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Nombres complexes :

Forme trigonométrique et forme exponentielle  

La forme algébrique des nombres complexes permet de mettre en relation tout point du plan complexe dont on connaît les coordonnées cartésiennes avec un nombre complexe . La forme trigonométrique permettra de créer le même lien pour un point M donné par ses coordonnées polaires .

Dans tout ce chapitre, 
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désigne un repère orthonormé direct du plan .

1. Forme trigonométrique d’un nombre complexe :

1.1. Existence :


________________________________________

Propriété     
Soit z un nombre complexe non nul . Alors il existe un réel strictement positif r et un réel 
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Démonstration :

Soit 
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sa forme algébrique .

Soit M le point d’affixe z . Comme z est différent de 0, M est distinct de O . Il admet donc un couple de coordonnées polaires que l’on nommera 
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1.2. pas d’unicité :

______________________________________________
Propriété     
Soient z et z’ deux nombres complexes tels que 
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avec r et r’ strictement positifs . Alors :
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Démonstration :
· Si 
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et donc que 
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· Inversement, supposons que 
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On aura alors OM² = OM’² . D’où 
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soit encore 
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Rappelons alors que 
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 . La forme algébrique d’un nombre complexe étant unique, on en déduit que 
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Définition     
L’écriture de z sous la forme 
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 un réel quelconque s’appelle forme trigonométrique de z .
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Exemples  :
Ecrivons sous forme trigonométrique les nombres complexes suivants :

· Si 
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 . On en conclut que la forme trigonométrique de z est : 
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· Si 
[image: image61.wmf]

 INCORPORER Equation.3  [image: image62.wmf]i

z

+

-

=

1

, alors 
[image: image63.wmf]1

-

=

a

 et 
[image: image64.wmf]1

=

b

 . Donc 
[image: image65.wmf]2

²

1

)²

1

(

=

+

-

=

r

,  
[image: image66.wmf]2

2

2

1

cos

=

-

=

q

 et 
[image: image67.wmf]2

2

2

1

sin

=

=

q

, ce qui donne 
[image: image68.wmf][

]

p

p

q

2

4

3

º

 . On en conclut que la forme trigonométrique de z est : 
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2. Module d’un nombre complexe :

Définition     
Soit z un nombre complexe quelconque de forme algébrique 
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 défini par :  
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Premières Propriétés     
Pour tout nombre complexe z,

· 
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· Si z est un nombre réel, alors le module de z coïncide avec la valeur absolue de z .

· Si z est un imaginaire pur, alors le module de z est égal à la valeur absolue de sa partie imaginaire.

· Si M est le point d’affixe z, alors 
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· Si z est un nombre complexe non nul de forme trigonométrique 
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Démonstration :
· Si  
[image: image80.wmf])

sin

(cos

q

q

i

r

z

+

=

, alors 
[image: image81.wmf]q

cos

r

a

=

 et 
[image: image82.wmf]q

sin

r

b

=

. 

Donc 
[image: image83.wmf]²

)

²

sin

²

(cos

²

)

sin

(

)

cos

(

2

2

2

r

r

r

r

z

=

+

=

+

=

q

q

q

q

. Le module de z et r étant tous deux positifs, on en déduit que 
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Exemples :
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Propriétés geometriques     
· Soit 
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· Soient A et B deux points d’affixes respectives 
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Démonstration : 
· Soit M le point du plan complexe tel que :
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· Le vecteur 
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Exemple :
Soient A et B les points d’affixes 
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On remarque ainsi que : 

OA=AB et OB²=OA²+AB² . Le triangle OAB est donc rectangle isocèle rectangle en A   

Propriétés algébriques    
Pour tous nombres complexes z et z’ , on a :

1. 
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Démonstration :
1. Pour démontrer cette 1ère propriété, utilisons que 
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2. Soit 
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     On a donc à la fois : 
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3. Soit z un nombre complexe non nul . Alors 
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5. Soient M et M’ les points d’affixes respectives z et -z’ . Alors :
[image: image133.wmf]
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Exemples :
A l’aide de ces propriétés, calculons les modules des nombres complexes suivants :

· 
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· 
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Exercice :
1) Déterminer l’ensemble des points M du plan dont l’affixe z vérifie : 
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Soit A le point d’affixe 
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. On en conclut que l’ensemble des points M répondant à la question est le cercle de centre A et de rayon 6 .

2) Déterminer l’ensemble des points M du plan complexe dont l’affixe z
 vérifie :
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Il faut tout d’abord éliminer le point A d’affixe 
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En appelant B le point d’affixe 
[image: image151.wmf]3
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, la dernière égalité équivaut à : BM = AM . On en conclut que l’ensemble des points M cherché est la médiatrice 
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3. Argument d’un nombre complexe non nul :

Définition     
Soit z un nombre complexe non nul et M le point du plan complexe d’affixe z . On appelle argument de z , tout réel 
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 tel que :  
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[image: image157.wmf][

]

p

q

2

 .
Remarques :
· Arg ( z ) n’est pas unique : il est défini à un multiple de 
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· Le nombre complexe 0 n’a pas d’argument .

