GTS 504 Introduction à l’ingénierie de la réadaptation
Automne 2006

Séance de travaux pratiques # 1
Introduction à Matlab
Au cours de cette session vous aurez besoin d’utiliser un logiciel vous permettant de fabriquer, d’analyser et de présenter des données obtenues lors d’expérimentations dans le cadre de laboratoires pratiques. Matlab est un outil puissant et convivial qui vous permet d’effectuer ces tâches. Ce document a pour but de vous faire découvrir ce logiciel en vous présentant sa philosophie ainsi que ses principales fonctionnalités. À la fin de cette séance de travaux pratiques, vous serez en mesure de vous en servir adéquatement pour le cours.

Philosophie du logiciel
Le nom de Matlab est la combinaison de deux mots soit les mots Matrix (contrairement à Mathematics comme on pourrait le penser!) et Laboratory. À la base, Matlab a été conçu pour faire du calcul matriciel puisque chaque élément d’entrée constitue une matrice ou des éléments d’une matrice. Aujourd’hui, Matlab est utilisé pour :

· effectuer des opérations de calcul;

· faire de la visualisation graphique;

· faire de la programmation.

Le logiciel utilise en langage de fond du C++, mais utilise un langage beaucoup plus simplifié du point de vue de l’utilisateur à l’interface. Par exemple, contrairement aux langages de programmation comme Fortran et C++, il n’est plus nécessaire de déclarer des variables avant de les utiliser.

Matlab est un logiciel de calcul numérique ce qui signifie que chaque variable doit avoir une valeur connue et définie contrairement aux logiciels de calcul analytique comme Maple ou Derive où chaque variable est représentée par un ensemble de valeurs indéfinies. En termes de temps de calcul, les logiciels numériques sont beaucoup plus efficaces que les logiciels analytiques puisqu’ils utilisent moins de mémoire du fait que chaque variable a une valeur assignée. Cependant, les résultats de calcul numérique sont imputés d’une erreur basée sur la nature des opérations. La grandeur des erreurs associées au calcul numérique dépend des algorithmes de calcul. Pour des opérations de calcul simple l’erreur est souvent minime voire même nulle. C’est pourquoi en général les gens préfèrent perdre un peu de précision pour gagner du temps.
Dans le cadre de ce cours, les résultats que l’on obtiendra lors des laboratoires seront des résultats numériques et seront facilement traitables avec Matlab. Nous allons maintenant vous faire découvrir l’interface unique du logiciel.

Présentation de l’interface du logiciel
L’interface de Matlab est divisée en quatre parties principales soit :
· La fenêtre de commandes (Command Window);
· L’espace de travail (Workspace);
· Le répertoire en cours (Current Directory);
· L’historique des commandes (Command History).
Ces parties sont représentées sur l’image ci-dessous.

[image: image1.png]Fie

Edt View Debug Deskiop Window Help

(Y-

S|4 M@ o o[B | P curmrsny

CmaTLAE?

Shortuts (2] How to Add (2] What's New.

Command Window.

Current Directory - C-\WMATLABT x
ot & &R
aaries - e oo Lostwoted
bin Folder 2006-03-26 19:05 A
demos Folder 2006-03-26 19:05
extern Folder 2006-03-26 19:05
help Folder 2006-05-04 17:00
Qja Folder 2006-03-26 19:05
java Folder 2006-03-26 19:05
Cajhelp Folder 20060504 1700
notebook Folder 2006-03-26 19:05
rtw Folder 2006-03-26 19:17.
(L simulink. Folder 2006-03-26 19:17.
stateflow Folder 2006-03-26 19:17 ¥
< — >
L curen Dictory [vionece

Command History » x

plot ((Essai_Young(1,1} .JointHoy.F (1
plot ((Essai_Young(1,1] .JointHoy.F (1
plot((Essai_0ld(1,1) .Jointhoy.F (1,1
plot((Essai_0ld(1,1) .Jointhoy.F (1,1
plot((Essai_0ld(1,1) .Jointhoy.F (1,1
plot((Essai_OR(1,1) .Jointhoy.F(1,1)
plot((Essai_OR(1,1) .Jointhoy.F(1,1)
cle

clear

% = 0:1:100;

¥ =22

plot(x,v)

PlOt(X,T,)

cle

| >

>

démarrer. € @

T ocument

rand ditionnaire

MATLAB

Nous allons maintenant voir l’utilité ainsi que les principales fonctionnalités de chacune de ces fenêtres d’affichage.

