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Électronique de base

Code couleur résistance
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Génération tension continue

Génération de 12 V (LM7812), du 5 V (LM7805) ou 3,3 V (KA378R33). À partir de 12 à 25 V.
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Diodes : 1N4001 à 1N4007, en fonction de la puissance.

· C1 : suppression bruits source primaire. Tension en fonction de l'alimentation. Peux être important en fonction des pics de tensions possibles du circuit (moteurs)

· Un 330 nF chimique

· un 220 nF céramique + un 470 nF chimique

· C2 : suppression bruits générés par le circuit alimenté. Tension mini 5V.

· 100 nF chimique

· un 220 nF céramique + un 10 nF chimique

Génération de tension basse fréquence

Raspberry Pi

Bus

WiringPi

Installation :

sudo apt-get install git-core

sudo apt-get update

sudo apt-get upgrade

git clone git://git.drogon.net/wiringPi

cd wiringPi

git pull origin

Test de l'installation :

gpio -v

gpio readall

Installation de Qt 4 :

sudo apt-get install qt4-dev-tools

Connaître la version de RPi :

piBoardRev() ; // retourne 1 ou 2

Avec wiringPi, activation :

gpio load i2c [baud rate in Kb/sec]

gpio load spi [buffer size in KB]

Utilisation :

gpio [-g] mode <pin> in/out/pwm/up/down/tri

gpio [-g] write <pin> 0/1

gpio [-g] pwm <pin> <value 0-1023>

gpio [-g] read <pin>

gpio readall

Bus I2C

PIN, en bleu :
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Installation outils :

sudo apt-get install i2c-tools

Activation du I2C :

· Éditer /etc/modprobe.d/raspi-blacklist.conf 

· Commenter blacklist i2c-bcm2708 et spi-bcm2708. Vérifier avec lsmod

· Ajouter « i2c-dev » dans le fichier /etc/modules

Vérification :

dmesg | grep i2c

ls /dev/i2c*

Détection des périphériques :

> i2cdetect -y 1

     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

00:          -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- –

Lecture et écriture :

i2cget -y 1 0x48

i2cset -y 1 0x48 0x00 ...

Bus SPI

Port série, avec 4 fils (clock, in, out, slave). 2 slave possible. En violet :

[image: image6.png]


Activation : cf I2C

Avec wiringPi, activation :

gpio load spi

gpio load spi 100 // taille buffer à 100 ko (défaut 4 Ko)

Utilisation :
#include <wiringPiSPI.h>
int wiringPiSPISetup(int channel, int speed);

int wiringPiSPIDataRW(int channel, unsigned char *data, int len);
· return : code d'erreur

· channel : 0 ou 1

· speed : 500 000 à 32 000 000 en Hz. En fonction de tension d'alimentation et fréquence minimale. Valeurs possibles : 0.5 MHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz, 16 MHz et 32 MHz. Différence entre fréquence et bande passante due à la latence.

· écriture puis lecture simultanée sur le bus. Nécessite d'envoyer des dummy bytes pour recevoir. Par exemple, pour une lecture de valeur sur un CAN, avec commande + data (sur 2 bytes) et lecture résultat 1 byte :

	Émis par RPi
	Commande byte
	Data byte
	Dummy byte

	Émis par slave
	Dummy byte
	Dummy byte
	Result byte


· possibilité d'utiliser write et read

MOSI (master → slave) et MISO (slave → master). Plusieurs modes possibles :
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Bus UART

PIN, en jaune :
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Gérer les sorties

Activer et désactiver les GPIO

Accès direct

ls /sys/class/gpio/

export       gpiochip137  gpiochip178  gpiochip38  gpiochip9

gpiochip0    gpiochip144  gpiochip194  gpiochip55  gpiochip91

gpiochip104  gpiochip161  gpiochip26   gpiochip63  unexport

gpiochip121  gpiochip17   gpiochip32   gpiochip74

Avec wiringPi

#include <wiringPi.h>

wiringPiSetup();

pinMode(0, OUTPUT); 

digitalWrite(0, 1); 

