GEOMETRIE PLANE : NOMBRES COMPLEXES

I Les points du plan et les nombres complexes

1- Notion de nombre complexe
  Dans ce chapitre, on définit un ensemble noté ℂ, qui prolonge l’ensemble ℝ, muni d’une addition et

  d’une multiplication ayant les mêmes propriétés que dans ℝ.
Dans toute cette page, x et y sont des nombres réels.

Le plan rapporté à un repère orthonormal direct (O ; 
[image: image1.wmf]u

, 
[image: image2.wmf]v

) est appelé plan complexe.

Soit A le point de coordonnées (1 ; 0) et B le point de coordonnées (0 ; 1).

Définition :

Au point A, on associe le nombre réel 1.

Au point B, on associe le nombre complexe i tel que i² = - 1

A tout point M de coordonnées (x ; y) du plan complexe, on associe le nombre complexe unique, noté z, qui s’écrit z = x + i y.

[image: image258.jpg]


Réciproquement, à tout nombre complexe z = x + i y avec x et y réels, on associe dans le plan complexe le point M de coordonnées (x ; y). 
z est appelé affixe de M

On dit que M est le point image de z.

L’affixe du point M se note zM 
Définition :

A tout vecteur 
[image: image3.wmf]OM

 (x ; y), on associe le nombre complexe x + i y appelé affixe de ce vecteur. 

Réciproquement, à tout nombre complexe z = x + i y, avec x et y réels, on associe dans le plan complexe le vecteur de coordonnées (x ; y), appelé vecteur image de z.
L’affixe du vecteur 
[image: image4.wmf]w

 se note z
[image: image5.wmf]w


2- Remarques et vocabulaire

Si z = x + i y, avec x et y réels, x est la partie réelle de z, notée Re(z) et y est la partie imaginaire de z, notée Im(z). Les parties réelle et imaginaire sont des nombres réels.

L'écriture z = x + i y  avec x et y réels est appelée forme algébrique du nombre complexe z.

Un nombre complexe imaginaire pur est un nombre complexe dont la partie réelle est nulle, par exemple – 3 i. 

Les points images sont les points de l’axe (y’y), appelé axe des imaginaires purs.

Le réel x peut s’écrire x + 0i, donc le point image est un point de l’axe (x’x), qui est appelé axe des réels.

Tout nombre réel est un nombre complexe particulier : ℝ est inclus dans ℂ.
[image: image259.jpg]


3-  Symétries et nombres complexes

Définitions :

Le point M a pour affixe z = x + i y avec x et y réels
. Le point Q (- x ; - y), symétrique de M par rapport à O, a pour affixe – z, opposé de z. 

. Le point N (x ; - y), symétrique de M par rapport à l’axe (xx’), a pour affixe le nombre complexe appelé conjugué de z et noté 
[image: image6.wmf]z

 

Pour z = x + i y, on a 
[image: image7.wmf]z

 = x - i y (x et y réels).

Propriété :

Deux nombres complexes sont égaux si et seulement si, ils ont la même partie réelle et la même partie imaginaire.

Remarques :

. Cette propriété découle de l'unicité de l'écriture d'un nombre complexe sous forme algébrique.

. En particulier, x et y étant des réels, x + i y = 0 si et seulement si x = 0 et y =0.

II Opérations sur les nombres complexes

1- Addition et multiplication dans ℂ

a) Règles de calcul
L'addition et la multiplication des nombres réels se prolongent aux nombres complexes et les règles de calcul restent les mêmes.

Exemples : 

A = ( 1 + 3 i ) + ( - 3 + 2 i ) = ( 1 – 3 ) + ( 3 + 2 )i = - 2 + 5 i 

B =  2 – 4 i - ( - 1 – 5 i ) = 3 + i 

C = ( 4 + i ) ( - 5 + 3 i ) = - 20 + 12 i - 5 i + 3 i ² = - 23 + 7 i 

Remarques :

. Les identités remarquables valables dans ℝ le sont également dans ℂ
. z et z' étant des nombres complexes, zz' = 0 équivaut à z = 0 ou z' = 0. 

b) Représentation géométrique de la somme
Deux nombres complexes z1 et z2 ont pour images respectives M et N dans le plan complexe.

z1 + z2 a pour image le point P quatrième sommet du parallélogramme MONP.

