Balistique, trajectoire d’un projectile.


Objectifs : 
· utiliser les outils technologiques : calcul formel, tableur,

· faire travailler les élèves en groupes,

· faire des recherches sur l’internet, en histoire des mathématiques et sur le sujet (en commençant par une recherche des mots clés balistique, balistique extérieure, projectile entre autre),
· appliquer les programmes actuels : méthode d’Euler,
· tracer des courbes en mode paramétrique.

1667-1748 Jean Bernoulli :
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	Il professa les mathématiques à Groningue (1695), puis à Bâle, après la mort de son frère Jacques (1705), et devint associé des Académies de Paris, de Londres, de Berlin et de Saint-Pétersbourg. Formé par son frère Jacques Bernoulli, il avait longtemps travaillé de concert avec lui à développer les conséquences du nouveau calcul infinitésimal inventé par Gottfried Leibniz ; mais il s'établit ensuite entre eux, une rivalité qui dégénéra en inimitié.

Il a aussi contribué dans beaucoup de secteurs aux mathématiques y compris le problème d'une particule se déplaçant dans un champ de gravité. Il trouva l'équation de la chaînette en 1690 et développa le calcul exponentiel en 1691. 

En 1721 il donne une solution du problème de la trajectoire d’un boulet par quadrature de courbes transcendantes (modèle choisi : 
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). Solution théorique non applicable par les artilleurs.

Il fut le professeur de Leonhard Euler.


1707-1783 Leonhard Euler :
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	Mathématicien et physicien suisse. Il est considéré comme le mathématicien le plus prolifique de tous les temps. Il domine les mathématiques du XVIIIe siècle et développe très largement ce qui s'appelle alors la nouvelle analyse. Complètement aveugle pendant les dix-sept dernières années de sa vie, il produit presque la moitié de la totalité de son travail durant cette période.

La « méthode d’Euler » est au programme de première et terminale S.
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	Il écrit un traité d’artillerie en 1745. 
En dehors de quelques pages, je n’ai pas pu le consulter.


1752-1833 Adrien-Marie Legendre :

	[image: image5.jpg]



	Il fit d’importantes contributions à la statistique, à la théorie des nombres, aux algèbres abstraites et à l'analyse.

Une grande partie de son travail fut perfectionné par d'autres : son travail sur les racines des polynômes inspira la théorie de Galois ; le travail de Abel sur les fonctions elliptiques fut construit sur celui de Legendre ; certains travaux de Gauss en statistique et en théorie des nombres complétèrent ceux de Legendre.

Il écrit un traité d’artillerie lors de son passage comme professeur à l’école d’artillerie.
Ce serait le premier à utiliser un repère lié au projectile.


1781-1840 Siméon-Denis Poisson :
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	En 1798, à peine âgé de dix-sept ans, il est reçu premier à l'Ecole polytechnique. Il attire alors l'attention de Lagrange et Laplace qui voient en lui un brillant mathématicien.

Il fut examinateur à l’école d’artillerie.

Il a publié dans le journal de l’Ecole Polytechnique en 1838-1839 un mémoire sur le mouvement d’un projectile dans un milieu résistant en tenant compte d’une résistance proportionnelle au carré de la vitesse dans le cas d’un projectile sphérique.

Dans le tome 3 du « Mémorial de l’artillerie » il publie « Formules de probabilité relatives au résultat moyen des observations » qui est la théorie


des erreurs de Laplace, et notamment la « loi des erreurs » en artillerie qui deviendra la loi normale.

En probabilité, la loi de Poisson porte son nom.
1873 (capitaine) Jouffret :
Capitaine d’artillerie à l’école de Metz, il enseigne les probabilités liées au tir, étudie la dispersion des tirs. Il écrit dans son cours « Si on tire un grand nombre de coups et qu’ensuite on aille placer l’un au dessus de l’autre, en chaque point du sol, tous les projectiles tombés en ce point, la surface enveloppe de ces projectiles sera semblable à une cloche ».

Cette image sera reprise par Joseph Bertrand en 1887 dans son livre de calcul des probabilités. Elle aura un succès tel que l’on oubliera la « loi des erreurs » de Laplace pour ne plus parler que de courbe en cloche.

D’autres ont participé… comme J. d’Alembert, F.Siacci (gros travail, réalisation de tables de tir, souvent repris et cité), J. H. Lambert (développements en séries 1767), B. Riemann, I. Didion, F. Hélie, je ne les ai pas tous cités, j’en ai forcément oublié, qu’ils me pardonnent.
Malgré ce qui précède, n’ayant pas de loi simple, les artilleurs continueront à utiliser les données « empiriques » écrites dans leurs tables.

