COURS D’ARCHITECTURE DES ORDINATEURS
Chapitre 8 : Gestion de la mémoire

-Objectifs :

-Faciliter l’utilisation de la mémoire pour le S.E
chargement des programmes
différenciation des types (programmes, données, pile)

-Se dégager des caractéristiques (limitations) physiques

taille de la Mémoire Centrale

banalisation de toutes les formes (MC, disque, …)

-Optimiser les performances

vitesse moyenne d’exécution

protection des données (sys protégé (mode superviseur (mécanisme de protection d’accès à la mémoire)
En MC (Mémoire Centrale) les adresses se suivent, on a une mémoire contiguë. Sur les disques, on gère une liste chaînée (EX : FAT). Pour une utilisation optimale on travaille par blocs.

La plupart des S.E utilise un système multitâches. Les systèmes monotâche, comme DOS, vont chercher l’exécutable qui se trouve sur le disque et l’installe dans la MC. On a alors un problème quand le programme a exécuté est plus grand que la MC.

Pour accéder à des données sur le disque et pour les mettre dans la MC, on doit passer par un contrôleur. Si on a un programme plus grand que la capacité effective de la mémoire, il est initialement sur le disque, si on veut le faire exécuter, il faut découper le programme en morceaux. On a intérêt de découpage en taille identique.

Un fichier exécutable contient des instructions, du code tandis qu’un fichier de données ne contient que des données.

Un fichier exécutable contient également la taille mémoire à l’exécution du fichier, ainsi que le processeur sur lequel il peut “tourner”. Avant de le lancer, le CPU doit vérifié s’il peut l’exécuter.

Dans l’entête du fichier, il y a de quoi identifié le SE qui peut l’utiliser, la taille de la RAM nécessaire (la taille du code, la taille des données et la taille de la pile).

Un système de gestion de fichiers revient à virtualiser des fichiers en utilisant des primitives de bases (lire, écrire, créer, supprimer, déplacer,…)

Pour “banaliser” (rendre utilisable pour tout type de périphériques) un système de gestion de fichiers, on utilisent des pilotes (coté machine) et une bibliothèque (coté utilisateur).Il faudrait utiliser de la même façon les données qui sont sur la mémoire que celles qui sont sur le disque. On utilisent, la plupart du temps, les adresses physiques présentes que dans la MC, il faut maintenant se servir de la mémoire virtuelle (ou logique) en se servant de pilote qui transforme les adresses virtuelles en adresses physiques. On doit alors faire la différence entre les adresses présentes sur le disque et celles dans la MC.
Si l’adresse n’est pas dans la MC, le pilote (ou RAM-DISK) doit aller chercher l’adresse sur le disque te la mettre, on utilise alors le disque comme une extension de la mémoire. Le code du pilote fait parti du SE.

Composant nécessaire pour un S.E : pilotes, gestionnaires de fichiers, ordonnanceur de tâches (partage de temps et part égale ou système de priorité).

-Hiérarchie de mémoire :

Principe de base : la localité.

90% du temps d’exécution d’1 programme concerne 10% du code.
Localité temporelle : les éléments accédés récemment ont tendance à être accéder à nouveau dans un futur proche (itération, récursivité)

Localité spatiale : les éléments accédés ont tendance à être regroupés dans l’espace mémoire (données structurées, tableaux)
Localité séquentielle : les instructions ont tendance à être accédées à des adresses mémoires séquentielles.

Tout le programme n’a pas besoin d’être présent en M.C pour être exécuté.

On fait beaucoup de copies Disque[image: image1.bmp]MC[image: image2.bmp]Registre, pour éviter cela, on utilise la mémoire cache (avec cela, le CPU n’utilisent plus directement la RAM).
Si la mémoire cache est inférieure à la RAM, il faut faire du redécoupage comme pour le disque et la RAM.

Le CPU n’a accès qu’aux registres et au niveau directement inférieur.

[image: image3.png]

-Gestion physique de la mémoire :

-Random Access Memory (RAM)

Accès par l’adresse, mémoire centrale.
[image: image4.png]cPU Cache RAM
@784 —
st des @

stockées

-Content Access Memory (CAM)

On gère les données à une adresse, le programme indique cette adresse. Il faut savoir qu’est ce qu’il y a dans la cache, un élément qui indique ce qu’il y a à l’adresse de la variable et le contenu de la variable.

