelconque si 

 pour tout i. 

Il est facile de vérifier que z+ et z- sont dans P (ils satisfont toutes les inégalités I). Alors x0 étant dans 

 (au milieu du segment) et F étant une face cela entraîne que z+ et z- sont dans F . Mais alors 

 est combinaison affine de points de F et est donc dans AffF.

(
Sachant que si F est une face de P alors 

 (cf. chapitre sur les faces), la proposition précédente entraîne qu’une face F quelconque de P s’obtient par l’intersection 

 où J est l’ensemble des inégalités saturées par les points de F.

Une conséquence est que le nombre de faces d’un polyèdre est fini. Il est borné par le nombre de façon de choisir J dans I soit au plus 2(I(. 

Une autre conséquence est que les polyèdres n’ont que des faces exposées contrairement au cas général des convexes quelconques.

Corollaire : toutes les faces d’un polyèdre P sont des faces exposées.

démonstration : soit F une face de P et soit 
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 on obtient une inégalité valide pour P c’est-à-dire f(x)(( (x(P et de plus 
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On peut appliquer cette caractérisation des faces pour trouver les points extrêmes de P. Un point extrême étant une face de dimension 0, les points extrêmes de P sont les solutions (appartenant à P) des systèmes cramériens (solution unique) extraits du système 

.

Exemple : soit P le polyèdre de R2 défini par le système suivant :
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En « serrant » (1) et (2) on obtient le système 
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 ayant pour unique solution x1=x2=1/2. Ce point satisfait aussi (3) et (4) donc il est dans P. C’est donc une face de dimension 0 c’est-à-dire un point extrême de P. 

Par contre, si l’on « serre » (1) et (4), on obtient le système 
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 ayant pour unique solution x1=1, x2=0. Mais ce point n’est pas dans P puisqu’il ne satisfait pas (2). Ce n’est donc pas un point extrême de P.

2.
Description minimale d’un polyèdre

On partitionne I  en I≤ et I= de la façon suivante: 


Pour chaque i de I≤ il existe un point de P qui satisfait l’inégalité i strictement au contraire des inégalités i de I= qui sont satisfaites avec égalité par tous les points de P , les ensembles I≤ ou I= pouvant être éventuellement vides.

Alors on peut décrire P par l’ensemble des solutions du système 


A noter que P étant une face de P , d’après le paragraphe précédent 

 et alors si P est non vide 

.

Exemple : soit P le polyèdre de R2 défini par le système d’inégalités suivant
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(1) et (3) entraînent x1+x2=1 et donc (1) et (3) sont satisfaites à égalité par tous les points de P. 
[image: image46.wmf]÷

÷

ø

ö

ç

ç

è

æ

1

0

(P et satisfait strictement (2) et (5), 
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(P et satisfait strictement (4). Donc I=={1,3},I(={2,4,5}. Le rang des formes linéaires (1(x)=x1+x2 et (3(x)=(x1(x2 est donné par 
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. Donc la dimension de P est dimP=2-1=1.

Il est toujours intéressant d’obtenir une description de P comportant un minimum d’égalités et d’inégalités. On peut toujours éliminer une égalité qui soit combinaison linéaire des autres car cette égalité est redondante. Qu’en est-il des inégalités ?

Proposition: soit j(I( l’indice d’une inégalité non redondante de P c’est-à-dire t.q. 
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 alors 
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 est une facette de P .

démonstration : soit x(Pj\P. Par définition, fj(x)>(j. Nous allons d’abord montrer qu’il existe x0(P t.q. 
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. Par définition de I(, pour tout i(I( il existe x(i)(P t.q.
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Maintenant, nous allons exhiber un point z de P sur le segment ]x0,x[ qui « sature » l’inégalité j uniquement. Pour cela, posons 
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Soit z=(x-(1-()x0.

· x et x0 satisfont les contraintes d’égalités de P, donc z aussi.

· x satisfait les contraintes d’inégalités i(j et x0 satisfait strictement les contraintes d’inégalité, donc z satisfait strictement les contraintes d’inégalités i(j.
· Il reste l’inégalité j. Par construction de (, z « sature » cette inégalité : 
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Donc z(F et l’ensemble J(I t.q. 
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 est I=((j( car l’ajout de toute égalité construite en serrant une inégalité i(I(\j éliminerait z.

Donc 
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 et dimF=dimP-1.

(
Ainsi on peut éliminer de I≤ les inégalités i t.q. 

 n’est pas une facette de P.

Exemple :

Soit le polyèdre P de R3 défini par le système d’inégalités suivant :
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Les 4 points suivants sont dans P : 
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. Ils sont affinement indépendants, on en déduit que dimP=3.