· Fenêtre de commandes

C’est la fenêtre dans laquelle on dicte les opérations à effectuer un peu comme l’ancien DOS où l’on exécutait des programmes ou des opérations à partir de lignes commandes. En utilisant la syntaxe appropriée, on peut se servir de la fenêtre de commandes pour effectuer des opérations de calcul ou pour appeler des fonctions provenant des librairies de Matlab ou des fonctions que l’on a nous même construites comme on peut voir sur l’image ci-dessous. On peut également demander de l’aide en utilisant la commande help soit seul ou suivi du nom de la fonction dont on veut de l’information (exemple : help mean) et on peut accéder à certaines fonctionnalités de Matlab telles que Simulink et GUIDE. En bref, la fenêtre de commandes c’est ce qui fait le lien entre l’utilisateur et le programme.
[image: image2.png]Command Window.
Fle Edt Debug Desktop Window

> 22,3

4.5000

>> 217 (4421)

-4.0000 + 5.0000%

> x
>> mean(x]

s0.5000

>> y = fonction que_j_ai_construite (x);
>> mean(y)

· Espace de travail

On trouve dans cette fenêtre toutes les variables qui ont été crées et qui sont utilisables dans la fenêtre de commandes pour des opérations de calcul et pour faire de la visualisation. Ces variables sont regroupées sous forme de classes qui indiquent la nature de la variable. Il existe différents types de variables qui peuvent être définies. Dans ce cours, vous aurez à utiliser seulement des variables de type double (i.e. une variable qui a une précision double par rapport à une variable de type float mais qui occupe deux fois plus de mémoire soit 64 bits). D’autre part, on retrouve également la valeur de la variable sous la colonne value si sa matrice contient seulement un élément, sinon on retrouve inscrite dans cette colonne la taille de la matrice représentative de la variable.

La fenêtre d’affichage de l’espace de travail contient une barre d’outils vous permettant d’effectuer plusieurs opérations sur vos données très rapidement. Les principales opérations sont montrées sur l’image ci-dessous.
 [image: image3.png]Workspace
Fle Edt Vew Gophics Debug Deskiop Mindow Hep

bHERS 8 [s
G

S cell>

<ixt struct>

<143901 double>

<143901 double>

o8’

Dans un premier temps, on peut créer de nouvelles variables que l’on peut définir par la suite à l’aide de la fenêtre de commandes. On peut également ouvrir l’éditeur de matrices qui nous permet de visualiser les données sous forme de tableau. Des données provenant de Microsoft Excel peuvent être facilement importées dans l’éditeur de matrices en utilisant les fonctionnalités de Windows copier et coller. On peut aussi effacer ou ajouter manuellement des données dans l’éditeur. D’autre part, on peut charger ou sauvegarder des données à partir de la barre d’outils de la fenêtre d’affichage de l’espace de travail. Ces données sont compilées dans un fichier ayant une extension *.mat et peuvent être placées dans le répertoire de votre choix. Par contre, pour charger ces données, vous devez absolument spécifier le répertoire dans lequel elles se trouvent. Le répertoire en cours peut être spécifié dans la barre d’outils principale de Matlab à l’endroit marqué Current Directory. Finalement, les données peuvent être visualisées graphiquement en appuyant sur le bouton graphique[image: image4.png]

.

· Répertoire en cours

Le répertoire en cours permet de visualiser des fichiers se trouvant dans le même répertoire. Tous les fichiers peu importe leur extension sont affichées. On peut ouvrir un fichier en cliquant directement dessus. Les principaux fichiers qui peuvent être lus par Matlab sont les fichiers de fonctions ou de programmes (*.m), les fichiers de données (*.mat) et les fichiers des graphiques (*.fig). De plus, dans la barre d’outils de la fenêtre d’affichage du répertoire en cours, on peut créer des rapports qui nous documentent sur les fichiers se trouvant dans le répertoire. Parmi les plus importants, il y a le M-Lint Code Check Report [image: image5.bmp] qui va répertorier les erreurs et les avertissements dans le code d’un programme ou d’une fonction. Il y a également le File Comparison Report [image: image6.bmp] qui repère les différences au niveau du code entre deux documents.
[image: image7.png]AlFles File Type Last Moiiec

probleme2 Tm | Ml 2006-05-26 1506 A
Eprobleme2m Mfle 20060525 17:04
Eproblemet_2m Mle 20060526 14:55
Eproblemet_T.m Mfle 20060525 17:19
Eproblemetm Mfle 20060525 16:53
[gts504.m hile 20060525 16:18
[Thrmbs. db DE File 2006-06-08 11:45