Fin 1800, début 1900, certains auteurs (mathématiciens, physiciens, ingénieurs et/ou artilleurs) écrivent des traités de « balistique extérieur » qui résolvent correctement le problème de la trajectoire d’un boulet de canon (par exemple Charbonnier en 1921).
Il faut remarquer que par la suite, de nouvelles conditions de tir ont demandé de nouveaux calculs.
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Le canon qui bombarda Paris (1918) : longueur 36 m, poids 750 t, calibre 210 mm, obus 104 à 106 kg, vitesse d’éjection 1600 m/s, porté 126 km !
	Par exemple, le canon qui bombarda Paris, appelé à tort « la grosse Bertha » (c’est pas le même) pour qui la hauteur atteinte par le projectile lui fait passer des couches d’air moins dense et change la portée attendue, les rayures intérieures du canon produisent un effet déviant l’obus (effet Magnus), enfin, l’effet Coriolis s’applique aussi à ce projectile sur des tir à très longue distance (erreur de tir pouvant atteindre entre 3 à 5 km de déviation sur le côté, en dehors de l’effet supplémentaire pouvant être induit par le vent !).




Aujourd’hui, avec une modélisation sur ordinateur, les calculs sont effectués rapidement, de façon satisfaisante, à condition de savoir programmer les calculs à effectuer !
Résolution du problème en quatre parties : 
La première, c’est un cas d’école, comme Torricelli, considère le projectile dans le vide. On sait que les résultats sont très éloignés de la réalité (l’expérimentation des artilleurs).
La seconde fait intervenir la résistance de l’air, en considérant que cette force est proportionnelle à la vitesse du projectile. C’est beaucoup plus proche des résultats de l’expérimentation, l’allure de la courbe obtenue peut être considérée comme un bon modèle. Nous savons que ce modèle s’applique bien pour des vitesses d’objets animés d’une faible vitesse (v ( 10 m/s), ce qui n’est pas le cas considéré.

La troisième correspond d’avantage à la réalité, on constate en effet par comparaison avec la réalité qu’une résistance de l’air proportionnelle au carré de la vitesse du projectile fait partie « des bons modèles ». Le calcul est alors nettement plus compliqué !
Cette troisième partie donne lieu à trois subdivisions : la première concerne le tir vertical, la seconde résout le problème par l’application de la méthode d’Euler, enfin, la troisième utilise le calcul formel comme support de résolution.

Pour la quatrième partie, c’est une remarque concernant la façon de procéder suite à une erreur qui peut apparaitre lors de l’intégration des fonctions trigonométriques.

Remarques : 
· il n’existe pas UN modèle mais plusieurs qui dépendent des conditions : vitesse du projectile en sortie du canon de l’arme, forme du projectile, longueur du canon de l’arme et forme de ses rayures…
Il est généralement admis que les modèles de type kvn, pour n=2 ou 3, 4, 5 voir même av2+bv3 sont de bons modèles selon la vitesse d’éjection du projectile. 
Dans les conditions du problème (calcul de la portée, calcul d’une flèche, munition simple, vitesse initiale inférieure ou égale à 250 m/s) kv2 semble être LE modèle utile.
· l’utilisation d’un logiciel de calcul formel permet non seulement d’essayer de nous aider à trouver des réponses aux questions que nous nous posons, en plus, il permet de récupérer directement par copier-coller le texte ou les formules des calculs utilisés.
Le problème est traité dans les conditions suivantes : l’arme utilisée est un revolver à poudre noire (reproduction du Remington New Army 1858), calibre .45 (soit un diamètre de 11,55 mm ou 1,155 10-2 m). v0=220 m/s = vitesse de sortie de la balle du canon. Masse de la balle (ronde en plomb) : 9,5 g = 9,5 10(3 kg). Surface frontale de la balle : ½ sphère de rayon 5,775 10-3 m : 
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On prendra 
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=1,25 kg/m3 masse volumique de l’air (qui varie de 1,2 à 1,3 kg/m3 au niveau de la mer), S la surface frontale du projectile, Cx=0,25 pour une balle ronde, le coefficient de pénétration dans l’air (0,25 à 0,20 pour une bonne voiture) et v la vitesse du projectile. On prendra donc 
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Remarques : 
· habituellement, pour résoudre les équations différentielles de ce problème on procède par séparation des variables et intégration (recherche d’une primitive). On peut aussi appliquer la méthode de résolution de l’équation différentielle y’+ay=b au programme de la classe de terminale S, au moins pour les deux premières parties,
· depuis Bernoulli et Legendre on utilise dans le cadre de la résolution générale un repère lié au projectile (dit de Fresnel), ce qui n’est pas retenu ici,
· l’arme utilisée est en réalité de calibre .44 (soit un 11,43) dans laquelle il faut mettre en force des balles en plomb de calibre .45 ! Cela permet un bon ajustement du projectile au canon. Seule une très faible partie de plomb est enlevée lors du chargement (donc la masse à prendre en considération est celle des balles de .45).