-RAM :

-Adressage absolu : l’adresse est directement une adresse physique.

-Adressage relatif : adresse de base ajouté à l’adresse pour obtenir une adresse physique
-Déplacement : dépendant du processeur (registres d’index, modes d’adressages du CPU)

Les CPU n’ont plus accès à la mémoire dans les calculs, ils utilisent 2 commandes à accès mémoire : LOAD : charger de la mémoire dans les registres

 STORE : registre[image: image5.bmp]mémoire

-Mémoire virtuelle :

mapping (fonction) (= le processeur génère une adresse transformée par cette fonction en une adresse physique (linéaire) d’un espace à adresse virtuelle (logique)vers un espace physique

mapping = table de correspondance. Comment passer d’une adresse virtuelle en adresse physique.

Mémoire virtuelle non liée aux limitations de la mémoire physique : le programme peut avoir une taille plus importante que celle de la mémoire physique.

Résultat :

-En général, on a un moyen de faire apparaître la mémoire plus grande qu’elle ne l’est réellement.

-Inconvénients : temps d’accès au disque + intéressant en multitâche : simultanéité de l’accès disque avec le changement de contexte dû à la commutation de tâche.
-Implémentation : principe du partitionnement de la mémoire en blocs (segments, pages)

-overlay (pour mémoire, …)

-segmentation(segment de taille variable)

-pagination (pages de taille fixe)

-segmentation paginée (combinaison des 2 autres techniques)

-Techniques de gestion de la mémoire physique

-Overlay : (recouvrement) quasiment abandonné par l’utilisateur mais fonctionne à l’intérieur des machines.

Avant c’était à l’utilisateur de découper son programme (en module) mais il doit être indépendant du matériel qui l’utilise.

L’autre méthode est le découpage en procédures (pour les programmes) , pour les données on les découpe en structure (fait par le compilateur). On parle alors de segmentation, mais cette méthode n’est pas très efficace au niveau de l’exécution car les tailles des structures varient.
Pour éviter ces problèmes, on utilise la pagination (= découper en morceaux de taille fixe indépendamment de ce qu’il y a dans le programme. Mais il faut respecter l’instruction, on ne doit pas la découpée.

Le programme principal doit être toujours en M.C. Il doit être le plus petit possible.

Un bon programme est un programme qui s’utilise souvent et ce programme doit être amélioré (évolution évolutive) et corriger (évolution correctrice) les bugs, en gros, on doit changer le code.

Il faut donc redécouper le programme, on a donc un risque d’erreur qu’il n’y avait pas avant.
-PAGINATION – SEGMENTATION

Basé sur le principe d’association de morceaux. Notion de pagination.
Le découpage est automatique, on commence par chercher la table, elle va se trouver en mémoire. Le CPU doit aller chercher l’adresse dans la table, il donne l’information à un élément qui lui va chercher réellement dans la table : le MMU (Memory Management Unit), il est intégré dans le CPU.

Par la suite, on prendra l’exemple du i386 (processeur Intel).

5 opérations pour 1 instruction : [image: image6.bmp] Fetch [image: image7.bmp] décodage [image: image8.bmp] lecture des opérandes [image: image9.bmp] traitement [image: image10.bmp] écriture.

Le i386 utilise toujours la segmentation, la pagination quant a elle est optionnelle.

I) Segmentation :

Objectifs : partitionner la mémoire en morceaux (segments) de taille inégale.

Tout programme a besoin de 3 zones de mémoires : code, donnée, pile ; avoir une mémoire tridimensionnelle. Afin d’éviter les empiètements de mémoire.
[image: image11.png]code

data

data
code

stack

0 stack (pile)

En fait, il n’y a pas que trois espaces, par exemple :

Avec le 8086 : 4 espaces requis : 1 espace pour le code, 1 pour la pile, 2 pour les données.

Avec le i386 : 6 espaces requis : 1 espace pour le code, 1 pour la pile, 4 pour les données.

Sur le 8086, le registre IP 16 bits, compteur de programme soit 64Ko = taille max des segments. Les segments ont des tailles variables (taille de la procédure)
Il faut mémoriser l’adresse de départ du segment dans un registre (le CSR : Code Selector Register).