[image: image8.jpg]



2- Inverse et quotient

Propriété :

Tout nombre complexe non nul z admet un inverse noté 
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Pour obtenir la forme algébrique de 
[image: image10.wmf]iy
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(x, y réels et x + iy
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 0), on multiplie numérateur et dénominateur par x-iy car (x+iy)(x-iy) = x² +y² est un nombre réel.

Exemples :
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3- Affixe d'un vecteur, d'un barycentre
Dans le plan complexe, à tout vecteur
[image: image20.wmf]u

 (x ; y), on associe le complexe x + i y affixe de 
[image: image21.wmf]u

.

Propriété : 

Deux points A et B du plan complexe ont pour affixes respectives z A et z B. L'affixe du vecteur 
[image: image22.wmf]AB

 est 

z B – z A.

Remarques :
. Deux vecteurs sont égaux si et seulement si leurs affixes sont égales.

. Si 
[image: image23.wmf]λ

 est un réel, l'affixe du vecteur
[image: image24.wmf]λ



EMBED Equation.3[image: image25.wmf]u

 est 
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z où z est l'affixe de 
[image: image27.wmf]u

.

Propriété :

Deux points A et B du plan complexe ont pour affixes respectives z A et z B.

L'affixe du barycentre G des points pondérés (A ,
[image: image28.wmf]α

) et (B , 
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) (
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 + 
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III Équations du second degré à coefficients réels

Équation a z² + b z + c = 0 (avec a, b, c réels et a 
[image: image34.wmf]¹

0)

Théorème :

L'équation a z² + b z + c = 0 (avec a, b, c réels et a 
[image: image35.wmf]¹

0) de discriminant 
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 = b² - 4 a c admet :


. Si  
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= 0, une unique solution réelle : -
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 0, deux solutions :



- réelles si 
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               - complexes conjuguées si 
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Remarque :
Si on note z1 et z2 les solutions de l'équation (avec éventuellement z1 = z2 alors pour tout complexe z, 

a z² + b z + c = a (z – z1)(z - z2) .

Exemple :

L'équation z² + z + 1 = 0 a pour discriminant 
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 = - 3.

L es solutions sont les complexes conjugués  - 
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IV Conjugué d'un nombre complexe

1- Définition du conjugué

Définition :

z est un nombre complexe de forme algébrique z = x + i y (x, y réels), le nombre

complexe x – i y, noté 
[image: image50.wmf]z

, est appelé conjugué de z.

Exemples :
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Conséquences :


[image: image54.wmf]z

 = z                            z
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 =  x² +  y²                            z + 
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  = 2 Re (z)                     z - 
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 = 2 i Im (z)

2- Interprétation géométrique
Dans le plan complexe, le point M' d'affixe z est l'image du point M' d'affixe 
[image: image58.wmf]z

  par la symétrie par rapport à l'axe des abscisses.

Propriétés :

z est un nombre complexe.

. z est réel équivaut à 
[image: image59.wmf]z

 =  z .

. z est imaginaire pur équivaut à 
[image: image60.wmf]z

 = - z .

3- Conjugué et opérations

Propriétés :

z et z' sont deux nombres complexes et n un entier naturel non nul.

. 
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Exemples :
. 
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V Module et arguments d'un nombre complexe

(O ; 
[image: image77.wmf]OU

, 
[image: image78.wmf]OV

) est un repère orthonormal du plan complexe.

1- Module d'un nombre complexe
Définition :
z est un nombre complexe de forme algébrique x + i y (x et y réels). Le module de z est le nombre réel

positif noté 
[image: image79.wmf]z

et défini par 
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Interprétation géométrique :
Dans le plan complexe, si M a pour affixe z alors OM = 
[image: image82.wmf]z

.

Remarques :

. Si x est un nombre réel, le module de x est égal à la valeur absolue de x.

. 
[image: image83.wmf]z

 = 0 équivaut à z = 0 car OM = 0 équivaut à M = O .

. z
[image: image84.wmf]z

 = x² + y² = 
[image: image85.wmf]z

2.

2- Arguments d'un nombre complexe non nul

Définition :

Dans le plan complexe, z est un nombre complexe non nul de point image M. On appelle argument de z et on note arg (z), toute mesure en radians de l'angle orienté:

(
[image: image86.wmf]OU

;
[image: image87.wmf]OM

) .

Remarques :

. Un nombre complexe non nul z a une infinité d'arguments ; si 
[image: image88.wmf]θ

 est l'un d'entre eux tout autre est de la forme 
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 + k2
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 avec k
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ℤ.