II. Résolution du problème dans le vide (Torricelli) :
Les calculs « classiques » depuis Torricelli, calculs « dans le vide », sans frottement.
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	A t=0 le projectile est lancé à la vitesse V0 selon un angle  (en degrés) avec l’horizontale. On considère que seul le poids s’applique à la masse M du projectile.
Dans un repère orthogonal, la décomposition sur les axes [ox) et [oy) permet d’écrire :
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En un point M quelconque de la trajectoire nous avons :
Horizontalement : 
1. À la main :
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 avec m(0 où ax représente la valeur absolue de l’accélération horizontale.

Ce qui permet d’écrire 
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. Par intégration directe : vx(t)=K1x où K1x est une constante. 
Détermination de la constante : v0x=vx(0)=v0(cos(). Donc vx(t)=v0(cos().

Alors 
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[image: image19.wmf]02

()cos()

x

xtvtK

a

=××+

. Les conditions initiales permettent d’écrire 
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(1).
2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :

Remarque : on utilise ici un logiciel de calcul formel bien que les élèves soient capables d’effectuer les différents calculs, un peu pour son apprentissage et, surtout pour mettre en place un modèle de procédure d’utilisation.

Maple est fréquemment utilisé dans l’enseignement supérieur. Il est « inabordable » en lycée (question de prix). J’utilise ici TI-Nspire qui correspond à ce que l’on obtient avec Dérive ou une calculatrice formelle TI89 ou V200 (puis sans doute la TI-Nspire) que possèdent certains élèves de Tale S.
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3. Utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
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Tout cela correspond, avec parfois une écriture « inattendue », à ce qui est calculé dans le texte ci-dessus, pour la méthode utilisée : résolution par intégration après séparation des variables.
Verticalement : 
1. À la main :
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 avec m(0, où ay représente la valeur absolue de l’accélération verticale et g=9,81 m.s-2 une approximation de l’accélération de la pesanteur terrestre.

Ce qui permet d’écrire 
[image: image24.wmf]y

dv

g

dt

=-

. Par intégration directe : vy(t)=-g(t+K1y où K1y est une constante.

Détermination de la constante : 
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Alors 
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Les conditions initiales permettent d’écrire 
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(2).

En éliminant t entre les expressions (1) et (2), on trouve 
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(3).
Avec g=9,81 (m/s²), (=45 (en degrés) et v0=220 (m/s). 

Dans ce cas, on remarque que le résultat est indépendant de la masse, de la taille (surface frontale) du projectile.
2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
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3. Utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
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4. Écriture de y en fonction de x :
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Remarque : d’habitude le logiciel écrit certaines conditions lors de l’écriture des solutions d’une équation. Ici il semble ne pas s’intéresser aux quantités en dénominateur, 
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5. Application numérique : (calcul formel)
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6. La représentation graphique :

Insérer une page « graphiques et géométrie ». En mode coordonnées polaires (paramétriques), plage des paramètres : x variant de 0 à 5 000, y de 0 à 1 600, le temps varie lui de 0 à 32 s. Prendre un pas de 1. Recopier les formules obtenues (copier-coller), ne pas oublier d’indiquer la valeur des coefficients, angle a (vérifier que l’on est en mode degré), g et v0. Valider. 
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	En mode trace nous obtenons l’affichage de deux points caractéristiques : la portée, 4933 m au temps 31,71 s (le temps n’est pas affiché avec les coordonnées visibles sur le graphique, pourtant il est bien présent lorsque l’on est en train d’utiliser le mode trace), ainsi que l’altitude atteinte lors de ce tir 1233 m au temps 15,8 s.


On fera remarquer que pour deux angles symétriques vis à vis de 45° la portée est identique (dans ce cas).
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	Ci-contre deux tirs, l’un à 35°, l’autre à 55°, même portée.


Remarque : On aurait pu bien évidemment tracer y=f(x). Après tout, travailler en mode paramétrique est une bonne chose.
Calcul de la portée (distance maximale de tir) : il faut y=0. La solution triviale x=0 n’offre pas d’intérêt pour le problème.
L’expression 
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 est la plus pratique à utiliser. 

En factorisant, 
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. C’est le temps de vol du projectile pour la plus grande distance atteinte. 

Reporter cette valeur dans l’autre équation : 
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Or 
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Cette expression est maximale pour sin(2) maximum, soit =45°. 

Remarque : il est aussi possible d’utiliser le logiciel ou une calculatrice formelle :
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	C’est bien l’expression trouvée précédemment (remplacer 2 sin()cos() par sin(2)).


