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Nombres complexes 

Forme algébrique

1. Les nombres complexes et leur représentation géométrique :

1.1. Introduction :








__________     

Revisitons les ensembles de nombres en examinant ce que chacun a apporté à la résolution des équations :

 : ensemble des entiers positifs. Dans  , l’équation 
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 n’a pas de solution  

 : ensemble des entiers relatifs  
[image: image2.wmf]Z
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. Dans  , l’équation 
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 n’a pas de solution .

 : ensemble des nombres rationnels . C’est l’ensemble de tous les nombres qui peuvent s’écrire comme quotient de deux entiers relatifs . Le développement décimal de ces nombres est soit fini soit infini périodique . 
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Dans  , l’équation 
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 n’a pas de solution .

 : ensemble des réels .  contient tous les nombres rationnels ainsi que tous les nombres dont le développement décimal est infini et non périodique . 
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Dans  , les équations du second degré dont le discriminant est positif ont une ou deux solutions mais celles dont le discriminant est strictement négatif n’ont pas de solution . Par exemple l’équation  
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 n’a pas de solution dans  .

Comme a été inventé le nombre 
[image: image8.wmf]2

pour apporter des solutions à l’équation 
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, on invente un nouveau nombre noté i qui a pour carré –1 .

Ce nombre étant créé, l’équation  
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 aura deux solutions : 
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L’équation 
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 qui s’écrit aussi : 
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L’équation 
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 aura pour solutions : 
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1.2. Construction de l’ensemble des nombres complexes  :



_
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On cherche à construire un ensemble que l’on notera  qui contienne et le nombre i .On souhaite de plus que cet ensemble possède les mêmes propriétés opératoires que  pour l’addition et la multiplication .
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Aussi, il devra  contenir des nombres du type 
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Additionnons deux nombres de cette dernière forme en convenant que les règles d’opérations sont le mêmes que dans  , par exemple :
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 . On retrouve un nombre de la même forme .

Maintenant, multiplions-les : 
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. Là encore, le résultat obtenu est de la forme 
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. Ceci nous conduit aux définitions ci-dessous .

 Définition 1     
On appelle ensemble des nombres complexes un ensemble que l’on notera   tel que :

1. Il existe dans  un élément noté i vérifiant : 
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2. Tout élément de  s’écrit sous la forme 
[image: image27.wmf]ib
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 avec a et b réels .

Les éléments de  sont appelés nombres complexes ou nombres imaginaires .

Notation : Un nombre complexe est souvent désigné par la lettre z .

Cas particuliers : Soit 
[image: image28.wmf]b
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un nombre complexe avec a et b réels .

· Si 
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, alors z est un réel . On retrouve ainsi que 
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· Si 
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et on dit que z est un imaginaire pur . L’ensemble des imaginaires purs est noté 
[image: image33.wmf]R
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Définition 2     
Dans cet ensemble , on définit une addition et une multiplication de la façon suivante :

Pour tous nombres complexes z et z’ de formes algébriques 
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· on définit la somme de z et de z’ par :  
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· on définit le produit 
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1.2. Unicité de l’écriture d’un nombre complexe  :
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Propriété     
Soit 
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Démonstration :
· Si 
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· Inversement, si 
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, d’où en prenant les carrés de chaque membre : 
[image: image46.wmf])²

(

²

i

b

a

-

=

ou encore : 
[image: image47.wmf]²

²

b

a

-

=

. Or a et b étant des réels, 
[image: image48.wmf]0

²

³

a

 et 
[image: image49.wmf]0

²

£

-

b

 ; l’égalité précédente n’est donc possible que si : 
[image: image50.wmf]0

²

²

=

-

=

b

a

, ce qui implique que 
[image: image51.wmf]0

=

=

b

a

.

Propriété     
L’écriture d’un nombre complexe sous la forme 
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Ceci s’écrit aussi :

Pour tous réels a, a’, b et b’, 
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Démonstration :
Soit z un nombre complexe quelconque . Supposons qu’il existe quatre réels a, a’, b et b’ tels que 
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Définition     
L’écriture d’un nombre complexe z sous la forme  
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s’appelle forme algébrique de z . 