Modifier des 8 GPIO en une seule fois (2 cycles cpu) :

digitalWriteByte(unsigned) ;

LED

LED + résistance 270 Ω ou 470 Ω. Brancher entre 0 V et GPIO (+3,3 V).
[image: image9.emf]Connaître l'état de tous les GPIO

> gpio readall

+----------+-Rev2-+------+--------+------+-------+

| wiringPi | GPIO | Phys | Name   | Mode | Value |

+----------+------+------+--------+------+-------+

|      0   |  17  |  11  | GPIO 0 | IN   | Low   |

|      1   |  18  |  12  | GPIO 1 | IN   | Low   |

|      2   |  27  |  13  | GPIO 2 | IN   | Low   |

|      3   |  22  |  15  | GPIO 3 | IN   | Low   |

|      4   |  23  |  16  | GPIO 4 | IN   | Low   |

|      5   |  24  |  18  | GPIO 5 | IN   | Low   |

|      6   |  25  |  22  | GPIO 6 | IN   | Low   |

|      7   |   4  |   7  | GPIO 7 | IN   | Low   |

|      8   |   2  |   3  | SDA    | OUT  | Low   |

|      9   |   3  |   5  | SCL    | IN   | High  |

|     10   |   8  |  24  | CE0    | IN   | Low   |

|     11   |   7  |  26  | CE1    | IN   | Low   |

|     12   |  10  |  19  | MOSI   | IN   | Low   |

|     13   |   9  |  21  | MISO   | IN   | Low   |

|     14   |  11  |  23  | SCLK   | IN   | Low   |

|     15   |  14  |   8  | TxD    | ALT0 | High  |

|     16   |  15  |  10  | RxD    | ALT0 | High  |

|     17   |  28  |   3  | GPIO 8 | ALT2 | Low   |

|     18   |  29  |   4  | GPIO 9 | ALT2 | Low   |

|     19   |  30  |   5  | GPIO10 | ALT2 | Low   |

|     20   |  31  |   6  | GPIO11 | ALT2 | Low   |
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Allumer une LED. Par exemple sur le Pin 2 (GPIO 8, SDA) :

gpio mode 8 out

gpio write 8 1

gpio write 8 0

Tout éteindre et allumer :

for i in 0 1 2 3 4 5 6 7 8 9 ; do gpio mode $i out; done

for i in 0 1 2 3 4 5 6 7 8 9 ; do gpio write $i 1; done

for i in 0 1 2 3 4 5 6 7 8 9 ; do gpio write $i 0; done

Conversion wiringPi et GPIO références : https://projects.drogon.net/raspberry-pi/wiringpi/pins/ 

Références GPIO : http://elinux.org/Rpi_Low-level_peripherals
Avec wiringPi, en sortie :

#include <wiringPi.h>

if(wiringPiSetup()==-1) return 0;

pinMode(pin, OUTPUT);

digitalWrite(pin, 1);

PWM

Sur GPIO pin 18 (matériel) ou les autres en software. Pour plus de sortie, utiliser un LED driver.

Gestion matériel :

pinMode(18, PWM_OUTPUT); // mark : space on balenced

pwmSetMode(PWM_MODE_MS);

pwmSetRange(unsigned int = 1024);

pwmSetClock(int diviseur); // diviseur de fréquence par rapport à la fréquence de base

pwmWrite(18, 512);

Émulation software :

#include <softPwm.h>

softPwmCreate(22, 100, 100);

fostPwmWrite(22, value);

Nécessite l’utilisation de pthread (-lpthread).