Avec les résultats obtenus et d’après les données du problème il est possible de calculer :
· Portée : 
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. C’est beaucoup pour les utilisateurs (expérimentateurs), totalement irréaliste. 
· Temps de vol : 
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· Altitude maximale (dans le cas de portée maximale) : elle sera atteinte lorsque la vitesse ascensionnelle s’annule. 
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D’où l’altitude atteinte lors de ce tir : 
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· Tir vertical, altitude maximale : 
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Ce qui est totalement irréaliste. 
On comprend que les artificiers de l’époque de Torricelli se soient moqués de lui.
III. Influence de l’air, force proportionnelle à la vitesse : 
On considère une force de réaction due à l’air proportionnelle à la vitesse. Ce qui est vrai pour un mobile à faible vitesse (véhicule lent, parachutiste, boule de pétanque, boulle de pétanque par exemple).
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	A t=0 le projectile est lancé à la vitesse V0 selon un angle  (en degrés) avec l’horizontale. 

Dans un repère orthogonal, a décomposition sur les axes [ox) et [oy) permet d’écrire :
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La force de réaction de l’air est proportionnelle à la vitesse.
Le modèle choisi considère 
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Remarque : pour les calculs manuels ainsi que pour comparer avec les formules données par le logiciel de calcul formel, d’un vieux grimoire du millénaire dernier que j’utilisais en tant qu’étudiant, j’extrais les formules suivantes (à donner aux élèves) :
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La première formule s’utilisant y compris pour n négatif (ce qui n’est pas habituel pour les élèves de lycée), la formule N° 27 demande un commentaire supplémentaire : on obtient cette forme lorsque l’on travaille en radians, en degré un coefficient π/180 intervient alors.

Enfin, on remarquera dans les formules 28 et 17, l’ancienne écriture Log pour ln.

La résolution : en un point M quelconque de la trajectoire nous avons :
Horizontalement : 

1. À la main :
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 avec m(0 où ax représente la valeur absolue de l’accélération horizontale, k un coefficient fonction du projectile (on prendra k=0,001 kg(s-1).

Ce qui permet d’écrire 
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Remarque : dans les conditions du problème, 
[image: image70.wmf]0

x

v

>

 donc 
[image: image71.wmf]xx

vv

=

.
Par intégration : 
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Puis 
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 et finalement 
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Une nouvelle intégration : 
[image: image79.wmf]02

()

k

t

m

xx

m

xtveK

k

-

=-+

. 

Comme x(0)=0, 
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2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
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3. utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
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Verticalement : 

1. À la main :
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 avec m(0, où ay représente la valeur absolue de l’accélération verticale et g=9,81 m.s-2 une approximation de l’accélération de la pesanteur terrestre.

Ce qui permet d’écrire 
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Equation différentielle aux variables séparées. 
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Que l’on écrit 
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Puis, 
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Ce qui est encore une équation différentielle aux variables séparées.
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y en fonction de x :
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Avec g=9,81 m/s², m=9,5 10-3 kg, k = k1=0,001 kg(s-1, (=45 (en degrés) et v0=220 m/s.
2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
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Remarque : on est parfois surpris (par la forme) du résultat, qu’une réécriture permet de prendre une forme similaire aux résultats trouvés.
3. Utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
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4. Écriture de y en fonction de x :

	[image: image112.jpg]© expression de y en fonction de x Terminé

i n IH(M)
T e e o \kex-cosfa}mvo) , coslafmyvo .
solveix= ¥ i k Jex—cos(a) mv0
fis ke in ~cosla) m'vo
_-m\[g-kt=sin(a) kvo-g m}-e ™ +sinfa) kvorg mj-e ™ = kx-cosla)-mvo
- 2 - k
(ms(u) 5750 m(m)f(m(a) .
5  x—cosla) m'vo

cos(a) k2v0

© Expression nettement plus compliquée que celle de la premiére partie Terminé







5. Application numérique : (calcul formel)
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La portée est donc de 1348 m (pour un tir à 45°) et il faut 23,13 s au projectile pour parcourir cette distance.
6. La représentation graphique :

Copier directement les formules dans l’éditeur de fonctions pour tracer la courbe représentative. Ne pas oublier d’indiquer la valeur des coefficients a, g, m, k et v0. Valider.

J’ai tracé cette courbe dans le même repère que la précédente pour comparaison.
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Le résultat est remarquable. On se rapproche très fortement de la réalité (expérimentation).

On peut remarquer une très grande différence de portée entre les calculs des première et deuxième parties. L’allure de la courbe est très différente de la parabole précédente, assez semblable à ce que Diego Ufano en 1610 à pu déterminer (avec quelques erreurs) par expérimentation.

[On recherchera les mêmes questions que précédemment : portée, altitude maximale…, directement sur la courbe tracée par la machine, les résultats ne sont de toute façon qu’une certaine approximation de la réalité, c’est indicatif sans plus.]