Le réel a s’appelle partie réelle de z et se note 
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Le réel b s’appelle partie imaginaire de z et se note 
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1.3. Représentation géométrique d’un nombre complexe  :
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Rappel : 

L’ensemble des réels est représenté par une droite muni d’un repère 
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appelée 

droite des réels .

A chaque réel a correspond un point unique M de la droite des réels défini par l’égalité vectorielle :
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Inversement, à chaque point N de la droite des réels, on associe un unique réel b défini par 
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Dans le même souci de donner un « visage » aux nombres complexes , on crée un lien entre l’ensemble  et le plan . En effet une droite s’avère insuffisante pour représenter ces nombres car pour chaque nombre complexe, il y a deux variables : la partie réelle d’une part et la partie imaginaire d’autre part .

Définition     
On appelle plan complexe le plan rapporté à un repère orthonormé direct 
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A tout nombre complexe z de forme algébrique 
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On dit que M est l’image du nombre complexe z et inversement que z est l’affixe du point M
Exemple :

Dans le repère ci-dessous, les points A, B,C, D, E et F ont pour affixes respectives : 
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Notation : Si  z est l’affixe du point M, on écrit :  M (z)

Cas particuliers :

Soit M un point quelconque du plan complexe d’affixe z . Alors

· 
[image: image76.wmf]Û
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Définition     
A tout nombre complexe z de forme algébrique 
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 du plan complexe qui a pour coordonnées 
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On dit que 
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 est l’image vectorielle de z et inversement que z est l’affixe du vecteur 
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Exemple :
  Sur le dessin ci-dessus, 
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Propriété     
Soit M un point quelconque du plan complexe d’affixe 
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· Le symétrique de M par rapport à O a pour affixe 
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· Le symétrique de M par rapport à l’axe des abscisses a pour affixe 
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Définition     
Soit z un nombre complexe d’affixe 
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[image: image92.wmf])

(

b

i

a

b

i

a

-

+

=

-

 s’appelle conjugué de z et est noté 
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· Le nombre 
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 s’appelle opposé de z et est noté –z .

2. Opérations dans l’ensemble des complexes :

2.1. Addition et soustraction dans   :
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Propriétés (admises)     
L’addition possède dans  les propriétés suivantes :

Pour tous z, z’ et z’’ complexes ,
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· Il existe un nombre complexe unique Z vérifiant 
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 Ce nombre est l’opposé de z : 
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On peut alors définir la soustraction dans  :

Définition     
Si  
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Exemples :


[image: image103.wmf]i

i

i

-

=

-

+

+

3

)

4

2

(

)

3

1

(

          
[image: image104.wmf]i

i

i

+

=

-

-

-

-

3

)

5

1

(

)

4

2

(


Propriété     
Soient z et z’ deux nombres complexes . Soient M et M’ les points d’affixes z et z’ . Alors :

 z + z’ est l’affixe du point N défini par  
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Démonstration :

Posons 
[image: image106.wmf]b

i

a

z

+

=

et 
[image: image107.wmf]'

'

b

i

a

z

+

=

 . Alors : 
[image: image108.wmf])

'

(

)

'

(

'

b

b

i

a

a

z

z

+

+

+

=

+

. On en déduit que 
[image: image109.wmf]'

z

z

+

est l’affixe du point N 
[image: image110.wmf])

'

;

'

(

b

b

a

a

+

+

.Donc  
[image: image111.wmf]1

1

2

v

b

b

u

a

a

ON

)

'

(

)

'

(

+

+

+

=


Or M et M’ ayant pour affixes respectives z et z’ , ils ont pour coordonnées : 
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D’où l’égalité : 
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2.1. Multiplication dans   :
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La multiplication dans  prolonge celle définie dans  et elle en a les mêmes propriétés :

Propriétés (admises)     
Pour tous z, z’ et z’’ complexes ,
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Exemples :

1) Dans les calculs ci-dessous, les techniques employées sont similaires à celles utilisées dans  :
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2) Calculons 
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suivant les valeurs de l’entier naturel n :
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Puis :

Si 
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3) De même les techniques de résolution d’équations dans , restent valables dans  :
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2.3.  Inverse d’un nombre complexe non nul -  Division dans   :


____
Propriété     
Soit z un nombre complexe non nul . Alors il existe un unique nombre complexe z’ tel que 
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Ce nombre est noté 
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Démonstration :
· Existence :