[image: image12.png]0000 |

1 0000

e

Adresse Physique

Adresse logique

Si le programme est supérieur à la longueur maximale d’un segment, il doit être organisé en procédures.
[image: image13.png]32Ko)

46Ko
Ps
4 s
3

"
P2
B

rs

Quand on veut passer de P2 à P5 on change juste IP : appel court 32 bits.

Quand on veut passer de P1 à P6 on change IP et le segment de code : appel long 48 bits.

Pour éviter les problèmes d’empiétements, il faut mettre en place des indirections à l’aide d’un descripteur de mémoire (descripteur de segment) d’une taille de 8 octets.
Chaque segment à un descripteur qui se trouve dans la M.C. En gros, on perd de la mémoire pour protéger la mémoire.

Les 16 bits CS ne représente pas l’adresse de début de segment car on ne veut pas donne directement accès à la mémoire physique : on passe par le descripteur.
Les descripteurs sont dans une table qui elle même se trouve dans un segment. CS contient l’index de la table du descripteur. L’adresse de cette table se trouve dans un registre du CPU
- Descripteur :

Cette table s’appelle GDT (Global Descriptor Table)
Sur le i386, le registre IP fait 32 bits d’où appel court de 32 bits et l’appel long de 48 bits (IP+CS)

Sélecteur coupé en 3 morceaux : -index qui défini le nombre de segments maximum auquel on a accès.

13 bits donc 213= 8192 entrées de table

Au démarrage le i386 se comporte comme un 8086, avant de passer en mode protégé, il faut que la GDT soit en place.

-RPL : Request Privilege Level : niveau de privilège du demandeur de la requête, 2 bits.

-TI : Table Indication (GDT, LTD)

GDT : cette table contient des descripteurs de segments dit locaux : accessible de tout le monde et descripteur de procédure système dont l’on fait l’appel.

LDT : Local Descriptor Table. Une table par application (par exemple une pour Word, une pour Excel,…) A un moment donné, le CPU n’a accès qu’à une seule LDT à la fois. Ces tables décrivent les objets privés d’un programme (comparable aux variables locales). Ces tables se trouvent donc dans un segment qui a un descripteur qui lui se trouve dans la GDT.
Sur les 8 octets du descripteur, il y a en a 4 qui servent à donner l’adresse de départ du segment.

[image: image14.png]LOGICAL ADRESS

47

3231

SELECTOR

OFFSET

SEGMENT

DESCRIPTOR TABLE

OPERAND

DESCRIPTOR

-Descripteurs de segments :

-Adresse de début du segment : 32 bits. “segment base”
-Type de descripteur : 5 bits. Code, table, procédure, tâches, données,…
-Droit d’accès : 2 bits. DPL Descriptor Privilege Level

-Granularité : 1 bit. Soit en octet (taille max 1Mo) soit en page (4Ko taille max 4Go)
[image: image15.png].
I BASE 22,16

SEGMENT BASE 15..0

-Gestion de descripteur.

A un instant donné, le CPU ne voit qu’un segment de code. Donc à chaque appel de procédure on change de segment. Il faut vérifier que la procédure existe et que l’on a les droits d’accès ainsi que la taille limite. On fait une copie dans un registre : le MMU.
-Call Gate (porte d’appel de procédure)
[image: image16.png]OFFSET SELECTOR

CALL

(NOT USED) INDEX

—

48 bits

[

pe— deseripteur de
procédure
SELECTOR | OFFSET
procédure
BASE BASE
descripteur de
BASE segment

-Interrupt Gate :

Même mécanisme que le Call Gate.

-Bilan de la segmentation :
Avantages : Facilite le chargement des pages et la mise en place d’un mécanisme de protection.
Inconvénients : alourdie la programmation et ralentie les performances temporelles, complexe à réaliser (occupe beaucoup de transistors sur la puce). Tendance à être moins utilisé.

II) Pagination :

Sert à mettre en place une mémoire virtuelle.

Programme coupé en morceaux de tailles fixes : taille fixées à l’avance (le plus souvent 4Ko).

On découpe n’importe où (code, données,…) mais jamais au milieu d’une instruction.