· Si z a pour forme trigonométrique 
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Exemple :
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Cas particuliers :
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Propriété     
Soit 
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Démonstration :
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· Si 
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Propriétés (argument et opérations)    
Soient z et z’ deux nombres complexes non nuls et n un entier naturel quelconque . Alors :
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 INCORPORER Equation.3  [image: image185.wmf]

Démonstration : 
· Soient 
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On en déduit que : 
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· Admis

· Comme 
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Consequence :   
Soit z un nombre complexe non nul et k un réel non nul . Alors :
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Exemples :
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· Il en découle que 
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2. Les calculs précédents permettent alors de calculer le cosinus et le sinus de 
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En suivant la même démarche, on a : 
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 d’autre part . En identifiant, on conclut alors que 
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2)  Calculons 
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Propriétés geometriques   
Pour tous points A, B, C et D du plan complexe distincts deux à deux, on a :
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Démonstration :
· Soit M le point du plan tel que 
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 d’après la relation de Chasles sur les angles orientés .

Exemple :
Soient A, B et C les points du plan complexe d’affixes respectives 
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 . Démontrons que ABC est un triangle rectangle .

La figure semble indiquer que l’angle droit est au sommet B . C’est pourquoi nous allons calculer :


[image: image241.wmf][

]

p

p

2

2

)

2

1

arg(

²

2

)²

2

(

4

arg

)

2

2

)(

2

2

(

)

2

2

)(

1

(

arg

2

2

1

arg

)

3

(

)

3

1

(

)

3

(

)

2

4

(

arg

arg

)

;

(

-

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

+

-

-

-

+

=

÷

ø

ö

ç

è

æ

+

-

+

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

+

-

+

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

i

i

i

i

i

i

i

i

i

i

i

i

z

z

z

z

BC

BA

B

A

B

C

2

2


Le triangle ABC est donc rectangle en B .

Remarque :

 Dans le chapitre précédent, on a donné une interprétation géométrique de l’addition dans  à l’aide de la somme des vecteurs du plan complexe . Nous sommes en mesure à ce stade du chapitre de donner une image de la multiplication dans  dans le plan complexe . En effet, z et z’ étant deux nombres complexes non nuls et  M, M’, P désignant les points d’affixes respectives z, z’ et 
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4. Forme exponentielle d’un nombre complexe :
4.1. Exponentielle complexe :



__________________________

Soit f la fonction définie de  dans  par 
[image: image245.wmf]q

q

q

sin

cos

)

(

i

f

+

=

. Alors : 
[image: image246.wmf])

'

(

)

'

sin(

)

'

cos(

)

cos

'

sin

'

cos

(sin

'

sin

sin

'

cos

cos

)

'

sin

'

)(cos

sin

(cos

)

'

(

)

(

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

+

=

+

+

+

=

+

+

-

=

+

+

=

´

f

i

i

i

i

f

f

Cette fonction f possède donc la propriété caractéristique des fonctions exponentielles . Pour cette raison, on posera :

Définition     
Soit 
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Exemples :
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Cas particuliers :
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Conséquence :  
Pour tout réel 
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4.2. Propriétés des exponentielles complexes :
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Propriété :     
Pour tous réels 
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Démonstration :
1. 
[image: image268.wmf]q

q

q

q

q

q

q

q

i

i

e

i

i

i

e

-

=

-

+

-

=

-

=

+

=

)

sin(

)

cos(

sin

cos

sin

cos


2. 
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3. Déjà démontré en introduction

4. Posons 
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Donc Z a pour forme algébrique :
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      Donc Z a pour forme algébrique :
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Remarques : 

· La propriété 3 permet de retrouver rapidement les formules d’addition des sinus et cosinus, ceci en identifiant les parties réelles et les parties imaginaires des deux membres :
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· La propriété 4 , pour 
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, permet par identification des parties réelles et imaginaires des deux membres, de retrouver les formules de duplication :
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· La propriété 4 est connue sous le nom de formule de Moivre ; elle peut aussi s’écrire : 
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Exemple :
Calculons 
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en utilisant son écriture exponentielle :

Comme 
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Propriété  (formules d’euler)     
Pour tout réel 
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Démonstration :
Il suffit d’écrire les formules 
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Exemple :
Soit 
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, ce qui est la forme trigonométrique de Z car, 
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4.3. Forme exponentielle d’un nombre complexe non nul :
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Soit z un nombre complexe non nul et 
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Définition     
Soit z un nombre complexe non nul . Notons 
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Exemple :
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Les propriétés énoncées ci-dessous sont faciles à mémoriser du fait de leur similarité avec les propriétés des puissances . De plus, elles permettent de résumer conjointement les propriétés des modules et des arguments ; il suffit d’avoir à l’esprit que lorsque la forme exponentielle de z est 
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Propriétés     
Soient z et z’ deux nombres complexes non nuls de formes exponentielles 
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Exemple :
En utilisant ces propriétés, déterminons la forme exponentielle des nombres complexes suivants :
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