Extension des GPIO  XE "MCP23017" MCP23017

Schéma CI :

[image: image11.emf]
Schéma circuit :

[image: image12.emf]Adresse I2C : 20h

// activation des ports A et B en sortie :

> i2cset -y 1 0x20 0x00 0x00 // A

> i2cset -y 1 0x20 0x01 0x00 // B

// allumer tous les GPIO d’un port :

> i2cset -y 1 0x20 0x12 0xFF // A, FF = 1111 1111

> i2cset -y 1 0x20 0x13 0xFF // B

Commande 220 V

Par relais
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Convertisseur DAC

Gérer les entrées

Bouton poussoir

gpio mode 9 input // ou in ? A tester

gpio read 9

Avec wiringPi, en entrée :

#include <stdio.h>

#include <wiringPi.h>

int main(void)

{


int switchPin=0;


if(wiringPiSetup()==-1)


     {return 0;}

        //le port GPIO est configuré en lecture


pinMode(switchPin,INPUT);


int button=0;


while(1)


{

                //on lit la valeur de la broche GPIO



button=digitalRead(switchPin);



if(button==0)//Si un appui sur le bouton est détecté



{

                        //on affiche un message




printf("button pressed!\n");

                        //cette boucle permet de gerer un appui continu




while(button==0)

                        {

                                //on relit la valeur à chaque fois

                                button=digitalRead(switchPin);

                                delay(20);//et on attend 20ms

                        }



}



delay(20);//on attend 20ms entre chaque lecture.


}

 
return 0;

}

Capteur température  XE "DS1631" DS1631

Précision 0,5 °C. Boitier :

[image: image14.png]wosiceiono RaspberryPi
wsoceos B Rev2
p—

ceo o

et ooror




Interrogation avec i2cset et i2cget :

i2cset -y 1 0x48 ...

· 0x51 : start conversion

· 0x22 : stop conversion

· 0xAC : access config

· 0xAA : resquest temperature

Accès au registre de configuration selon le modèle :

	DONE
	THF
	TLF
	NVB
	R1
	R0
	POL
	1SHOT

	R
	R/W
	R/W
	R
	R/W
	R/W
	R/W
	R/W

	Température

disponible
	Bits dépassement
	
	Écriture

en cours
	Résolution
	
	
	Une seule

lecture


Byte de contrôle :

	1
	0
	0
	1
	A2
	A1
	A0
	W/R


Exemple :

i2cset -y 1 0x48 0xAC 0x0C # accès config + 12 bits - One shot

Lecture sur 2 bytes : Low Bound puis High Bound

Avec wiringPi :

int fd = wiringPiI2CSetup(0x48);

// init setup

unsigned char data[2] = { 0xAC, 0x0D };
int error = write(fd, data, 2);
// read setup

error = wiringPiI2CWrite(fd, 0xAC);
cout << hex << wiringPiI2CRead(fd) << endl;
// start conversion

error = wiringPiI2CWrite(fd, 0x51);

// request temperature

error = wiringPiI2CWrite(fd, 0xAA);
delay(1000);
memset(data, 'a', 2);
error = read(fd, data, 2);
// stop conversion

error = wiringPiI2CWrite(fd, 0x22);

Pour la conversion des données en température en °C :

data[1] = data[1] >> 4;
if (data[0] >= 0x80)
    data[0] = data[0] - 256;
double temp = float(data[0]) + float(data[1]) * 0.0625;

Horloge temps réel   XE "M41T00CAP" M41T00CAP

Horloge temps réel, I2C, batterie interne.

[image: image15.emf]Schéma des connexions :

[image: image16.emf]Interrogation avec i2cset et i2cget. Pour la température :

> i2cget -y 1 0x68 0x11 w

0x4013

Correspond à 19,25°C

Pour l'heure :

// Initialisation

> i2cset -y 1 0x68 0x0E 0x04 b

> i2cget -y 1 0x68 0x0F b

0x88

> i2cset -y 1 0x68 0x0F 0x08 b

> i2cget -y 1 0x68 0x0F b

0x08

// lecture

> i2cget -y 1 0x68 0x00 b

0x41

> i2cget -y 1 0x68 0x06 b

0x00

Correspond à 41 secondes et 0 années.