La fonction de mapping (passer d’une adresse logique à une adresse physique) est une table de pages (contenant les caractéristiques de la page : présence en mémoire (M.C ou Disque), adresse disque,…)
-Principe :
L’espace est géré en cadres de page (page frames), chaque cadre peut recevoir 1 page, le mécanisme implique un échange (swap) entre la M.C et le disque. Le CPU ne peut accéder qu’à une page présente en M.C. Le CPU va vérifier dans le descripteur si elle existe en M.C, si ce n’est pas le cas, le MMU va générer une exception (cette routine fait parti du S.E). Une fois la page mise en M.C, on réexécute l’instruction interrompue.

[image: image17.png]N de page
shsice Meémoire physiae

Espace logique de 1" ds page o
Iatache Iogime

Page0 MMU

N1

N1 N

-Chargement de programmes

[image: image18.png]Tiche &

SE st
dntemps 3

Ticha B

principale
cPU
$4000,
exec A $1000
MMU
principale
cPU
execB $1000 seo0

MMU

-Pagination 80386 :
Une page fait 4Ko (12 bits) [image: image19.bmp]220 pages de 4Ko.

Table de 220 entrées (≈ 106).

Une entrée = 32 bits

Table de page = 4Ko 1Mo = 4Mo.

On utilise une hiérarchie de table de page. Une qui joue le rôle de la GDT (répertoire) et les autres jouent le rôle de LDT (ou sous répertoire). La première est appelée “directory” ou table répertoire, elle doit se trouvé obligatoirement en M.C. Cette table contient des tables de pages (de 1024 entrées). Soit, dans la table répertoire il y a 1024 1024 = 1Mo de pages. Découpage d’une adresse logique de 32 bits en 3 champs : Directory 10 bits, Table 10 bit, Offset 12 bits.
[image: image20.png]CcR3

LINEAR ADRESS

el T
e
F
N
I
DIR. ENTRY J
T L

SPACE

1Ko
PAGE

Les adresses doivent être à une adresse multiple de 4Ko soit les 12 bits d’Offset à 0, d’où les 20 bits dont on a besoin.

-Mécanisme :

Dans un descripteur de page, on doit avoir : -1 bit pour savoir si la page est en M.C .

-3 bits de contrôle

-20 bits pour localiser la page sur le disque.
On fait une copie de la page, qui nous interesse, présente sur le disque, on regarde ensuite si la page en cours en M.C est du code, des données,… Si la page n’a pas été modifiée, on l’écrase mais à l’inverse, on la recopie sur le disque. Il y a un indicateur (D) qui montre si la page a été modifiée, c’est la MMU qui se charge de cet indicateur. Le bit A (Access) sert d’“historique” , c’est le S.E qui se charge de ce bit à l’aide d’un algorithme à remplacement de page (CRU).

-Fonctionnement

Processeur émet une adresse linéaire de 32 bits :

-Recherche (dans répertoire) de la taille de page (10 bits, Directory)

Si p=1 alors OK on passe à

Sinon : exception “page fault” du CPU

Traitement par le CPU

-Recherche de l’adresse de page dans la table (10 bits, page)

Si p=1 alors OK on passe à

Sinon : exception “page fault” du CPU

Traitement par le CPU

-Calcul d’adresse

Adresse physique = adresse cadre_page (20 bits) + offset (12 bits) (12 bits, offset)

Dépôt de l’adresse physique sur le bus d’adresse.

-S.E :

Rôle du S.E. : -initialisation des tables et du fichier SWAP

 -traitement de l’exception “faute de page”

S’il existe un cadre de page vide en M.C, on charge la page et on renseigne l’entrée correspondante, sinon on utilise l’algorithme de remplacement : on choisit une page à éliminer, s’il elle a été modifiée, on recopie la page à la place sur le disque (fichier SWAP) sinon on l’écrase.
-Récapitulation 386 :

Avec ce CPU, on utilise toujours la segmentation, le résultat de cette segmentation donne une adresse linéaire et cette adresse devient une adresse logique par la pagination

-Mémoires caches :

Sert à optimiser les accès à la M.C

Mémoire plus rapide(SRAM 20ns), mais plus petite, qui se trouve entre le CPU et la RAM.