On trouve environ 1350 m de portée pour un temps de vol de 23,1 secondes. Une altitude maximale (pour ce tir) de 608 m à une distance de 923 m après 9,1 s.

La trajectoire n’est pas symétrique par rapport à son sommet. Il faut un peu plus de 900 m pour la montée et, seulement un peu plus de 400 m pour la descente.

Il est conseillé de vérifier que pour des angles proches de 45° la distance est ou non inférieure.
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	Pour un angle a= 28 ° la portée est plus importante. 1520 m après 16,5 s de vol.


Remarque : la préversion dont je dispose n’a pas encore toutes les fonctions prévues. Je ne dispose pas de deux outils qu’il est intéressant d’utiliser ici.

D’une part la possibilité de tracer une famille de courbes, d’autre part des outils mathématiques liés aux représentations graphiques (maximum, minimum, …). Cela devrait être réglé avec la prochaine version, prévue le 1er septembre 2007.

Provisoirement, avec une V200 :
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	Construire une liste de valeurs (une suite de nombres) à examiner pour l’angle (variable a), voir écran de gauche.

Faire tracer la courbe sans renseigner ce paramètre. 
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	Utiliser le menu F5 Math pour rechercher le point le plus éloigné du point de départ.

On remarquera qu’il n’est pas possible de décrire chaque courbe avec « trace » car une seule est active (la courbe N°2 ici, pour UNE SEULE valeur du paramètre).


IV. Influence de l’air, force proportionnelle au carré de la vitesse,
 
 Cas d’un tir vertical :
L’étude préalable du tir vertical permet de travailler dans un premier temps sur un problème (d’apparence !) plus simple que le cas général envisagé. Elle permet de plus de pouvoir répondre à la question : « une balle tirée verticalement est-elle dangereuse ? » (sous entendu, redescend-elle aussi vite qu’elle est montée).
Remarques :
· Dans le cas de la descente les calculs m’apparaissent trop compliqués pour des élèves de lycée, y compris en utilisant l’aide du logiciel de calcul formel. Il serait intéressant de procéder par expérimentation, comme le fait Jean Louis Balas dans une fiche « F1n Résistance de l’air, cinématique Bac Pro » avec des filtres à café. Puis donner la loi déterminée aux élèves.
· on calcule les différents résultats avec des angles en degrés. Lors des intégrations ou de la résolution d’équations différentielles, un coefficient 
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 apparaitra dans certaines formules qui en paraitront d’autant plus compliquées. [on peut dire aux élèves qu’il y a donc de bonnes raisons de s’habituer à travailler en radians].
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	A t=0 le projectile est lancé verticalement à la vitesse V0. 

Dans un repère orthogonal, la décomposition sur les axes [ox) et [oy) permet d’écrire :
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La force de réaction de l’air est proportionnelle au carré de la vitesse.

Le modèle choisi considère 
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En un point M quelconque de la trajectoire nous avons :
A. La montée :

1. À la main :
Rappel : formules N° 27 et 28 du « grimoire » :
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Il faut distinguer les deux cas, montée puis descente :

A la montée la pesanteur et la réaction due à l’air sont dirigées dans le même sens, vers le bas. La formule du « grimoire » qui sera à employer est la formule N° 27.

A la descente la pesanteur est dirigée vers le bas alors que la réaction due à l’air est dirigée vers le haut. La formule du « grimoire » qui sera à employer est alors la formule N° 28.
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 avec m(0, où ay représente la valeur absolue de l’accélération verticale et g=9,81 m.s-2 une approximation de l’accélération de la pesanteur terrestre.

Ce qui permet d’écrire 
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 où m, k et g sont tous positifs. 
Pour une intégration (recherche de primitive), en degrés, donc avec un coefficient 
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Détermination de la constante : 

pour t=0 et 
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On obtient :
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Il faut isoler v pour obtenir une nouvelle équation différentielle aux variables séparées… faire passer les coefficients 
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 à droite puis prendre la tangente des deux quantités.
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Remarque : il est possible de tracasser les élèves pour leur faire obtenir des formules plus « agréables » à partir des formules d’addition des sinus cosinus (et tangente) vues en première.

(Faire se) rappeler aux élèves que 
[image: image138.wmf]sin()sin()cos()sin()cos()

cos()cos()cos()sin()sin()

ababba

ababab

-=-

-=+

 

leur faire déduire que 
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Indiquer que le calcul sera fait en radians, pour ne pas compliquer les calculs avec les coefficients 
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Nous venons de calculer v :
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, réécrivons la formule sans le coefficient 
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 dû au travail en degré et, avec une petite astuce (pour obtenir m.g partout) :
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Reconnaître la forme tan(a-b) et appliquer :
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Soit 
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Forme « un peu plus simple » que la précédente.