. On note arg (z) = 
[image: image92.wmf]θ

  (modulo 2
[image: image93.wmf]π

) ou plus simplement arg (z) = 
[image: image94.wmf]θ

.

3- Forme trigonométrique d'un nombre complexe non nul

a) Repérages cartésien et polaire

Dans le plan complexe, un point M distinct de O peut être repéré par ses coordonnées cartésiennes (x ; y) ou par un couple (r ; 
[image: image95.wmf]θ

) de coordonnées polaires avec 

OM = r, 

(
[image: image96.wmf]OU

, 
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) = 
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,

on a alors x = r cos 
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 et y = r sin 
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 .
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b) Forme trigonométrique

Définition :

z est un nombre complexe non nul.

L'écriture z = r (cos 
[image: image102.wmf]θ

 + i sin 
[image: image103.wmf]θ

) avec r = 
[image: image104.wmf]z

 et 
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 = arg z est appelée forme trigonométrique de z.

Propriété :

Deux nombres complexes non nuls sont égaux si et seulement si, ils ont même module et même argument à un multiple de 2
[image: image106.wmf]π

 près.

Propriété :

Si z = 
[image: image107.wmf]ρ

(cos
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+ i sin
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 ) avec ρ nombre réel 
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> 0   alors 
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 = 
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 et 
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 = arg(z).

VI Propriétés du module et des arguments

1- Conjugué et opposé

Propriétés :

Pour tout nombre complexe non nul z, 

. 
[image: image114.wmf]z

 = 
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, arg (
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) = - arg (z) ,

. 
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, arg(- z) = arg(z) + 
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                                                             [image: image120.jpg]



2- Arguments d'un réel, d'un imaginaire pur

Propriétés :

z est un nombre complexe non nul.

- z est réel équivaut à arg (z) = 0 ou arg (z) = 
[image: image121.wmf]π

 .

- z est imaginaire pur équivaut à arg (z) = 
[image: image122.wmf]2

π

ou arg (z) = -
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3- Opérations 

a) Inégalité triangulaire

Propriété :

Pour tous nombres complexes z et z', 
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b) Produit

Propriétés :

Pour tous nombres complexes non nuls z et z' , 

. 
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 et arg (zz')=arg z + arg z',

.  pour tout entier naturel non nul n, 
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et arg (zn) = n arg (z).
 c) Quotient
Propriétés :

Pour tous nombres complexes non nuls z et z',
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4- Lien avec le plan complexe

Propriétés :

A et B sont deux points d'affixes a et b,

. AB= 
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. Si A et B sont distincts, (
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; 
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) = arg (b - a) .

Conséquence :

A, B, C et D sont des points deux à deux distincts d'affixes respectives a, b, c et d. ​

(
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En effet (
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VII- La notation exponentielle

1-  La fonction 
[image: image150.wmf]θ
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f est la fonction définie sur ℝ et à valeurs dans ℂ par f (
[image: image151.wmf]θ

) = cos 
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 + i sin 
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.

a) Pour tous réels 
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 et 
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', f (
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 + 
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') = f (
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) f (
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'). En effet, les complexes f (
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 + 
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) f (
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') ont pour module 1 et pour argument 
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'.

b) Les fonctions cos et sin étant dérivables sur ℝ , on dit que f est dérivable sur ℝ. La fonction dérivée de f est définie par f ' (
[image: image166.wmf]θ

) = cos' 
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 + i sin' 
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 = - sin 
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 + i cos 
[image: image170.wmf]θ

 = i (cos θ + i sin θ) = i f (θ). 

On obtient alors f ' (0) = i .

Par analogie avec la définition de la fonction exponentielle, on adopte l'écriture :

Notation :
Pour tout réel 
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, on note e
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Exemples :
e
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= 1
e
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 = - 1

2- Avec la notation e
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Propriétés :

Pour tous réels 
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 et 
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' et tout entier naturel non nul n, 

. │ e
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   (formule de Moivre).

Remarques :

. Ces formules résultent immédiatement du fait que e
[image: image192.wmf]θ

i

 est le complexe de module 1 et d'argument 
[image: image193.wmf]θ

 et des propriétés du module et des arguments.

. La formule de Moivre s'écrit également (cos 
[image: image194.wmf]θ

 + i sin 
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)n = cos (n 
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) + i sin (n 
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).

3- Forme exponentielle d'un nombre complexe non nul

Définition :
z est un nombre complexe non nul. L'écriture z = re
[image: image198.wmf]θ

i

 avec r =│z│ et 
[image: image199.wmf]θ

 = arg (z) est appelée forme exponentielle de z.