JWorkspace brnp BMP File 2005-06-08 10:45
4] Command Win... BMP File 20060607 1520
Jbouton graphiy... BMP File 2005-06-08 11:45

[probleme2_1.asv ASV File 200605251727 v.
< I >

· Historique des commandes

Cette fenêtre contient les commandes utilisées précédemment dans la fenêtre de commandes. L’historique des commandes peut compiler plusieurs centaines de lignes de commandes. À partir de cette fenêtre, on peut copier et coller des lignes de commandes pour les réutiliser dans la fenêtre de commandes. D’autre part, à partir de la fenêtre de commandes, on peut retrouver des lignes de commandes utilisées précédemment en appuyant sur la flèche du haut se trouvant sur votre clavier. L’image ci-dessous montre cette fenêtre d’affichage.
[image: image8.png]Command History

X
Unknown date ——% -
Lanbdar=resample {Lanbda (99:234) , 100
Fenoy_Young_impulse = Femoy_Young.d:
plot (Femoy_Young_impulse, 'Displayl
Fenoy_Young_impulse = Femoy_Young.d:
100,11,
t100,1),

plot (Femoy_Young_impulse (

plot (Femoy_Young_impulse (
nold

Plot (Femoy_Young, datal:,3], b’

plot (Femoy_Young.data(1:100,3), 'D
nold

plot (Femoy_Young_impulse (1:100,1)
plot (kneeContactForcesHoyRsLisz {
plot (Femoy_Young.data(1:100,3), 'D

Notions de base

Maintenant que nous avons observé l’interface du logiciel, nous allons apprendre les notions de base du logiciel qui nous permettrons de nous en servir adéquatement.

Nombres et variables
Comme mentionné précédemment, puisque Matlab est un logiciel de calcul numérique, chaque variable doit être définie pour être utilisée. Nous définissons une variable dans la fenêtre de commandes en lui donnant un nom suivi du symbole = et en lui assignant une valeur comme l’exemple ci-dessous :

x = 2.25
Si nous ne souhaitons pas voir le résultat apparaître dans la fenêtre de commandes, nous devons ajouter un point-virgule (;) à la fin de l’expression. Le point-virgule peut se placer à la fin de chaque expression représentée sous forme d’équation. Lorsque nous définissons une variable comme l’exemple ci-haut, Matlab crée une matrice de grandeur conforme à ce que nous lui avons soumis (dans l’exemple précédent cela correspond à une matrice 1 x 1). Une autre particularité du logiciel est que tout nombre soumis au logiciel est considéré comme étant un nombre complexe même si nous n’avons pas spécifié de partie imaginaire à notre nombre. Le nombre imaginaire
[image: image9.wmf]1

-

 peut être représenté dans Matlab soit par la lettre i ou j. C’est au choix. Il n’y a aucun besoin de définir i ou j dans ces cas là puisque Matlab reconnaît ces variables comme étant complexes. Il en est de même pour certains nombres réels comme pi.
Nous avons vu comment définir une variable pour une valeur scalaire. Maintenant nous allons voir comment définir des matrices et des vecteurs. Pour définir une matrice ou un vecteur, il faut utiliser des crochets ([]). Il faut premièrement entrer les éléments d’une même rangée en les séparant par des espaces marquant le changement de colonne. Ensuite pour changer de rangée, il faut utiliser le point-virgule. L’exemple ci-dessous vous montre comment entrer une matrice identité 3x3.

