Sommaire

Sommaire
1
Électronique de base
2
Génération tension continue
2
Génération de tension basse fréquence
2
Raspberry Pi
3
Bus
3
WiringPi
3
Bus I2C
3
Bus SPI
4
Bus UART
5
Gérer les sorties
6
Activer et désactiver les GPIO
6
LED
6
PWM
8
Extension des GPIO MCP23017
8
Commande 220 V
9
Convertisseur DAC
10
Gérer les entrées
10
Bouton poussoir
10
Capteur température DS1631
11
Horloge temps réel M41T00CAP
12
Convertisseur ADC NAU7802
13
Convertisseur ADC MCP3008
14
Mesure potentiomètre
16
PhotoCell PDV-P8103
18
Capteur température TMP36
18
Capteur IR TSOP38238
19
Moteurs
20
Servo-moteur
20
Moteur pas a pas M35SP-11HPK
20
Moteur continue HP Q3434-60238 Scanner MOTOR
21
Moteur continue C9000-60005
22
Utilisation de L293D
22
Utilisation de ULN2803
23
Connexion Aduino
24
Arduino
24
Micro-contrôleur
25
ATMEGA328P
25
ATMEGA2560
25
PIC16F886
25
Annexe – gérer les sorties GPIO en C
25
Index des composants
28

Électronique de base

Code couleur résistance

[image: image3.png]L3INY3HLI
1

CSI (CAMERA)

2ney
6107 dusoqdser MmN dNY

1d Aleqdsey

(AVIdSIQ) ISC

4n0-03p1A

N9

=
2
<]

Génération tension continue

Génération de 12 V (LM7812), du 5 V (LM7805) ou 3,3 V (KA378R33). À partir de 12 à 25 V.

· [image: image4.png]<
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
oo

Diodes : 1N4001 à 1N4007, en fonction de la puissance.

· C1 : suppression bruits source primaire. Tension en fonction de l'alimentation. Peux être important en fonction des pics de tensions possibles du circuit (moteurs)

· Un 330 nF chimique

· un 220 nF céramique + un 470 nF chimique

· C2 : suppression bruits générés par le circuit alimenté. Tension mini 5V.

· 100 nF chimique

· un 220 nF céramique + un 10 nF chimique

Génération de tension basse fréquence

Raspberry Pi

Bus

WiringPi

Installation :

sudo apt-get install git-core

sudo apt-get update

sudo apt-get upgrade

git clone git://git.drogon.net/wiringPi

cd wiringPi

git pull origin

Test de l'installation :

gpio -v

gpio readall

Installation de Qt 4 :

sudo apt-get install qt4-dev-tools

Connaître la version de RPi :

piBoardRev() ; // retourne 1 ou 2

Avec wiringPi, activation :

gpio load i2c [baud rate in Kb/sec]

gpio load spi [buffer size in KB]

Utilisation :

gpio [-g] mode <pin> in/out/pwm/up/down/tri

gpio [-g] write <pin> 0/1

gpio [-g] pwm <pin> <value 0-1023>

gpio [-g] read <pin>

gpio readall

Bus I2C

PIN, en bleu :

[image: image5.png]FC-130RA/SA

@ MABUCH MOTOR
Garbon-brush mators 1|

‘OUTPUT:0.2W-9.0W (APPROX)

Typical Applications : Home Appliances> Styling Brush

Precision Instruments> Hini Printer
Toys and Models> Radio Control Hodel

*By clicking the

WEIGHT: 17 (APPROX)

IODEL", you can display the Performance Chart Simulation.

VouRGE NoLOAD AT VAXNUM EFFICIENCY. S
WODEL [GpeRaTING | NOWINAL | SPEED| CURRENT | SPEED | CURRENT| TORQUE | OUTRUT| TORGUE | GURRENT
RANGE | v | omn| A |omn| A [oNm[gon| W [mNm[gem| A
270 24-30) 3| 18500 036 14170 1.18] 02| 6.4 13| 392 40 39
10300 45-120) 12| 10000 oos0| 13760 026| 00| 92| 130 383 38| o0es)
270 30-45 s[1sso0] ozr| torao] tos| 1a7[1a0] 184 671 es| 1o

B4REF.