L’autre façon pour déterminer la dimension de P est de chercher I=. Le point de coordonnées x1=x2=1/2, x3=1/4 satisfait strictement toutes les contraintes (1) à (5) donc I==( et P est de dimension 3 (contenu dans aucun hyperplan de R3).

Soit la face F de P obtenue en « serrant » l’inégalité (4) 
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. Par contre 
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 et ne sature pas (1) et (5). Donc l’ensemble J des inégalités (1,…,5) qui une fois « serrées » contiennent F est J={2,3,4}. On en déduit que 
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 est déterminé par le rang des vecteurs 
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 qui est 2. Donc dimF=3-2=dimP-2. F n’est donc pas une facette. On peut donc retirer l’inégalité (4) de la description de P. On peut d’ailleurs vérifier que (4) peut être obtenue par (2)+(3).

3.
Caractérisation des facettes d’un polyèdre

Le problème qui se pose est comment reconnaître parmi les inégalités I≤ celles qui induisent les facettes de P. Ceci n’est pas chose facile mais on propose ici une caractérisation, bien utile, de ces inégalités.

proposition: soit F une face propre de P (c’est-à-dire non vide et ≠P) décrite par une inégalité 

 c’est-à-dire t.q. 

  alors F est une facette de P ssi pour tout couple 

 t.q. 

 il existe des réels 

 t.q. 

.

Exemple : reprenons le polyèdre précédent P défini par (1),…,(5). Montrons que (5) induit une facette de P c’est-à-dire F=P({x : x1+x2(x3=1} est une facette de P.
Soit g1x1+g2x2+g3x3=β l’équation d’un (hyper)plan H contenant F. Exhibons quelques points de F qui sont donc dans H et qui satisfont cette équation.
(1 1 1)T, (1 0 0)T, (0 1 0)T sont dans F. On a donc les relations :
g1+g2+g3=β, g1=β, g2=β. On en déduit g3=(β. L’équation de H s’écrit donc β(x1+x2(x3)=β. Soit encore (g1 g2 g3 β)T=β(1 1 (1 1)T. En posant (=β, on vérifie la partie suffisante de la proposition (rappelons que P n’est contenu dans aucun hyperplan et I==(). On en déduit que F est une facette de P.
On peut vérifier que F est bien une facette car les trois points exhibés sont affinement indépendants ce qui implique dimF≥2. Comme par ailleurs F est contenue dans un hyperplan dimF≤3-1=2 et dimF=2=dimP-1.
4.
Projection d’un polyèdre

Dans ce paragraphe, pour plus de commodité, nous décrivons les polyèdres à l’aide de matrices et de vecteurs colonnes de dimensions adéquates.

On considère le polyèdre P défini par l’ensemble des vecteurs (x,y) solutions du système d’inégalités: Ax+Gy≤b , 

R+p , x(Rn ,

où 


A est une matrice m lignes et n colonnes 


G est une matrice m lignes et p colonnes


b est un vecteur colonne de m lignes

La projection de P sur les variables x est l’ensemble Px des vecteurs x de Rn  t.q. pour tout x(Px , il existe y(R+p t.q. (x,y)(P.

Proposition : Px  est un polyèdre. Il est défini par l’ensemble des x vérifiant les inégalités de la forme (bAx)≥0 où  vecteur (ligne) de R+m parcourt l’ensemble des points extrêmes du polyèdre G≥0, 1+...+m≤1,  ≥0.

On considère le polytope Q=ConvM avec M={x1,…,xp} un ensemble fini de points de Rd . En utilisant la proposition précédente, nous allons montrer que Q est un polyèdre.

Théorème de Weyl : Q est un polyèdre de Rd.

démonstration : par définition de Q, Q est la projection du polyèdre P suivant
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 sur les variables x. Ce polyèdre comporte d+1 contraintes d’égalité et p contraintes d’inégalité (positivité des variables (). On peut décomposer une égalité en deux inégalités. On a donc un polyèdre avec 2(d+1)+p inégalités. Par la proposition précédente, la projection de P sur les variables x est un polyèdre.
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Exemple : soit 
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 un ensemble de 4 points de R3 . Ecrivons ConvM comme un polyèdre de R3 .
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. En notant x1, x2, x3 les coordonnées des points, on obtient :
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On obtient le résultat en éliminant les variables ( des équations (1), (2) et (3).