Qui permet de remarquer que la vitesse s’annule pour 
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soit 
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 (ATTENTION : ici les angles sont en radians !).
Ce qui peut se calculer avec les données de l’énoncé : g=9,81 (m/s²), (=45 (en degrés) soit 
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Nous avions : 
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Ce qui peut s’écrire 
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 qui est encore une équation différentielle aux variables séparées. Que l’on traite par intégration de chacun des deux côtés, avec l’indication : 
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 (quand on travaille en degrés, toujours à une constante près).
On devrait donc avoir : 
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 (à une constante près) avec 
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Avec quelques simplifications 
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Détermination de la constante : 
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Soit enfin :


[image: image157.wmf]0

2

0

180

()lncosarctanln

2

mkgkmmg

yttv

kmmgkkvmg

p

æö

æö

æö

æö

×-×

ç÷

=××-×+

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

××+×

èø

èø

èø

èø

.
On peut calculer l’altitude maximale atteinte sachant que 
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Avec les données de l’énoncé on trouve 
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 (attention ici angles sont en radians pour le calcul de tmontée).

Ces données me semblent cohérentes avec les autres résultats. Je n’ai pas les moyens de les vérifier.

2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
Vérifier que l’on est en mode « degrés ». 
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3. Application numérique :

	[image: image167.jpg]© Application numérique, calcul de la hauteur atteinte Terminé

t_montée=7.25267

v
=t

x,mam‘g:lifif\vozzzo and g=9.81 and a=45 and k=3.27-10"° and m=.0095
K

2 ymax=419.714

1+5Y0” ) 02220 and g=9.81 and a=45 and k=3.27:105 and m=0095

mg

max= In|
4 k







Il faut 7,25 s pour atteindre l’altitude maximale d’environ 420 m.
4. Utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
La montée :
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5. La représentation graphique :
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Lecture sur la courbe : altitude maximale : 419,7 m après 7,245 s. 
Par calcul il a été trouvé : altitude maximale 420 m après 7,25 s.

B. La descente :

1. À la main :
On considèrera que pour t=0, y(0)=yMax
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 avec m(0, où ay représente la valeur absolue de l’accélération verticale et g=9,81 m.s-2 une approximation de l’accélération de la pesanteur terrestre.
Ce qui permet d’écrire 
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On remarquera que la vitesse est négative (dans le repère choisi) et augmente en valeur absolue, donc que l’accélération doit être positive.

Sachant que m, g et k sont positifs et que la vitesse initiale est nulle, cela veut dire deux choses :
· on aura 
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· une vitesse limite apparaît : 
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Calcul de la vitesse limite dans les conditions de l’énoncé : 
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La résolution :

Alors, 
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s’écrit 
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 où m, k et g sont tous positifs. 
C’est une équation différentielle à variables séparées, pour une intégration (recherche de primitive), formule N° 28 :
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 que l’on écrit 
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Soit après simplifications et, en tenant compte de 
[image: image182.wmf]mgmg

vv

kk

××

-=-

 :


[image: image183.wmf]ln2

mg

v

kg

k

t

m

mg

v

k

æö

×

-

ç÷

×

ç÷

=×

ç÷

×

+

ç÷

èø

.
Pour extraire v, prendre l’exponentielle de chaque membre :
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Faire les opérations nécessaires pour obtenir : 
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Expression qui ne nous satisfait pas encore.

On écrit : 
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Enfin, 
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 (rappel : v(0)=0).
Continuons… en faisant remarquer que le travail qui suit est hors de portée d’un élève de lycée.
Rappel (pour ceux qui savent !) : il faut utiliser les fonctions hyperboliques.
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On écrit : 
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	avec sorti du vieux grimoire : 
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Nouvelle écriture : 
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Puis intégration : 
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 sans oublier que pour t=0 y(0)=ymax de la montée.

Soit finalement : 
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Temps pour redescendre et vitesse d’arrivée au sol :
Calcul du temps de descente : il faut y=0. 
d’où : 
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 soit 
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réécrit 
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alors 
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On pose 
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Remarque : nous savons que 
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Il reste à résoudre 
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On a donc 
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et finalement 
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On reporte cette expression dans celle de v (choisir sa formule !) : 
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Pour trouver 
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Avec les conditions de l’énoncé on trouve alors : 
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, soit près de 180 km/h. La vitesse au sol approche sa valeur limite.

D’après des experts, ça va faire mal, c’est ou c’est pas mortel ?
2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
Vérifier que l’on est en mode « degrés ». 
Il est toujours intéressant d’utiliser les erreurs (qui ici n’en est pas une…) quand on sait où elles se produisent. Une primitive se détermine à une constante près. J’ai obtenu le même résultat au même endroit avec 3 logiciels de calcul formel différents !
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Il faut connaître les habitudes des logiciels de calcul formel pour pouvoir résoudre cette partie.