 [image: image10.png]Command Window

[100:010001]

>

Pour les vecteurs, la procédure est identique à celle pour les matrices exceptées que nous utilisons juste une rangée ou une colonne. Pour visualiser, créé, modifié ou supprimé un ou plusieurs éléments d’une matrice ou d’un vecteur déjà créé, il faut utiliser les indexes de la variable. Un élément d’une matrice se définit comme suit :

Variable(# rangée,# colonne)

Par exemple, dans le cas de la matrice identité créée précédemment les éléments I(1,1) et I(3,2) correspondraient à 1 et 0 respectivement. Pour identifier tous les éléments d’une rangée ou d’une colonne, nous devons remplacer l’index correspondant par les deux-points (:) (dans l’exemple précédent I(:,1) correspondrait à la première colonne soit [1;0;0]).

Opérateurs arithmétiques
Nous avons vu comment définir des quantités scalaires et des matrices. Nous allons apprendre comment effectuer des opérations arithmétiques entre ces variables.

La liste suivante énumère les principaux opérateurs à utiliser

	Opérateurs
	Fonctions

	+
	Addition

	-
	Soustraction

	*
	Multiplication matricielle

	.*
	Multiplication des matrices élément par élément

	/
	Division droite des matrices

	./
	Division des matrices élément par élément

	^
	Mise en puissance

	.^
	Mise en puissance élément par élément

	‘
	Transposée

Lorsque l’on effectue des opérations matricielles, il faut s’assurer que le format des matrices utilisées correspond à l’opération effectuée. L’image ci-dessous montre la différence entre l’opérateur (^) et (.^).

[image: image11.png]o
4
> x°2
s
28
12
> %2
1
o

18
16
17

27
s
19

a3

Opérateurs relationnels et logiques
Les opérateurs relationnels et logiques sont utilisés dans les directives de contrôle notamment dans les boucles while et dans les directives if. On peut également s’en servir pour de simples comparaisons. Comme par exemple, si nous voulons savoir quels éléments d’une matrice sont plus grands que ceux d’une autre matrice, nous pouvons utiliser l’expression suivante :
[image: image12.png]s 3
2 4
o 2
>> 7 = Steye(s)
v
s o
0 s
0 0
> w7
1
o

La réponse nous est retournée sous forme de matrice. Les éléments qui valent 1 veulent dire que la comparaison est vraie pour cet index et ils valent 0 si la comparaison est fausse. Dans l’exemple ci-dessus la fonction eye est une fonction de Matlab qui définit une matrice identité.

La liste des opérateurs relationnels et logiques est présentée ci-dessous.
	Opérateurs
	Fonctions

	<
	Plus petit

	>
	Plus grand

	<=
	Plus petit ou égal

	>=
	Plus grand ou égal

	= =
	Égalité (ne pas confondre avec = qui assigne)

	~=
	Pas égal

	&
	ET

	|
	OU

	~
	Négation

Boucles et directives de contrôle
Maintenant que nous avons vu les principaux opérateurs arithmétiques relationnels et logiques, nous pouvons apprendre comment fonctionnent les boucles et les directives de contrôle. Nous allons voir dans cette section les boucles for et while ainsi que la directive if puisqu’elles sont largement utilisées en programmation.

La boucle for sert à effectuer les mêmes opérations pour plusieurs itérations. Nous pouvons nous en servir pour construire des matrices, des vecteurs des graphiques et plusieurs autres choses. Voici la syntaxe à employer lorsque nous voulons utiliser une boucle for :
[image: image13.png]for index = dépar
expressions

end

+ Exemple

x = [1; * mavrice vide

n = 10; % nowbre o itération

for i = 1:lin® i = départ : incrément
®(1) = i%2 + 2; % expression

end

£in

À chaque itération, les opérations sont effectuées jusqu’à la commande end. Rendu à ce point là, les opérations recommencent au début de la boucle avec une itération de plus. Ce processus recommence jusqu’à ce que index (i dans l’exemple) soit rendu à sa valeur finale. Dans l’exemple ci-dessus, la boucle for a servi à créer un vecteur x de dimension n.