(1)+(2)+(3)-(4) donne 
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 (5). Ensuite (4(0 donne 
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(1)-½(5) donne 
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En éliminant de même (2(0 et (3(0, on obtient finalement : 

ConvM est décrit par les solutions du système 
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Méthodes d’optimisation
Méthodes de coupes

1.
Approche polyédrique

On considère le problème discret : 

(P) maximiser f(x) s.c. x(S
où f est linéaire et S est inclus dans Rn et de cardinal fini.

On se ramène au problème continu : 

(PC) maximiser f(x) s.c. x(ConvS
Il est facile de montrer, utilisant la linéarité de f , qu’il existe une solution optimale de (PC) qui est dans S. Donc résoudre (PC) permet de résoudre (P). 

Maintenant si on connaît l’expression de ConvS comme polyèdre, le problème (PC) est un programme linéaire classique que l’on peut résoudre par l’algorithme du simplexe par exemple.

Noter que ConvS est un polytope (cardinal de S fini) et que par théorème (Weyl) ConvS est un polyèdre.

2.
Algorithme de coupes

Supposons ConvS décrit par un ensemble d’inégalités I partitionné en I= et I≤ (cf. chapitre sur les polyèdres) où I= sont les contraintes d’égalités décrivant l’enveloppe affine de ConvS  (c’est-à-dire l’enveloppe affine de S) et I≤ les inégalités décrivant les facettes de ConvS.

Le cardinal de I= ne peut excéder n (AffS(Rn) si I= ne contient pas d’égalités redondantes. Par contre le cardinal de I≤ peut être très grand devant n. C’est pourquoi on se doit de n’introduire que les inégalités vraiment utiles dans la résolution de (PC). C’est l’objet de l’algorithme de coupes.

Algorithme de coupes
0. choisir un polyèdre initial P contenant ConvS et construit avec les égalités I= et quelques inégalités de I≤ 

1. soit x* solution du problème : maximiser f(x) s.c. x ( P

2. ajouter à P quelques inégalités de I≤ violées par x*, s’il n’en existe pas STOP

3. retirer de P les inégalités largement satisfaites par x* et aller en 1

La partie 1 consiste en la résolution d’un programme linéaire.

La partie 2 consiste à rechercher des inégalités de I≤ violées (non satisfaites) par x*. Généralement on ajoute à P les inégalités les plus violées. La recherche d’inégalités violées est appelée problème de séparation. C’est le point essentiel de l’algorithme.

La partie 3 est destinée à retirer de P les inégalités qui a priori ne sont plus utiles. Par largement satisfaite on entend 

 si l’inégalité est 

 où 

 est un paramètre à choisir.

Algorithme à 2 phases
Si I≤ n’est pas connu exhaustivement ou si le problème de séparation n’est pas résolu de façon exacte (on ne détecte pas d’inégalités violées alors qu’il y en a) alors il se peut que l’algorithme de coupes s’arrête sans qu’on ait la solution de (P) c’est-à-dire avec 

.

Il est alors nécessaire de recourir à un algorithme de Branch and Bound en partant du dernier polyèdre P généré. C’est ce qu’on appelle un algorithme à 2 phases.

Branch and Cut
Il est possible dans cet algorithme de Branch and Bound de mettre en oeuvre l’algorithme de coupes en chacun des noeuds de l’arborescence d’exploration c’est ce qu’on appelle un algorithme Branch and Cut.

3.
Exemple de problème de séparation

3.1.
Problème du stable de poids maximum

Soit un graphe G=(V,E) muni de poids ci pour tout i de V. Le problème du stable de G de poids maximum s’énonce:


 EMBED "Equation" \* mergeformat  


avec la convention suivante 


L’ensemble des vecteurs x qui vérifient les contraintes du problème est l’ensemble des vecteurs caractéristiques des stables de G, noté S(G).

3.2.
Inégalités valides pour le problème du stable de poids maximum

Soit 

 l’ensemble de sommets d’un cycle de G t.q. 

. Alors l’inégalité 

 est valide pour S(G) c’est-à-dire vérifiée par tous les vecteurs de S(G). On appellera cette inégalite inégalité de cycle impair.

On se propose de mettre en oeuvre cette famille d’inégalités valides dans un algorithme de coupes avec comme polyèdre initial 


3.3.
Un algorithme exact pour le problème de séparation des inégalités de cycle impair.

Soit x vérifiant les inégalités 

. Le problème est de trouver une inégalité de cycle impair violée par x.

On construit le graphe biparti 

 avec 

 et 

, 

.

On munit les arêtes de B de poids de la façon suivante: 

 sont munies du poids 

.

On remarque que dans B un chemin de i  à i’ correspond à un cycle C impair (

) dans G passant par i. De plus la longueur du chemin est 

. 

Par exemple soit un chemin 1, 2’, 3, 4’,..., (2k)’, 2k+1, 1’ dans B. La valeur du chemin est 



.