4- Équation paramétrique d'un cercle du plan complexe

Propriété :
C est un cercle de centre
[image: image200.wmf]Ω

d'affixe 
[image: image201.wmf]ω

 et de rayon r.

M est un point d'affixe z; les deux propriétés suivantes sont équivalentes.

(1) M est un point de C
(2) Il existe un réel 
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 de ]- 
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 ; 
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] tel que z = 
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 .

 Définition :

L'égalité z = 
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 + r e
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i

 est appelée équation paramétrique complexe du cercle C.

Remarque :
Si z = x + iy (x, y réels) et 
[image: image209.wmf]ω

 = a + ib (a et b réels), l'égalité z = 
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 + r e
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 équivaut à 

x = a + r cos 
[image: image212.wmf]θ

 et y = b + r sin 
[image: image213.wmf]θ

.

VIII- Nombres complexes et transformations

F est une transformation du plan complexe; on lui associe la fonction f de ℂ dans ℂ qui à un complexe z affixe du point M associe le complexe z' affixe du point M' = F (M).

z' = f (z) est l'écriture complexe de la transformation F.

1- Écriture complexe d'une translation

Propriété :


[image: image214.wmf]w

est un vecteur d'affixe b.

L'écriture complexe de la translation de vecteur 
[image: image215.wmf]w

 est z' = z + b .

Démonstration :
t est la translation de vecteur 
[image: image216.wmf]w

 ;  M' = t (M) équivaut à
[image: image217.wmf]w

'
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=

, c'est-à-dire z' - z = b où z et z' sont les affixes respectives de M et M'.

2- Écriture complexe d'une homothétie

Propriété :


[image: image218.wmf]Ω

 est un point d'affixe 
[image: image219.wmf]ω

 et k un réel non nul. L'écriture complexe de l'homothétie de centre 
[image: image220.wmf]Ω

 et de rapport k est z' - 
[image: image221.wmf]ω

 = k (z - 
[image: image222.wmf]ω

) .

Démonstration :

h est l'homothétie de centre 
[image: image223.wmf]Ω

 et de rapport k ;

M' = h (M) équivaut à 
[image: image224.wmf]M

Ω

k

'

M

Ω

=

.

On note z et z' les affixes respectives de M et M', l'affixe de 
[image: image225.wmf]'

M

Ω

 est z' - 
[image: image226.wmf]ω

, celle de k
[image: image227.wmf]M

Ω

 est k (z - 
[image: image228.wmf]ω

). Donc M' = h (M) équivaut à z' - 
[image: image229.wmf]ω

 = k (z - 
[image: image230.wmf]ω

).

3- Écriture complexe d'une rotation

Propriété :


[image: image231.wmf]Ω

 est un point d'affixe 
[image: image232.wmf]ω

 et 
[image: image233.wmf]θ

 un réel. L'écriture complexe de la rotation de centre 
[image: image234.wmf]Ω

 et d'angle 
[image: image235.wmf]θ

 est 

z' - 
[image: image236.wmf]ω

 = e
[image: image237.wmf]θ

i

 (z - 
[image: image238.wmf]ω

).

Démonstration :

r est la rotation de centre 
[image: image239.wmf]Ω

 et d'angle 
[image: image240.wmf]θ

.

. Si M 
[image: image241.wmf]Ω

¹

, M' = r(M) équivaut à 
[image: image242.wmf]Ω

M' = 
[image: image243.wmf]Ω

M et (
[image: image244.wmf]M

Ω

; 
[image: image245.wmf]'

M

Ω

) = 
[image: image246.wmf]θ

, c'est-à-dire 

│z' - 
[image: image247.wmf]ω

 │= │z - 
[image: image248.wmf]ω

│ et

arg 
[image: image249.wmf]÷

ø

ö

ç

è

æ

-

-

ω

z

ω

'

z

 = 
[image: image250.wmf]θ

. Ceci revient à dire que le complexe 
[image: image251.wmf]ω

z

ω

'

z

-

-

 a pour module 1 et pour argument 
[image: image252.wmf]θ

 ou encore  
[image: image253.wmf]ω

z

ω

'

z

-

-

 = e
[image: image254.wmf]θ

i

.

. Si M = 
[image: image255.wmf]Ω

, M' = r (M) équivaut à M' = 
[image: image256.wmf]Ω

, c'est-à-dire z' = 
[image: image257.wmf]ω

.
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