Installation outils :

sudo apt-get install i2c-tools

Activation du I2C :

· Éditer /etc/modprobe.d/raspi-blacklist.conf

· Commenter blacklist i2c-bcm2708 et spi-bcm2708. Vérifier avec lsmod

· Ajouter « i2c-dev » dans le fichier /etc/modules

Vérification :

dmesg | grep i2c

ls /dev/i2c*

Détection des périphériques :

> i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- –

Lecture et écriture :

i2cget -y 1 0x48

i2cset -y 1 0x48 0x00 ...

Bus SPI

Port série, avec 4 fils (clock, in, out, slave). 2 slave possible. En violet :

[image: image6.png]

Activation : cf I2C

Avec wiringPi, activation :

gpio load spi

gpio load spi 100 // taille buffer à 100 ko (défaut 4 Ko)

Utilisation :
#include <wiringPiSPI.h>
int wiringPiSPISetup(int channel, int speed);

int wiringPiSPIDataRW(int channel, unsigned char *data, int len);
· return : code d'erreur

· channel : 0 ou 1

· speed : 500 000 à 32 000 000 en Hz. En fonction de tension d'alimentation et fréquence minimale. Valeurs possibles : 0.5 MHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz, 16 MHz et 32 MHz. Différence entre fréquence et bande passante due à la latence.

· écriture puis lecture simultanée sur le bus. Nécessite d'envoyer des dummy bytes pour recevoir. Par exemple, pour une lecture de valeur sur un CAN, avec commande + data (sur 2 bytes) et lecture résultat 1 byte :

	Émis par RPi
	Commande byte
	Data byte
	Dummy byte

	Émis par slave
	Dummy byte
	Dummy byte
	Result byte

· possibilité d'utiliser write et read

MOSI (master → slave) et MISO (slave → master). Plusieurs modes possibles :

[image: image7.png]Raspberry Pi
Model B

Bus UART

PIN, en jaune :

[image: image8.png]RPIGPO] feft
bottom top.
BT P2
Wirower SV Power
R1:Gr0 0 50
R2:GPIO 2 (SDA) il
RGP0 1 65c1)
R2: GPIO 3 (SCL) e
o4 G0 14 001
Ground P—
corr ots
wt:crio21
R2: GPIO 27 =
o2 o2
3 rower o2
a0 10 (oS Ground
arios uso) o2
o 11 e o8 o)
Ground o7
P25 Pi26
botiom " top
R1: Revision 1 right

R2: Revision 2

Gérer les sorties

Activer et désactiver les GPIO

Accès direct

ls /sys/class/gpio/

export gpiochip137 gpiochip178 gpiochip38 gpiochip9

gpiochip0 gpiochip144 gpiochip194 gpiochip55 gpiochip91

gpiochip104 gpiochip161 gpiochip26 gpiochip63 unexport

gpiochip121 gpiochip17 gpiochip32 gpiochip74

Avec wiringPi

#include <wiringPi.h>

wiringPiSetup();

pinMode(0, OUTPUT);

digitalWrite(0, 1);

Modifier des 8 GPIO en une seule fois (2 cycles cpu) :

digitalWriteByte(unsigned) ;

LED

LED + résistance 270 Ω ou 470 Ω. Brancher entre 0 V et GPIO (+3,3 V).
[image: image9.emf]Connaître l'état de tous les GPIO

> gpio readall

+----------+-Rev2-+------+--------+------+-------+

| wiringPi | GPIO | Phys | Name | Mode | Value |

+----------+------+------+--------+------+-------+

| 0 | 17 | 11 | GPIO 0 | IN | Low |

| 1 | 18 | 12 | GPIO 1 | IN | Low |

| 2 | 27 | 13 | GPIO 2 | IN | Low |

| 3 | 22 | 15 | GPIO 3 | IN | Low |

| 4 | 23 | 16 | GPIO 4 | IN | Low |

| 5 | 24 | 18 | GPIO 5 | IN | Low |

| 6 | 25 | 22 | GPIO 6 | IN | Low |

| 7 | 4 | 7 | GPIO 7 | IN | Low |

| 8 | 2 | 3 | SDA | OUT | Low |

| 9 | 3 | 5 | SCL | IN | High |

| 10 | 8 | 24 | CE0 | IN | Low |

| 11 | 7 | 26 | CE1 | IN | Low |

| 12 | 10 | 19 | MOSI | IN | Low |

| 13 | 9 | 21 | MISO | IN | Low |

| 14 | 11 | 23 | SCLK | IN | Low |

| 15 | 14 | 8 | TxD | ALT0 | High |

| 16 | 15 | 10 | RxD | ALT0 | High |

| 17 | 28 | 3 | GPIO 8 | ALT2 | Low |

| 18 | 29 | 4 | GPIO 9 | ALT2 | Low |

| 19 | 30 | 5 | GPIO10 | ALT2 | Low |

| 20 | 31 | 6 | GPIO11 | ALT2 | Low |

[image: image10.png]SDA Voo
scL A
Tour A
GND A

Allumer une LED. Par exemple sur le Pin 2 (GPIO 8, SDA) :