L’étude du cas de la descente est donc difficile à envisager en lycée, même avec l’appui, raisonnable, d’un logiciel de calcul formel pour aider à trouver des primitives de fonctions inconnues à ce niveau.

3. Application numérique :
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4. Utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
On remarquera que pour trouver le bon résultat il faut renseigner le logiciel sur le fait que 
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5. La représentation graphique :
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Lecture sur la courbe : redescente en 11,54 s avec une arrivée au sol à 51,87 m/s (vitesse non donnée par la courbe mais par les calculs précédents).

V. Influence de l’air, force proportionnelle au carré de la vitesse, résolution par la méthode d’Euler :
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	A t=0 le projectile est lancé à la vitesse V0 selon un angle  (en degrés) avec l’horizontale. 

Dans un repère orthogonal, la décomposition sur les axes [ox) et [oy) permet d’écrire :
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La force de réaction de l’air est proportionnelle au carré de la vitesse.

Le modèle choisi considère 
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La méthode d’Euler est au programme des classes de 1ère et Tale S.
Description de la méthode :

L’une des définitions du nombre dérivé s’écrit : pour F définie sur I, pour tout h tel que x0+h appartienne à I, 
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Euler se dit que si le dernier terme ‘est nul’ (car h et 
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 le sont pratiquement, donc leur produit l’est encore plus), il peut écrire 
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, qu’il considère comme une formule de récurrence, 
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, où h est le pas choisi, le point de départ M0 (x0 ; y0) sur la courbe cherchée étant donné. Il définit alors une suite de points M1, M2, …, Mn par application de cette formule de récurrence généralisée, 
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Dans notre cas : 
· comme d=v(t passer de la vitesse à la distance se fera par la formule de récurrence 
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, où h est le pas choisi et vn la vitesse calculée au rang précédent,

· sur [Ox), la décomposition nous donne 
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 donc la formule de récurrence 
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· sur [Oy), la décomposition nous donne 
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 donc la formule de récurrence 
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· calcul des constantes utilisées : 
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, pas=intervalle=0,1 (seconde), vx(0) = vy(0) = 
[image: image253.wmf]2
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Remarques : 

· les formules sont établies à partir du modèle de résistance due à l’air f(v)=kv2,

· je n’ai pratiquement pas de différence en diminuant le pas à 0,01.

Avec le tableur de la calculatrice ou du logiciel TI_Nspire : 

Les formules  dont certaines sont à recopier vers le bas :

Attention, les données doivent être sur toute la colonne, ne pas utiliser les premières cellules pour la déclaration des valeurs initiales.

A1 =B1 = 0

H1 = k = 0,00344

C1 = approx(J1)
D1 = approx(K1)
J1 = K1 = vx(0) = vy(0) = 
[image: image254.wmf]2
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;


C2 = vx(1) = C1-I$1*H$1*C1^(2)

D2 = vy(1) = D1-I$1*(H$1*D1^(2)+9.81)
E1 = x(0) = 0



F1 = y(0) = 0
E2 = x(1) = =E1+I$1*C1

F2 = y(1) = =F1+I$1*D1
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Le dernier point affiché est encore à 12 m au dessus du sol (contrairement au tableur qui suit, les points hors fenêtre d’affichage ne sont pas marqués).

On trouve alors 607,69 m après 13,4 s.
Lecture dans le tableur de la valeur suivante : 609,57 m après 13,5 s (et 2,68 m sous le sol).

Un résultat très intéressant. C’est une application de la méthode d’Euler qui a l’avantage d’utiliser un problème extérieur à la classe.

Avec un tableur connu : 

Les formules  dont certaines sont à recopier vers le bas :

G1=J1=
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B1=k=0,00344
C4 = vx(0)



D4 = vy(0)
C5 = vx(1) = C4-D$1*B$1*C4^2
D5 = vy(1) = D4-D$1*(B$1*D4^2+9,81)

F4 = x(0) = 0



G4 = y(0) = 0

F5 = x(1) = F4+D$1*C4

G5 = y(1) = G4+D$1*D4
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Remarque : il est aussi possible d’utiliser des suites récurrentes. 

Le travail est le même, il faut trouver les formules de récurrence, construire quatre suites récurrentes. 
Les résultats sont bien évidemment identiques, ce qui est un peu « artificiel » à la calculatrice ou avec le logiciel c’est de tracer la courbe. Description rapide sur V200 :
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	Définir les suites dans le mode adéquat, placer les termes dans deux listes (ici eul_balx et eul_baly).

Passer en mode fonction.
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	Dans l’éditeur de fonctions ! désélectionner toutes les fonctions, choisir un afficheur de données statistiques (statplot).

Paramétrer la fenêtre d’affichage, demander la représentation graphique.