Avec wiringPi. Conversion :

int bcd(int value) {

    return ((0x0F & value) + ((0x70 & value) >> 4) * 10);

}

Initialisation bus I2C :

wiringPiSetupSys();

int fd = wiringPiI2CSetup(0x68);

Lecture :

wiringPiI2CWrite(fd, 0);

int sec = bcdwiringPiI2CRead(fd));

int min = (0x7F & wiringPiI2CRead(fd));

int heu = (0x3F & wiringPiI2CRead(fd));

cout << i << ": " << std::hex << heu << ":" << min << ":" << std::dec << sec << endl;

cout << "reg: " << (0x7F & wiringPiI2CReadReg8(fd, 1)) << " - " << hex << bcd(0x7F & wiringPiI2CReadReg8(fd, 1)) << endl;
cout << "read reg: " << bcd(0x7F & wiringPiI2CReadReg8(fd, 1)) << " - " << hex << bcd(0x7F & wiringPiI2CReadReg8(fd, 1)) << endl;

Convertisseur ADC  XE "NAU7802" NAU7802

Convertisseur ADC 24 bits dual chanel. I2C adresse : 0x2A. Schéma CI :

[image: image17.emf]Mesure de la tension en entrée :

[image: image18.emf]Écriture : adresse (0x2A) + contrôle + 1 ou 2 bytes données

ADC Output Value = Gain_Calibration* (ADC measurement - Offset_Calibration) 

Convertisseur ADC   XE "MCP3008" 

 XE "MCP3008" 

 XE "MCP3008" MCP3008

Convertisseur ADC 8*10 bits. Bus SPI, max 200 ksps (sample per seconde). Schéma CI :
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Mesure 1024 valeurs (10 bits) entre 0 et Vref : valeur minimale Vref / 1024 (donc 3,22 mV ici), calcul Vin = Vref * Value / 1024.

Données envoyées/reçues :

[image: image20.emf]Les bits SGL/DIFF et D2 à D0 permettent de sélectionner les canaux a utiliser et le mode (différentiel ou single).

[image: image21.emf]Calcul de la résistance en fonction de la tension mesurée :
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const float R = 10000.0f;

const float Vref = 3.3f;

unsigned char data[3] = { 0x01, 0x80, 0x00 };

error = wiringPiSPIDataRW(0, data, 3);

const unsigned int digits = data[2] + ((data[1] & 0x03) << 8);

const float Vin = Vref * digits / 1024;

const float Rphotocell = R * (Vref - Vin) / Vin;

PhotoCell  XE "PDV-P8103" PDV-P8103

Diviseur de tension, avec DAC et résistance de 1ou 2 kΩ.
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Schéma :
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Conversion résistance → luminosité :
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Code :

const float E100 = 100.0f;

const float R100 = 8000.0f;

const float E10 = 10.0f;

const float R10 = 23000.0f;

const float E1 = 1.0f;

const float R1 = 80000.0f;

float logScale(float Rx) {

    return exp(log(E100) - ( 

        (log(E100)-log(E1)) / (log(R100)-log(R1)) * (log(R100)-log(Rx))

    ));

}

Capteur IR  XE "TSOP38238" TSOP38238
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Capteur de distance infrarouge

Utilisation de  XE "MCP3008" MCP3008 et capteur GP2Y0A21YK0F.

Moteurs

Moteur continue  XE "FC130SA" FC130SA

HP Q3434-60238 Scanner MOTOR = Moteur FC130SA-09490 continue + capteur de position. Tension nominale 3 V.

[image: image25.png]TABLE 5-2:  CONFIGURE BITS FOR THE

MCP3008
Control Bit
Selections Input Channel
il Configuration | Selection
Sindle| 5, | py | po 9
Diff
1 0 | 0| O | single-ended CHO
1 0 | 0| 1| single-ended CH1
1 0 | 1| 0 | single-ended CH2
1 0 | 1| 1| single-ended CH3
1 1 |0 | 0| single-ended CH4
1 1 | 0| 1| single-ended CH5
1 1 1| 0 | single-ended CH6
1 1 1| 1 | single-ended CH7
0 0|00 differential | CHO = IN+
CH1=IN-
0 0|01 differential CHO = IN-
CH1=IN+
0 0|10 differential | CH2 = IN+
CH3 = IN-
0 0|11 differential CH2=IN-
CH3=IN+
0 1100 differential | CH4 = IN+
CH5 = IN-
0 1101 differential CH4 = IN-
CH5=IN+
0 1110 differential | CH6 = IN+
CHT7 = IN-
0 1011 differential CH6 = IN-
CH7 = IN+