gpio mode 8 out

gpio write 8 1

gpio write 8 0

Tout éteindre et allumer :

for i in 0 1 2 3 4 5 6 7 8 9 ; do gpio mode $i out; done

for i in 0 1 2 3 4 5 6 7 8 9 ; do gpio write $i 1; done

for i in 0 1 2 3 4 5 6 7 8 9 ; do gpio write $i 0; done

Conversion wiringPi et GPIO références : https://projects.drogon.net/raspberry-pi/wiringpi/pins/

Références GPIO : http://elinux.org/Rpi_Low-level_peripherals
Avec wiringPi, en sortie :

#include <wiringPi.h>

if(wiringPiSetup()==-1) return 0;

pinMode(pin, OUTPUT);

digitalWrite(pin, 1);

PWM

Sur GPIO pin 18 (matériel) ou les autres en software. Pour plus de sortie, utiliser un LED driver.

Gestion matériel :

pinMode(18, PWM_OUTPUT); // mark : space on balenced

pwmSetMode(PWM_MODE_MS);

pwmSetRange(unsigned int = 1024);

pwmSetClock(int diviseur); // diviseur de fréquence par rapport à la fréquence de base

pwmWrite(18, 512);

Émulation software :

#include <softPwm.h>

softPwmCreate(22, 100, 100);

fostPwmWrite(22, value);

Nécessite l’utilisation de pthread (-lpthread).

Extension des GPIO XE "MCP23017" MCP23017

Schéma CI :

[image: image11.emf]
Schéma circuit :

[image: image12.emf]Adresse I2C : 20h

// activation des ports A et B en sortie :

> i2cset -y 1 0x20 0x00 0x00 // A

> i2cset -y 1 0x20 0x01 0x00 // B

// allumer tous les GPIO d’un port :

> i2cset -y 1 0x20 0x12 0xFF // A, FF = 1111 1111

> i2cset -y 1 0x20 0x13 0xFF // B

Commande 220 V

Par relais

[image: image13.png]e !
i
GPa2 I
jorpm
GPBa I
Gpas 1
GPas <1
GPa7 =1
Voo —o [
vss o
Ne—@
sct —-g
soa+—~0
e |

MCP23017

2|
25|
2|
2|
2|
21

17|
18|
35|

Convertisseur DAC

Gérer les entrées

Bouton poussoir

gpio mode 9 input // ou in ? A tester

gpio read 9

Avec wiringPi, en entrée :

#include <stdio.h>

#include <wiringPi.h>

int main(void)

{

int switchPin=0;

if(wiringPiSetup()==-1)

 {return 0;}

 //le port GPIO est configuré en lecture

pinMode(switchPin,INPUT);

int button=0;

while(1)

{

 //on lit la valeur de la broche GPIO

button=digitalRead(switchPin);

if(button==0)//Si un appui sur le bouton est détecté

{

 //on affiche un message

printf("button pressed!\n");

 //cette boucle permet de gerer un appui continu

while(button==0)

 {

 //on relit la valeur à chaque fois

 button=digitalRead(switchPin);

 delay(20);//et on attend 20ms

 }

}

delay(20);//on attend 20ms entre chaque lecture.

}

return 0;

}

Capteur température XE "DS1631" DS1631

Précision 0,5 °C. Boitier :

[image: image14.png]wosiceiono RaspberryPi
wsoceos B Rev2
p—

ceo o

et ooror

Interrogation avec i2cset et i2cget :

i2cset -y 1 0x48 ...