Si la valeur du plus court chemin de i  à i’ est ≥1 on obtient 

 soit 

. On en déduit qu’il n’existe pas d’inégalité cycle violée par x (pour tout cycle passant par i). Par contre si la valeur du plus court chemin est <1 on obtient 

 et on a mis en évidence une inégalité cycle violée par x.

D’où l’algorithme suivant:

Pour tout 

 , chercher le plus court chemin de i  à i’ dans B. 

Considérer le plus court de ces plus courts chemins et reconstituer le cycle C correspondant dans G. Si la valeur du plus court chemin est ≥1 alors il n’y a pas d’inégalité cycle violée par x sinon l’inégalité 

 est violée par x.

Noter que les poids étant positifs ou nuls, on peut utiliser l’algorithme de Dijkstra pour calculer les plus courts chemins dans B.

Méthode de décomposition

1.
Décomposition 

On considère le problème (Pb):




 cx+hy  s.c. Ax+Gy≤b , 

R+p , 

Rn 

où 


A est une matrice m lignes n colonnes 


G est une matrice m lignes p colonnes


b est un vecteur colonne de m lignes


c est un vecteur ligne de n colonnes


h est un vecteur ligne de p colonnes

et


X est une partie de Rn 

On réécrit (Pb) de la façon suivante:




cx+z  s.c. Ax+Gy≤b , z=hy , 

(+p , 

Rn , 

R 

On introduit alors l’ensemble P des vecteurs (x,z,y) vérifiant Ax+Gy≤b , z=hy , 

R+p , 

Rn, 

R,

et on réécrit le problème:




cx+z  s.c. 


(Pb’)

où 

 est la projection de P sur l’espace des variables x,z 

Par définition de la projection, 

 ssi 

 t.q. 

. Pour 

 et z fixés, cette dernière condition revient à dire qu’il existe 

R+p solution du système Gy≤b -Ax, hy =z. Par le théorème de Farkas cette dernière condition est équivalente à: 


 EMBED "Equation" \* mergeformat  

R+m , 

R t.q. 

 on a 


2.
Algorithme de coupes

On s’intéresse maintenant à la résolution du problème écrit sous la forme (Pb’). 

On va décrire un algorithme qui génère de façon dynamique les inégalités utiles décrivant la projection de P sur les variables x, z.

algorithme:

soit I un ensemble de quelques inégalités valides pour 


1. maximiser cx+z  s.c. 

 et (x,z) vérifie les inégalités I 

soit 

 une solution

2. Si 



alors STOP on a résolu (Pb’).

sinon 

générer une inégalité séparant 

 et 

  (c’est-à-dire violée par 

 et valide pour 

)

l’ajouter à I et aller en 1.

Le point crucial est le problème de séparation (étape 2 de l’algorithme).

On cherche y t.q. 

 et s’il n’en existe pas on doit exhiber une inégalité valide pour 

 et violée par 

.

Pour cela on résout le problème suivant:
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  s.c. 

, 

R+p , 

R+ 
(SP)

où 1 est le vecteur colonne constitué de m  coordonnées valant 1.

Si la solution de (SP) vérifie s=0 alors il existe y t.q. 

 c’est-à-dire 

.

Sinon (s>0) considérons le dual de (SP), 

, 

 ses variables duales et l’inégalité 

 (i)

Les variables duales vérifient 

 et 

R+m 

alors d’après le théorème de Farkas (cf. premier paragraphe) l’inégalité (i) est valide pour 

 .

De plus la fonction objectif du dual est 

 et l’inégalité (i) est donc violée par 

.

3.
Cas particuliers

Si h=0 alors on peut poser z=0 et le problème (Pb’) revient à maximiser cx sur la projection de l’ensemble P des vecteurs (x,y) vérifiant Ax+Gy≤b , 

R+p , 

, sur les variables x.

Méthode de génération de colonnes

On considère le problème (Pb) suivant:

(Pb)



 s.c. 


où 

 est une partie finie de Rn , J est l’ensemble (fini) des indices des contraintes d’inégalités.

On suppose f linéaire, gj affine pour tout j.

On suppose également savoir résoudre efficacement le problème d’optimisation d’une forme linéaire sur X même lorsque p est grand.

On considère la relaxation suivante de (Pb) où 

 est relaxé à 

:

(P)



 s.c. 


1.
Génération de colonnes

Sachant que x dans l’enveloppe convexe de X s’écrit comme combinaison convexe des éléments de X, par linéarité de f et des gj , (P) se réécrit:

(P()


 s.c. 


