Les nombres complexes
I) Forme algébrique
1) Ensemble des nombres complexes
	Un nombre complexe est de la forme 
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La partie réelle est notée :              Re(z) = a
La partie imaginaire est notée        Im(z) = b
Deux nombre complexes sont égaux si et seulement si ils possèdent la même partie réelle et le même partie imaginaire.
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2) Règles de calcul dans 
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· Addition 
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· Multiplication
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II) Conjugué d’un nombre complexe
	Le conjugué d'un nombre complexe 
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Opérations sur les conjugués :
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Démonstration :
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III) Forme trigonométrique
	Module de z :
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Argument de z :
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Avec :
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D’où la forme trigonométrique :
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Egalité de deux nombres complexes :
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IV) Propriétés des modules et des arguments


[image: image23.wmf]''

zzzz

´=´



[image: image24.wmf][

]

arg(')arg()arg(')2

zzzz

p

´=+


Démonstration : 
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Formule de Moivre
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Démonstration par récurrence

On vérifie au rang n=1
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    Vrai

On suppose vrai au rang n c'est-à-dire 
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On démontre alors vrai au rang n+1
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Module et argument d’un rapport
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V) Forme exponentielle d’un complexe

Cas général :   
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Formule de Moivre
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Formule d’Euler
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Démonstration :
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VI) Equation du second degré à coefficients réels
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Car 
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Forme canonique
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Posons 
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L’équation devient :
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1er Cas 
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2ème cas 
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3ème cas 
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Or 
[image: image58.wmf]2

i

-D=´D



[image: image59.wmf]2

2

2

()

0

2

4

bi

z

a

a

´-D

æö

+-=

ç÷

èø



[image: image60.wmf]0

22

æöæö

+--D++-D=

ç÷ç÷

èøèø

bb

zizi

aa


On a donc 
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Figures dessinées avec Cabri Géomètre II
Fiche réalisée par Pierre-Yves Magnaldi et Nicolas Moro
Terminale S – Année scolaire 2005/2006
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