· 0x51 : start conversion

· 0x22 : stop conversion

· 0xAC : access config

· 0xAA : resquest temperature

Accès au registre de configuration selon le modèle :

	DONE
	THF
	TLF
	NVB
	R1
	R0
	POL
	1SHOT

	R
	R/W
	R/W
	R
	R/W
	R/W
	R/W
	R/W

	Température

disponible
	Bits dépassement
	
	Écriture

en cours
	Résolution
	
	
	Une seule

lecture

Byte de contrôle :

	1
	0
	0
	1
	A2
	A1
	A0
	W/R

Exemple :

i2cset -y 1 0x48 0xAC 0x0C # accès config + 12 bits - One shot

Lecture sur 2 bytes : Low Bound puis High Bound

Avec wiringPi :

int fd = wiringPiI2CSetup(0x48);

// init setup

unsigned char data[2] = { 0xAC, 0x0D };
int error = write(fd, data, 2);
// read setup

error = wiringPiI2CWrite(fd, 0xAC);
cout << hex << wiringPiI2CRead(fd) << endl;
// start conversion

error = wiringPiI2CWrite(fd, 0x51);

// request temperature

error = wiringPiI2CWrite(fd, 0xAA);
delay(1000);
memset(data, 'a', 2);
error = read(fd, data, 2);
// stop conversion

error = wiringPiI2CWrite(fd, 0x22);

Pour la conversion des données en température en °C :

data[1] = data[1] >> 4;
if (data[0] >= 0x80)
 data[0] = data[0] - 256;
double temp = float(data[0]) + float(data[1]) * 0.0625;

Horloge temps réel XE "M41T00CAP" M41T00CAP

Horloge temps réel, I2C, batterie interne.

[image: image15.emf]Schéma des connexions :

[image: image16.emf]Interrogation avec i2cset et i2cget. Pour la température :

> i2cget -y 1 0x68 0x11 w

0x4013

Correspond à 19,25°C

Pour l'heure :

// Initialisation

> i2cset -y 1 0x68 0x0E 0x04 b

> i2cget -y 1 0x68 0x0F b

0x88

> i2cset -y 1 0x68 0x0F 0x08 b

> i2cget -y 1 0x68 0x0F b

0x08

// lecture

> i2cget -y 1 0x68 0x00 b

0x41

> i2cget -y 1 0x68 0x06 b

0x00

Correspond à 41 secondes et 0 années.

Avec wiringPi. Conversion :

int bcd(int value) {

 return ((0x0F & value) + ((0x70 & value) >> 4) * 10);

}

Initialisation bus I2C :

wiringPiSetupSys();

int fd = wiringPiI2CSetup(0x68);

Lecture :

wiringPiI2CWrite(fd, 0);

int sec = bcdwiringPiI2CRead(fd));

int min = (0x7F & wiringPiI2CRead(fd));

int heu = (0x3F & wiringPiI2CRead(fd));

cout << i << ": " << std::hex << heu << ":" << min << ":" << std::dec << sec << endl;

cout << "reg: " << (0x7F & wiringPiI2CReadReg8(fd, 1)) << " - " << hex << bcd(0x7F & wiringPiI2CReadReg8(fd, 1)) << endl;
cout << "read reg: " << bcd(0x7F & wiringPiI2CReadReg8(fd, 1)) << " - " << hex << bcd(0x7F & wiringPiI2CReadReg8(fd, 1)) << endl;

Convertisseur ADC XE "NAU7802" NAU7802

Convertisseur ADC 24 bits dual chanel. I2C adresse : 0x2A. Schéma CI :

[image: image17.emf]Mesure de la tension en entrée :

[image: image18.emf]Écriture : adresse (0x2A) + contrôle + 1 ou 2 bytes données

ADC Output Value = Gain_Calibration* (ADC measurement - Offset_Calibration)

Convertisseur ADC XE "MCP3008"

 XE "MCP3008"

 XE "MCP3008" MCP3008

Convertisseur ADC 8*10 bits. Bus SPI, max 200 ksps (sample per seconde). Schéma CI :

[image: image19.png]+3.3V

PhotoCell
PDV-P8103

NAU7802

100kQ

Mesure 1024 valeurs (10 bits) entre 0 et Vref : valeur minimale Vref / 1024 (donc 3,22 mV ici), calcul Vin = Vref * Value / 1024.

Données envoyées/reçues :

[image: image20.emf]Les bits SGL/DIFF et D2 à D0 permettent de sélectionner les canaux a utiliser et le mode (différentiel ou single).