La boucle while a comme objectif d’effectuer des opérations tant et aussi longtemps qu’une expression logique est vraie. Lorsque l’expression devient fausse, la boucle se ferme et le décodage de la fonction continue. La syntaxe à employer est la suivante :
[image: image14.png]While expression logilgque

expressions

end

% Exenple

%= [1; % mavrice vide

n=0; % varisble & incrémenter

vhile n < 10 % expression logique]
®(nl) = 2°n-10; = expression

n = et s ivéravion
end

D’autre part, la directive de contrôle if sert à déterminer les opérations à effectuer dépendamment du résultat d’une condition spécifiée par l’utilisateur. Voici la syntaxe à employer dans le cas d’une directive if :
[image: image15.png]if expression logigue
expressions

cloeif expression logique * si nécessaire
expressions

elce
expressions

end

+ Exemple

x = [1; * macrice vide
3.18; % varisble & incrémenter

if 1 < pi % expression logigque

% = sinfrand{100,1)); * expression
elce

% = cos(rand{100,1)); * expression
end

L’expression logique mentionnée dans la syntaxe de la directive if est la condition qui doit être validée pour effectuer la série d’opération spécifiée sans quoi ce sera une autre série qui sera effectuée.
Représentations graphiques
Il existe deux façons de représenter graphiquement des résultats à partir de données issues de l’espace de travail. La première exige l’utilisation de fonctions des librairies de Matlab. Ces fonctions requièrent l’entrée de paramètres spécifiant les données du graphique ainsi que les options d’affichage. Voici les principales commandes pour afficher des graphiques 2D :

[image: image16.png]plotiy)

plot(x,7)

plot(x,y, b-')
subplot(2,1,1),plot(x,y, ' £:']
supplot(z,1,2),plot(x, 7, '7--']

La première commande va afficher la variable y en fonction du nombre de points. La deuxième commande va afficher la variable y en fonction de la variable x. La troisième commande va également afficher la variable y en fonction de la variable x, mais en plus, elle indique que le trait sera bleu et continu. Les deux dernières commandes vont afficher deux sous-graphiques avec les mêmes données, mais avec des options d’affichage différentes. La fonction subplot(m,n,p) crée un espace graphique m x n. La variable p représente le sous-graphique utilisé. Les tableaux ci-dessous montrent les principales options d’affichage que vous pouvez utiliser.
Style des traits
	Symbole
	Style

	-
	Continu

	--
	Tireté

	:
	Pointillé

	-.
	Tireté-pointillé

Marqueurs

	Symbole
	Marqueur

	+
	Plus

	o
	Cercle

	*
	Astérisque

	.
	Point

	x
	Croix

	s
	Square

	d
	Diamant

	^
	Triangle pointant vers le haut

	v
	Triangle pointant vers le bas

	>
	Triangle pointant à droite

	<
	Triangle pointant à gauche

	p
	Étoile à cinq branches

	h
	Étoile à six branches

Couleurs
	Symbole
	Couleur

	b
	Blue

	k
	Black

	r
	Red

	g
	Green

	c
	Cyan

	y
	Yellow

	m
	Magenta

	w
	White

Il existe des fonctions qui vous permettent également d’ajouter un titre, de nommer vos axes et d’ajouter une légende. Toutefois, nous vous suggérons d’utiliser l’éditeur de propriétés qui est décrit un peu plus loin dans le document. Il existe également différentes fonctions vous permettant de produire des diagrammes à barres ou des diagrammes circulaires. Nous verrons quelques unes de ces fonctions lors de la prochaine séance de travaux pratiques
La deuxième façon d’afficher un graphique est de taper la commande figure dans la fenêtre de commandes et d’ouvrir les outils graphiques en appuyant sur ce bouton [image: image17.bmp] situé dans la barre d’outils de la figure. Vous pouvez également obtenir le même résultat en tapant la commande plottools dans la fenêtre de commandes. L’image ci-dessous montre ce que vous devriez apercevoir sur votre écran.
[image: image18.png]) Figure 1
Fle Edt Vew Insert Toos Desktop Window felp
Dedsg(kaaM® € 08 o0F

v New Subpots]

[l aes =B
L3 aces =1

v Variatles

EHx 1x1000
By 1x1000

v Annctations:

N\ tie

N arow
X Double Arrow
S Tort arow
T TextBox

[Rectenge

Opeiipse

erty Editor

e Name: Show Figure Nuer
Colormep: [W Expor Seip,

Figure Color:

Les outils graphiques peuvent également être affichés après que vous ayez créé un graphique avec les fonctions de la librairie. Sur la fenêtre d’affichage de gauche, vous devez d’abord choisir si votre graphique est 2D ou 3D et choisir le nombre de sous-graphiques que vous désirez représenter. Ensuite vous devez choisir les variables que vous voulez afficher en les sélectionnant et en les déplaçant dans l’espace que vous venez de créer (non montré) dans le centre de la fenêtre d’affichage globale. Vous pouvez également annoter votre graphique en utilisant les formes automatiques prévues à cet effet au bas de la fenêtre d’affichage de gauche. La fenêtre d’affichage du bas est l’éditeur de propriétés. En cliquant directement sur les éléments du graphique que vous voulez modifier (e.g. axes, courbes, titres, fond), les options de l’éditeur de propriétés devraient changer selon le type d’éléments. Comme par exemple, l’image ci-dessous montre l’éditeur de propriétés pour les axes du graphique. Dans ce cas ci, vous pouvez préciser l’échelle, le titre de l’axe, la grosseur et la couleur des caractères utilisées et bien d’autres options.

[image: image19.png]g =]
Flo Edt Vew Inert Tooks Desktop Window Help ~

nEEE(hRaAN® E 0B 0=

~ New Suopits 8
o0aes R
L. 3D Axes ==
= Varties

=] 1000
By 11000

|v amnotstions
Nt

N arow

X Double Arrow

S Tort arow

T TextBox

ORectange

Opeiipse

5
100 200 300 400 00 B0 700 800 900 1000

sabts
e | ¥ i | 2 s Pt

Vibel (o)

¥ Lints: 1 1

Colrs:
et [x Ov Oz
eox

uto

¥ Seale: | Linear ~ | [JReverse

La fenêtre de droite montre les séries de données affichées ainsi que les propriétés de leur trait. Pour effacer une série de données cliquer sur la série désirée en appuyant sur le bouton de droite de la souris et appuyez sur delete. Pour ajouter une légende sur votre graphique appuyez sur le bouton [image: image20.bmp] se trouvant dans la barre d’outils de la figure. Pour éditer la légende vous pouvez cliquer directement dessus à même le graphique. Une autre fonctionnalité qui est particulièrement intéressante est celle du curseur de données qui permet de retracer des points sur votre graphique qui sont représentatifs de vos données. Cette fonctionnalité est accessible en appuyant sur le bouton [image: image21.bmp] se trouvant dans la barre d’outils de la figure.
Il y a également d’autres fonctionnalités qui sont très intéressantes notamment lorsque vous voulez afficher une courbe de tendance sur votre graphique, il existe une fonctionnalité appelée Basic fitting qui se trouve dans l’onglet Tools dans la barre d’onglets située dans la fenêtre d’affichage graphique. Cela vous permet de choisir le type de courbes de tendance de votre choix et de choisir plusieurs options.

D’autre part si vous voulez afficher des statistiques de façon rapide, il existe une fonctionnalité appelé Data Statistics qui se trouve également sous l’onglet Tools. Vous pouvez afficher rapidement à l’aide de cette fonctionnalité la moyenne, la médiane, l’écart-type et les extrémums sur votre graphique.
Une fois votre graphique terminé vous pouvez le sauvegarder en format *.fig ce qui vous permettra de recharger le graphique avec Matlab et d’y apporter des modifications si nécessaire ou bien vous pouvez sauvegarder le graphique en format de type image selon vos préférences. Pour se faire, cliquez sur file et ensuite sur save as.
Présentation de l’éditeur de texte
L’éditeur de texte permet à l’utilisateur de créer ses propres fonctions. Pour créer une nouvelle fonction il faut ouvrir une nouvelle fenêtre appelée l’éditeur de texte. Pour se faire, nous devons cliquer sur l’onglet file, appuyer sur New et choisir l’option M-file. Une nouvelle fenêtre indépendante devrait maintenant apparaître à l’écran. C’est ici que nous devons écrire le code pour créer une nouvelle fonction.
Un aspect primordial de la programmation avec Matlab est la séquence de programmation. Lorsque nous appelons une fonction que nous avons créée avec l’aide de l’éditeur de texte à partir de la fenêtre de commandes, Matlab va effectuer les opérations dans l’ordre dans lequel nous avons écrit le code. Par exemple, il est très important que nous définissions nos variables avant de les utiliser sans quoi Matlab nous retournera un message d’erreur dans la fenêtre de commandes.
Lorsque nous écrivons une nouvelle fonction il faut utiliser la syntaxe suivante :
[image: image22.png]& Editor - Untitled*
Fle Edt Tect Cel Toos Debug Deskiop Mindow Help
Ded i{aBoc &5 80 BRE BB s