Soit z un nombre complexe non nul de forme algébrique 
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Alors :  
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Or z est un nombre complexe non nul . Ceci impose que a et b ne sont pas nuls en même temps . Donc 
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On peut donc diviser l’égalité précédente par 
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Le nombre 
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 répond donc à l’égalité : 
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· Unicité :

Supposons qu’il existe deux nombres complexes z’ et z’’ tels que :
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[image: image144.wmf]0

'

'

'

=

´

-

´

z

z

z

z

,  d’où  
[image: image145.wmf]0

)

'

'

'

(

=

-

´

z

z

z

 . Sachant que 
[image: image146.wmf]0

¹

z

, cela implique que 
[image: image147.wmf]0

'

'

'

=

-

z

z

, c’est-à-dire 
[image: image148.wmf]'

'

'

z

z

=

. D’où l’unicité de l’inverse .

Exemple :

Recherchons l’inverse de 
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Cas particulier :  L’inverse de i est –i . En effet : 
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Définition     
Soient z et z’ deux nombres complexes quelconques tels que 
[image: image152.wmf]0
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Exemple :

1) Déterminons la forme algébrique du quotient 
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2) Soit z
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un nombre complexe quelconque différent de 1 . Ecrire sous forme algébrique 
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3. Conjugué d’un nombre complexe  :
Propriété     
Pour tout nombre complexe z, on a :

· 
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Démonstration :

· Si 
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· 
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· 
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Consequencé     
Pour tout nombre complexe z , on en déduit que :

· 
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Démonstration :

En effet :


[image: image172.wmf]z

z

i

z

z

z

z

=

Û

=

-

Û

=

Û

Î

0

2

0

)

Im(

R

 et  
[image: image173.wmf]z

z

z

z

z

Re

i

z

-

=

Û

=

+

Û

=

Û

Î

0

2

0

)

(

R


Propriété     
Pour tous z et z’ appartenant à , on a :

· 
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· Pour tout entier naturel n, 
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· Si 
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Exemples :

1) Calculons à l’aide de ces propriétés le conjugué de 
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2) De même, z étant un nombre complexe différent de 
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Exercices :

1) Déterminer l’ensemble des points M du plan dont l’affixe z vérifie : 
[image: image189.wmf]R
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Pour tout nombre complexe z,
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Donc l’ensemble des points M qui répondent à la question est la réunion de l’axe des abscisses et de la droite d’équation :
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3) P est le polynôme défini sur  par : 
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a- Vérifions que pour tout complexe z :  
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b- Démontrons que 
[image: image195.wmf]i
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 est racine de P et en déduire un 2ème racine :
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On en déduit que 
[image: image197.wmf]i
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 est bien racine de P .

Mais d’après le a- , 
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4. Traduction complexes de quelques configurations géométriques:
Propriété     
Soient M et M’ deux points quelconques du plan complexe d’affixes respectives z et z’ . Alors :

· 
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· L’affixe du milieu de [MM’] est égale à 
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· Si 
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, l’affixe du barycentre des points pondérés 
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Propriété     
Si 
[image: image210.wmf]1

v

et 
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sont deux vecteurs d’affixes respectives z et z’ , alors :

L’affixe du vecteur 
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Si k est un réel quelconque, l’affixe du vecteur 
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est égale à 
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Exemples :

1) Soient A , B et C les points d’affixes 
[image: image216.wmf]1

,  
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 et 
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 . Alors le centre de gravité du triangle ABC a pour affixe :
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. On en conclut que O est le centre de gravité de ce triangle .

2) Soient A, B, C et D les points d’affixes respectives 
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 . Démontrons que ABCD est un parallélogramme :

1ère méthode : Le milieu I de [AC] a pour affixe : 
[image: image224.wmf].
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 . Le milieu J de [BD] a pour affixe :  
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. Les points I et J ayant même affixe, ils sont confondus . Donc les diagonales du quadrilatère ABCD ont le même milieu . Il s’agit donc d’un parallélogramme .  

2ème méthode : Le vecteur 
[image: image226.wmf]2
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 a pour affixe : 
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Le vecteur 
[image: image228.wmf]2
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. Ces deux vecteurs ayant les mêmes affixes , ils sont égaux et on peut ainsi conclure que ABCD est un parallélogramme .  
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