[image: image21.emf]Calcul de la résistance en fonction de la tension mesurée :

[image: image1.emf]V

i

=V

ref

R

R+ R

photocell

R

photocell

= R

V

ref

−V

i

V

i

const float R = 10000.0f;

const float Vref = 3.3f;

unsigned char data[3] = { 0x01, 0x80, 0x00 };

error = wiringPiSPIDataRW(0, data, 3);

const unsigned int digits = data[2] + ((data[1] & 0x03) << 8);

const float Vin = Vref * digits / 1024;

const float Rphotocell = R * (Vref - Vin) / Vin;

PhotoCell XE "PDV-P8103" PDV-P8103

Diviseur de tension, avec DAC et résistance de 1ou 2 kΩ.
[image: image22.png]warmer [0] @ svrower
1m0 som e
Tmoson © @
1.6no 1 s ’
R mosow © @ e

o4
(craxo)

s @ () wwoiswn

G0 18
Gau.an

Schéma :

[image: image23.png]scK %:
ss

Cycle # BT T
CPHA=0 MISO DOz s a7 Ie e
MOSI 2T T ToE

Ccycle #
CPHA=1 misoz 8 wn 8 e

MOSI Z c

Conversion résistance → luminosité :

[image: image2.emf]Se =

log (R

100

)−log (R

10

)

log (E

100

)−log (E

10

)

=0,75

log (E

x

) =log (E

100

)−

log (R

100

)−log (R

X

)

Se

Code :

const float E100 = 100.0f;

const float R100 = 8000.0f;

const float E10 = 10.0f;

const float R10 = 23000.0f;

const float E1 = 1.0f;

const float R1 = 80000.0f;

float logScale(float Rx) {

 return exp(log(E100) - (

 (log(E100)-log(E1)) / (log(R100)-log(R1)) * (log(R100)-log(Rx))

));

}

Capteur IR XE "TSOP38238" TSOP38238

[image: image24.png]youTonsmmsoon
SRty (oo o o oo 0]1]

Bfo2[otfoo x [X[xTx] [XIXTXTX[XTX[X]X]

NeURecousdDa
B T DI COTErNeE e
ot sored o WU oo Dot st o WU oo ot sored o W oo
s 1000 oo namssonof st rogtr st smesoncl o sne ansrisson ot s
"Don't Care’ Bits g iy ‘second 8 bits 8bis.

Capteur de distance infrarouge

Utilisation de XE "MCP3008" MCP3008 et capteur GP2Y0A21YK0F.

Moteurs

Moteur continue XE "FC130SA" FC130SA

HP Q3434-60238 Scanner MOTOR = Moteur FC130SA-09490 continue + capteur de position. Tension nominale 3 V.

[image: image25.png]TABLE 5-2: CONFIGURE BITS FOR THE

MCP3008
Control Bit
Selections Input Channel
il Configuration | Selection
Sindle| 5, | py | po 9
Diff
1 0 | 0| O | single-ended CHO
1 0 | 0| 1| single-ended CH1
1 0 | 1| 0 | single-ended CH2
1 0 | 1| 1| single-ended CH3
1 1 |0 | 0| single-ended CH4
1 1 | 0| 1| single-ended CH5
1 1 1| 0 | single-ended CH6
1 1 1| 1 | single-ended CH7
0 0|00 differential | CHO = IN+
CH1=IN-
0 0|01 differential CHO = IN-
CH1=IN+
0 0|10 differential | CH2 = IN+
CH3 = IN-
0 0|11 differential CH2=IN-
CH3=IN+
0 1100 differential | CH4 = IN+
CH5 = IN-
0 1101 differential CH4 = IN-
CH5=IN+
0 1110 differential | CH6 = IN+
CHT7 = IN-
0 1011 differential CH6 = IN-
CH7 = IN+

Utilisation de XE "L293DNE" L293DNE, H bridge, diodes internes. 4,5 à 36 V, 600 mA par canal (pic 1,2 A par canal).

[image: image26.png]MCP3008
PhotoCell1

PDV-P8103 Chamnel 0

SCLK #23
MISO #21
MOSI #19
CEO #24 ou CE1 #26

Modes :

	Input 1 (broche 2 et 10)
	Input 2 (broche 7 et 15)
	Effet

	0
	1
	Tourne dans le sens horaire

	1
	0
	Tourne dans le sens anti-horaire

	0
	0
	Frein

	1
	1
	Frein

Servo-moteur

Contrôle à partir de signaux PWM. Largeur des pulsations contrôlent l'angle.