1 function [outputl,cutputz,..]=nom de_la_fonction(inputl,inputz,..
code

return

_la_fonction

La commande function définit le format de la fonction qui sera appelée dans la fenêtre de commandes. Les noms des variables que vous utilisez dans votre code doivent être les mêmes que ceux dans l’entête de la fonction, mais peuvent être différents lorsque vous appelez la fonction dans la fenêtre de commandes. La commande return indique la fin du programme. L’ajout de cette commande est toutefois optionnel puisque la fonction n’a pas besoin nécessairement de cette commande pour se terminer.
Lorsque vous écrivez votre code, il est bien d’ajouter des commentaires pour vous rappeler comment fonctionne votre code. Pour ajouter des commentaires il vous faut ajouter le symbole % avant votre commentaire, ainsi le restant de la ligne sera dédié à des commentaires et ne sera pas traité par Matlab. Les commentaires apparaissent normalement en vert dans votre programme. Voici un exemple de code d’une fonction créée par l’utilisateur :

[image: image23.png]function [intt]

rapt (u,deltaz, deltat)

Computation of the time integral of a two-dimensional vector

DESCRIPTION
This program computes mmerically the time integral of a 2D vector
using the trapezoidal method

Inpus
displacenent mavrix
deltaz: space increment
deltat: time increment

output
inct: time integral

step = size(w,2);
totep = sizefu,1);

for 3 = 1:zstep
for m = Licstep-1
Stm 1= (uimtd, 3] +ulm, 31) 7
end
inet(1,3)=deleat/2 sun(s, 1) ;
end

recurn

Votre code peut inclure des fonctions de la librairie Matlab mais également des fonctions que vous avez créé. Il est toujours très important de s’assurer que la fonction soit correctement appelée. Si vous avez des doutes, consultez la rubrique d’aide qui vous dira comment la fonction doit être appelée et comment elle fonctionne.
Librairies de fonctions
Dans cette section sont présentées diverses fonctions qui pourront vous être utiles durant le cours. La liste de ces fonctions est très loin d’être exhaustive, c’est pourquoi il vous faudra utiliser la rubrique d’aide pour trouver des fonctions qui effectuerons les opérations que vous désirez faire.
Statistiques

max(x) : Donne la valeur maximum à l’intérieur du vecteur x

mean(x) : Calcule la moyenne d’un vecteur x

median(x) : Calcule la médiane d’un vecteur x

min(x) : Donne la valeur minimum à l’intérieur du vecteur x

std(x) : Calcule l’écart-type d’un vecteur x

Matrices

det(A) : Calcule le déterminant de la matrice A

eye(i): Crée une matrice identité de taille i x i

ones(m,n) : Crée une matrice m x n remplie de un

rand(i,j): Crée une matrice de nombres aléatoires compris entre 0 et 1 de taille i x j

size(A,i): Donne la taille de la matrice A dans la ième dimension

sum(A,i): Calcule la somme des lignes d’une matrice A dans la ième dimension

transpose(A) : Donne la transposée de la matrice A

zeros(m,n) : Crée une matrice m x n remplie de zéro

Graphiques

bar(x,y) : Trace un diagramme à barres à partir des vecteurs x et y
errorbar(x,sd) : Affiche l’écart-type (sd) d’un vecteur x en utilisant des barres

 d’erreurs
hold : Rendre les échelles constantes

hist(y) : Trace un histogramme à partir des vecteurs x et y

plot(x) : Trace le graphique du vecteur x

subplot(m,n,p) : Crée l’espace pour le pième sous-graphique de l’espace graphique

 m x n

Annotations graphiques

grid : Ajoute un grillage au graphique

legend : Ajoute une légende au graphique

title : Ajoute un titre au graphique

xlabel : Étiquette l’axe des x

ylabel : Étiquette l’axe des y

Répertoire en cours

Fenêtre des commandes

Espace de travail (non montré)

Historique des commandes

Créer une nouvelle variable

Ouvrir l’éditeur de matrices

Sauvegarder des données

Charger des données

Visualiser des données

Recherche de fichiers

Liste des rapports

1

_1211285388.unknown