[image: image21.png]CPU

Cache

Contréleur

Contréleur

En cache, on doit avoir l’adresse correspondante en M.C ainsi que le contenu.

Principe :

-Le CPU envoie une adresse au controleur de Cache.

-Accès à la cache par CAM : savoir si l’adresse est déjà en cache.

Caractéristiques :

-taille du bloc (ligne) 2,4,8,16,32 octets

-taille de cache (données et adresse) taille globale

-organisation physique (performance cout)

-Mémoire associative, fully associative cache

-Mémoire à adressage direct, direct mapped cache

-Mémoire à adressage direct partiellement associative, set associative cache

-Mémoire associative :

On lance tous les comparateurs en même temps, on a autant de comparateurs que d’éléments à comparer.

Le CPU émet une adresse, le controleur de cache cherche si cette adresse est en cache, si oui, succès (HIT) données émises au CPU sinon, échec (MISS) chargement des données de la MC en cache.
Ex :

Cache 512 octets, mapping 16 Mo, adressage 24 bits : 2 champs :

-Etiquette (tag field) 22 bits : adresse du mot de 32 bits en M.C

-Offset 2 bits : choix de l’octet dans le mot.

Taille du cache : données 4096 bits, étiquette 2816 bits (128[image: image22.bmp]22).

Si les 8 premiers bits (Sélection cache/DRAM) sont à 0, la mise en cache porte sur 16 Mo.
Quand la table de pages est en cache, on parle de TLB : Translation Lookahead Buffer

-Cache à adressage direct

Ne fait qu’une seule comparaison d’adresse.

Moyen : Définir des emplacements prédéfinis à l’aide d’un index.
Index : numéro d’une ligne cache, correspond à un champ de poids faible de l’adresse (une ligne donné ne pourra accueillir que les données d’adresse multiple de cet index)

Etiquette : défini le multiple.

-Avantages/Inconvénients

Faible cout car un seul comparateur ;
Mauvais rendement de l’occupation des lignes (pré-affectation) : si un domaine est à mettre en cache et que son index est occupé, il faut procéder à un remplacement même si toutes les autres lignes du cache sont vides.

Cache 64 Ko

16 Klignes de 4o, mapping 16 Mo, adressage 32 bits : 3 champs :

-Index : 16 bits poids faible, le comparateur utilise les 14 bits de poids fort (2 derniers bits à 0)

-Etiquette 8 bits défini le multiple de 64 Ko concerné en M.C

-Sélection CAM MC (8 bits) permet de sélectionner la zone de 16 Mo sur laquelle porte le cache.

-Cohérence_Validité (correspondance de ce qu’il y a en mémoire cache et en M.C

Cohérence : Cache général (externe) Attention aux valeurs modifiées en cache et non en M.C (ou inversement)

 Cache d’instructions (interne) Le code n’étant pas modifié par l’exécution du programme, il n’y a pas de problème de cohérence avec M.C

 Cache de données (interne) Idem cache général

Validité : la validité du contenu en fonction du mode de chargement RAM[image: image23.bmp]Cache (Burst Mode)
Bit de validité :

Cas d’une ligne de plusieurs mots, ex :

Cache instruction du 68030 : cache à accès direct 16 lignes de 4 mots de 32 bits (256o)

Recherche d’une instruction
Si HIT OK

Sinon charger le mot de 32 bits à partir de la RAM, 2 solutions :

-Remplacement de la ligne complète (burst mode, rafale mode) coûteux en temps.

-Remplacement du seul mot concerné, rapide mais par rapport à l’index chargé les 3 autres mots de la ligne sont invalides.
C.C.L : il faut un bit de validité par mot.

Cohérence : problème dû au cycle d’écriture (CPU[image: image24.bmp]Cache)

2 techniques de mise à jour de M.C
-Ecriture simultanée (write through)

L’écriture se fait simultanément dans la cache et dans la RAM. Il y a cohérence, mais le temps du cycle est celui de l’écriture en RAM.

-Ecriture différé (write back)

L’écriture en mémoire ne se fait pas systématiquement, mais lorsqu’il faut recharger la ligne. Nécessite un bit “dirty” pour la mémorisation de la modification du mot.