[image: image27.png]1268 1 7 16l Veor
ne sfea
L s uflay
HEAT SINK AND { 413 }HEAYSINKAND
GROUND _[[s 12[] &” GROUND
als w3y
aafl7 oflaa
Vool oflaaen

Utilisation de la GPIO pin 18. Besoin tension 5 V extérieur pour le servo.

[image: image28.png]Coefficient de

Chifftes | mutplicateur || Tolérance || empéroture ppmc)
significatifs (résistance 6 bances
0 100
1

v [oo [SIEN

Besoin alimentation extérieur. 4-6V 140 +/- 50 mA, 15 mA en statique. PWM pulse 0,75 à 2,25 ms, intervalle 20 ms.

Utilisation de XE "ULN2803" ULN2803

Voir http://learn.adafruit.com/adafruits-raspberry-pi-lesson-10-stepper-motors/hardware-uln2803. 8 connexions par CI. Demi-pas.

[image: image29.png]7
7

iV

¥ “‘!

{ Ml‘ﬂ'}il

—LONIG z‘wNz_.

~Q/00¢ 1ot

S Aa
WY iy 04
@ '&P\Jg

% .\wylp i
AT T
o%h 2l004 L&acx

)u‘ ~ 2\% 2\ }

Moteur pas a pas M35SP-11HPK

Contrôle avec XE "L293D" L293D. Voir http://trandi.wordpress.com/2013/04/17/stepper-motor-bluetooth-serial-driver/#more-1093

[image: image30.png]sv 2v

w

@2

av

Motor

T

W

sz
Lo

Figure 3. Two-Phase Motor Driver (L293D)

"

Avec L293DNE :

[image: image31.png]1.0mS 1.25mS 1.5mS 15mS 1.75mS 20mS

Connexion Aduino

Par I2C

[image: image32.emf]
Arduino

Utilisation directe de Arduino

Micro-contrôleur

Existe ATmega version RF.

ATMEGA328P

ATMEGA2560

PIC16F886

Annexe – gérer les sorties GPIO en C

// Access from ARM Running Linux

#define BCM2708_PERI_BASE 0x20000000

#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <unistd.h>

#define PAGE_SIZE (4*1024)

#define BLOCK_SIZE (4*1024)

int mem_fd;

void *gpio_map;

// I/O access

volatile unsigned *gpio;

// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)

#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))

#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))

#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))

#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0

#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0

void setup_io();

int main(int argc, char **argv)

{

 int g,rep;

 // Set up gpi pointer for direct register access

 setup_io();

 // Switch GPIO 7..11 to output mode

 /**\

 * You are about to change the GPIO settings of your computer. *

 * Mess this up and it will stop working! *

 * It might be a good idea to 'sync' before running this program *

 * so at least you still have your code changes written to the SD-card! *

 **/

 // Set GPIO pins 7-11 to output

 for (g=7; g<=11; g++)

 {

 INP_GPIO(g); // must use INP_GPIO before we can use OUT_GPIO

 OUT_GPIO(g);

 }

 for (rep=0; rep<10; rep++)

 {

 for (g=7; g<=11; g++)

 {

 GPIO_SET = 1<<g;

 sleep(1);

 }

 for (g=7; g<=11; g++)

 {

 GPIO_CLR = 1<<g;

 sleep(1);

 }

 }

 return 0;

} // main

//

// Set up a memory regions to access GPIO

//

void setup_io()

{

 /* open /dev/mem */

 if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC)) < 0) {

 printf("can't open /dev/mem \n");

 exit(-1);

 }

 /* mmap GPIO */

 gpio_map = mmap(

 NULL, //Any adddress in our space will do

 BLOCK_SIZE, //Map length

 PROT_READ|PROT_WRITE,// Enable reading & writting to mapped memory

 MAP_SHARED, //Shared with other processes

 mem_fd, //File to map

 GPIO_BASE //Offset to GPIO peripheral

);

 close(mem_fd); //No need to keep mem_fd open after mmap

 if (gpio_map == MAP_FAILED) {

 printf("mmap error %d\n", (int)gpio_map);//errno also set!

 exit(-1);

 }

 // Always use volatile pointer!

 gpio = (volatile unsigned *)gpio_map;

} // setup_io

Index des composants

DS1631
11

L293D
20, 22

M41T00CAP
12

MCP23017
8

MCP3008
14, 19

NAU7802
13

PDV-P8103
18

TMP36
18

TSOP38238
19

ULN2803
23

_107691248.unknown

_107685612.unknown