(P() est un programme linéaire en les variables (i). Lorsque p est grand, le nombre de variables de ce problème est grand d’où la nécessité de n’utiliser que les variables (colonnes) utiles.

algorithme de génération de colonnes:

Soit I un sous-ensemble de {1,...,p} contenant quelques indices t.q. pour au moins un i de I, xi élément de X, vérifie les contraintes 

.

1. résoudre 

 s.c. 


Soit 

 les variables duales optimales

2. recherche d’une variable entrante de coût réduit positif


 EMBED "Equation" \* mergeformat  


Soit 

 réalisant le max

Si 

 


alors ajouter l’indice i  à I et aller en 1.


sinon tous les coûts réduits sont négatifs ou nuls STOP on a résolu (P()

Commentaires.

A chaque itération de l’algorithme, par dualité 

  est égal à la valeur du problème résolu en 1.

Soit 

 solution de (P’) , on a:
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(la deuxième inégalité étant due au fait que 

 et 

 pour tout 

)

et finalement 

 

Donc à chaque itération, on a un encadrement de la valeur optimale de (P().

En particulier lorsque 

, 

  est ègal à 

 et (P() est résolu.

D’autre part si l’on peut se contenter d’une solution approchée, on peut arrêter l’algorithme lorsque 

 atteint une valeur suffisamment petite.

Soit 

 la solution trouvée à la fin de l’algorithme (implicitement 

). 

Si 

 pour un i  (et donc 0 pour les autres) alors on a résolu (Pb) le problème sur X  (non relaxé). Sinon on peut toujours rajouter à J des inégalités valides et violées par 

 la solution trouvée et réitérer l’algorithme.

2.
Génération alternative de colonnes et de coupes

Supposons connu un ensemble d’inégalités valides pour l’ensemble 


algorithme de génération de colonnes et de coupes:

1. Résoudre (P() par l’algorithme de génération de colonnes du paragraphe précédent

Soit 

 la solution trouvée

2. S’il existe une inégalité valide violée par 



alors l’ajouter à J et aller en 1.


sinon STOP

Noter que d’une itération à l’autre quand on réapplique l’algorithme de génération de colonnes (étape 1), on peut repartir du dernier ensemble de colonnes I  trouvé.

3.
Dualité lagrangienne

On considère ici (Pb) et son problème dual lagrangien (D) obtenu par relaxation des contraintes gj(x)(0 j(J.

(D)
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Les contraintes de (Pb) sont relâchées et injectées dans la fonction objectif via des multiplicateurs ( positifs ou nuls. Pour x satisfaisant les contraintes de (Pb), (jgj(x)(0 et donc 
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 et ceci ((((. La valeur de (D) est donc supérieure ou égale à la valeur de (Pb).

En introduisant une variable supplémentaire z, (D) se met sous la forme d’un programme linéaire avec autant de contraintes qu’il y a d’éléments dans X.

(D) 
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Théorème

Le problème (D) est le dual de (P().

démonstration : écrire le dual du programme linéaire (D) avec les variables (i(0 i=1,…,p associées à chacune des contraintes de (D).

Il résulte du théorème précédent que les problèmes (D) et (P(), et donc (P), donnent la même valeur. Donc faire la relaxation lagrangienne de (Pb) ou relaxer x(X en x(ConvX sont deux méthodes équivalentes dans le sens où elles donnent la même valeur.
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Anciennes démonstrations

1.
Caractérisation des faces d’un polyèdre 

Soit J un sous-ensemble de I et considérons l’ensemble 

 où les inégalités de J sont devenus des égalités. Il est facile de vérifier que F est une face de P.

La question que l’on se pose est: obtient-on de cette façon toutes les faces de P?

Proposition: soit F une face non vide d’un polyèdre P et soit 

, alors 

 où 

 (J est l’ensemble des inégalités “saturées” par x0).

démonstration: par la caractérisation géométrique de l’intérieur relatif on a 

 c’est-à-dire 

. Il est facile alors de vérifier que 

 et donc finalement tout y de F satisfait avec égalité les inégalités de J c’est-à-dire 

 ce qui entraine 

 puisque le membre de droite est un espace affine.

Montrons l’inclusion inverse. Soit 

. Si y=x0 c’est terminé.

Supposons y≠x0 .

Soient 

 et 

 avec 

 donné par 

 (

 car 

) et quelconque si 

 pour tout i. Il est facile de vérifier que z+ et z- sont dans P (ils satisfont toutes les inégalités I). Alors x0 étant dans 

 (au milieu du segment) et F étant une face cela entraine que z+ et z- sont dans F . Mais alors 

 est combinaison affine de points de F et est donc dans AffF.
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