Utilisation de  XE "L293DNE" L293DNE, H bridge, diodes internes. 4,5 à 36 V, 600 mA par canal (pic 1,2 A par canal).
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Modes :

	Input 1 (broche 2 et 10)
	Input 2 (broche 7 et 15)
	Effet

	0
	1
	Tourne dans le sens horaire

	1
	0
	Tourne dans le sens anti-horaire

	0
	0
	Frein

	1
	1
	Frein


Servo-moteur

Contrôle à partir de signaux PWM. Largeur des pulsations contrôlent l'angle.
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Utilisation de la GPIO pin 18. Besoin tension 5 V extérieur pour le servo.
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Besoin alimentation extérieur. 4-6V 140 +/- 50 mA, 15 mA en statique. PWM pulse 0,75 à 2,25 ms, intervalle 20 ms.

Utilisation de  XE "ULN2803" ULN2803

Voir http://learn.adafruit.com/adafruits-raspberry-pi-lesson-10-stepper-motors/hardware-uln2803. 8 connexions par CI. Demi-pas.
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Moteur pas a pas M35SP-11HPK

Contrôle avec  XE "L293D" L293D. Voir http://trandi.wordpress.com/2013/04/17/stepper-motor-bluetooth-serial-driver/#more-1093 
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Avec L293DNE :
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Connexion Aduino

Par I2C

[image: image32.emf]
Arduino

Utilisation directe de Arduino

Micro-contrôleur

Existe ATmega version RF.

ATMEGA328P

ATMEGA2560

PIC16F886

Annexe – gérer les sorties GPIO en C

// Access from ARM Running Linux

#define BCM2708_PERI_BASE        0x20000000

#define GPIO_BASE                (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <unistd.h>

#define PAGE_SIZE (4*1024)

#define BLOCK_SIZE (4*1024)

int  mem_fd;

void *gpio_map;

// I/O access

volatile unsigned *gpio;

// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)

#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))

#define OUT_GPIO(g) *(gpio+((g)/10)) |=  (1<<(((g)%10)*3))

#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))

#define GPIO_SET *(gpio+7)  // sets   bits which are 1 ignores bits which are 0

#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0

void setup_io();

int main(int argc, char **argv)

{

  int g,rep;

  // Set up gpi pointer for direct register access

  setup_io();

  // Switch GPIO 7..11 to output mode

 /************************************************************************\

  * You are about to change the GPIO settings of your computer.          *

  * Mess this up and it will stop working!                               *

  * It might be a good idea to 'sync' before running this program        *

  * so at least you still have your code changes written to the SD-card! *

 \************************************************************************/

  // Set GPIO pins 7-11 to output

  for (g=7; g<=11; g++)

  {

    INP_GPIO(g); // must use INP_GPIO before we can use OUT_GPIO

    OUT_GPIO(g);

  }

  for (rep=0; rep<10; rep++)

  {

     for (g=7; g<=11; g++)

     {

       GPIO_SET = 1<<g;

       sleep(1);

     }

     for (g=7; g<=11; g++)

     {

       GPIO_CLR = 1<<g;

       sleep(1);

     }

  }

  return 0;

} // main

//

// Set up a memory regions to access GPIO

//

void setup_io()

{

   /* open /dev/mem */

   if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {

      printf("can't open /dev/mem \n");

      exit(-1);

   }

   /* mmap GPIO */

   gpio_map = mmap(

      NULL,             //Any adddress in our space will do

      BLOCK_SIZE,       //Map length

      PROT_READ|PROT_WRITE,// Enable reading & writting to mapped memory

      MAP_SHARED,       //Shared with other processes

      mem_fd,           //File to map

      GPIO_BASE         //Offset to GPIO peripheral

   );

   close(mem_fd); //No need to keep mem_fd open after mmap

   if (gpio_map == MAP_FAILED) {

      printf("mmap error %d\n", (int)gpio_map);//errno also set!

      exit(-1);

   }

   // Always use volatile pointer!

   gpio = (volatile unsigned *)gpio_map;

} // setup_io
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