Toujours dans le domaine du possible, travailler par programmation est intéressant. 

Consulter par exemple « Interaction Sciences Physiques-Mathématiques : Euler » réalisé par Rémy Coste, Jacques Péries, Nicole Pithon Jacques Salles et Jean Winther.

Un exemple de programmation de la méthode d’Euler se trouve aussi dans la conférence et le « défi » consacré à la méthode d’Euler pour la fête de la science octobre 2003 qui devraient se trouver sur le site de l’IREM de Corse.
VI. Influence de l’air, force proportionnelle au carré de la vitesse, résolution du cas général :
Remarque : on calcule les différents résultats avec des angles en degrés. Lors des intégrations ou de la résolution d’équations différentielles, un coefficient 
[image: image263.wmf]180
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 apparaitra dans certaines formules qui en paraitront d’autant plus compliquées. [on peut dire aux élèves qu’il y a donc de bonnes raisons de s’habituer à travailler en radians].
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	A t=0 le projectile est lancé à la vitesse V0 selon un angle  (en degrés) avec l’horizontale. 

Dans un repère orthogonal, la décomposition sur les axes [ox) et [oy) permet d’écrire :
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La force de réaction de l’air est proportionnelle au carré de la vitesse.

Le modèle choisi considère 
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En un point M quelconque de la trajectoire nous avons :
Horizontalement : 

1. À la main :
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 avec m(0 où ax représente la valeur absolue de l’accélération horizontale, k un coefficient fonction du projectile (on prendra k=3,27 10-5).

Ce qui permet d’écrire 
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. Nouvelle équation différentielle aux variables séparées.
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2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
	[image: image281.jpg]© Partie 3 : calcul de x{t) par recherche de primitives

(a) kvo tbm





[image: image282.jpg]J cosla}mvo_ mIn(|cos(a) k-vo- thm])

cos|a) kvo t+m k
© Trés bien de mettre les valeurs absolues. Les conditions de I'étude permettent e s'en passer. Terminé
i kv0-t
solve(xzi”’ "(ms("l v m)+k2x\x:0 and l:O,ka)
mIn(cos(a) kvo- t+
comDenom| x:f

kcosla)vo ttm Terminé

m

© Ce qui peut sécrire x:% ln(







3. utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
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Verticalement : 

1. À la main :
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 avec m(0, où ay représente la valeur absolue de l’accélération verticale et g=9,81 m.s-2 l’accélération de la pesanteur.

Ce qui permet d’écrire 
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 où m, k et g sont tous positifs. 
Pour une intégration (recherche de primitive), en degrés, donc avec un coefficient 
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Détermination de la constante : 

pour t=0 et 
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On obtient :
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Il faut isoler v pour obtenir une nouvelle équation différentielle aux variables séparées… faire passer les coefficients 
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 à droite puis prendre la tangente des deux quantités. Cela devient vraiment compliqué « à la main ».
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Remarque : comme lors des calculs concernant la montée du tir vertical, il est possible de « mieux » écrire la formule de la vitesse :
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 et 
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. 
Ce qui peut se calculer avec les données de l’énoncé.

Nous avions : 
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Ce qui peut s’écrire 
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 qui est encore une équation différentielle aux variables séparées. Que l’on traite par intégration de chacun des deux côtés, avec l’indication : 
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 (quand on travaille en degrés, toujours à une constante près).
On devrait donc avoir : 
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 (à une constante près) avec 
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Avec quelques simplifications 
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Détermination de la constante : 
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Soit enfin :
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2. Avec un logiciel de calcul formel, recherche de primitives et intégrales :
Vérifier que l’on est en mode « degrés ». Reprendre les opérations précédentes avec les nouvelles conditions.
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3. Application numérique :
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4. Utilisation d’une « boite noire », résolution d’équations différentielles par calcul formel :
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5. Écriture de y en fonction de x :
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Ce que j’ai réécrit :
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(aux erreurs de recopies près !).

Avec g=9,81 m/s², m=9,5 10-3 kg, k2=3,27 10-5, (=45 (en degrés) et v0=220 m/s.
6. La représentation graphique :

Copier les formules dans l’éditeur de fonctions, ajouter les conditions.
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Directement sur le graphique on recherchera les mêmes questions que précédemment : portée 612 m en 13,5 s, altitude maximale atteinte dans ces conditions : 327 m après 6,5 secondes de vol.
Ce sont d’excellents résultats (avec 
[image: image317.wmf]5
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	Comme précédemment on cherchera si un angle plus petit permet une plus grande portée. 
C’est le cas pour 35° : 635 m après 12,7 s en passant par l’altitude 274 m après 6,2 s.



Les différentes portées trouvées selon le modèle choisi : 4 933 m, 1 583 m, 420 m.
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