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1re partie : LES NOMBRES COMPLEXES

I. Introduction

Considérons les équations suivantes : 
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· Dans 
[image: image5.wmf]N

 (ensemble des naturels), l’équation (1) n’admet pas de solution. 0n résout ce problème en créant les nombres négatifs. Dans 
[image: image6.wmf]Z

 (ensemble des entiers), cette équation a comme solution -2.

· Dans 
[image: image7.wmf]Z

, l’équation (2) n’a pas de solution. On introduit les fractions. Dans 
[image: image8.wmf]Q

 (ensemble des rationnels), cette équation a comme solution 
[image: image9.wmf]4
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.

· Dans 
[image: image10.wmf]Q

, l’équation (3) n’a pas de solution. C’est pourquoi on introduit les nombres irrationnels. Dans 
[image: image11.wmf]R

 (ensemble des réels), l’équation (3) admet deux solutions : 
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et

.

· Dans 
[image: image13.wmf]R

, l’équation (4) n’a pas de solution. C'est pourquoi on crée de nouveaux nombres : les nombres complexes. Il forment l’ensemble 
[image: image14.wmf]C

 et permettent de déterminer les solutions de cette équation.

Remarque

Historiquement, ce n’est pas en cherchant les solutions d’une équation du second degré, mais celles d’une équation du 3e degré que les mathématiciens italiens du XVIe siècle furent confrontés à la racine carrée d’un nombre négatif. Cardano (1501-1576), Tartaglia (1499-1557) et Ferrari (1522-1565) désignèrent par le symbole  
[image: image15.wmf]1
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 , la racine carrée apparemment inexistante de  -1  et c’est Bombelli (1526-1572) qui établit les règles de calcul des nombres complexes. Dès lors, une équation de degré n possède n solutions.

II. Définitions

· Nous définissons le nombre i par la formule  
[image: image16.wmf]i
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i  et - i sont les racines carrées de  - 1.

· Si 
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 est un nombre complexe.


 Si 
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 est un réel, ce qui entraîne que 
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 est inclus dans 
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 Si 
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 est un imaginaire pur.

· a  est la partie réelle du nombre complexe z, b est sa partie imaginaire.

· 
[image: image22.wmf]z
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 est le nombre complexe conjugué du nombre complexe 
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· 
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 est le module (ou valeur absolue) de z .

Isomorphisme


Nous voyons donc que chaque complexe 
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 peut-être associé à un couple de réels, à savoir le couple 
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 et réciproquement, chaque couple de réels 
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 peut être associé au complexe 
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Nous avons donc créé une bijection entre l’ensemble 
[image: image29.wmf]C

 et l’ensemble 
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.


D’autre part, il existe un isomorphisme entre l’ensemble 
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 des couples de réels et le plan 
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 muni d’une base.


En munissant l’ensemble 
[image: image33.wmf]C

 des opérations d’addition, de multiplication scalaire et de multiplication, nous allons le transformer en un espace vectoriel 
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 et en un champ
 (non ordonné) 
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.

III. Opérations dans l'ensemble des nombres complexes
Remarque

Dans la suite 
[image: image36.wmf],',''...
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 représentent respectivement les nombres complexes 
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1. Égalité
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Des nombres complexes sont égaux si et seulement leurs parties réelles sont égales ainsi que leurs parties imaginaires.

2. Addition
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Dans 
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, nous avons 
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. Ceci montre clairement l’existence d’un isomorphisme de groupes entre 
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. Les propriétés de 
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 peuvent donc être transférées à 
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N.B. : L’addition de nombres complexes se réduit à l’addition de nombres réels.
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 est un groupe commutatif : 

La loi + dans 
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  est définie par : 
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Cette loi est interne et partout définie, associative, commutative, l’élément neutre est 
[image: image52.wmf]0

 et tout élément 
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 possède un symétrique 
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, appelé opposé.

(Ceci est dû au fait que 
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,+ est un groupe commutatif).

3. Multiplication scalaire

k(a + bi) = ka +kbi

Dans 
[image: image56.wmf]2
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, nous avons 
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. Ceci montre clairement l’existence d’un isomorphisme d’espaces vectoriels entre 
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. Les propriétés de la multiplication scalaire dans 
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 peuvent donc être transférées à 
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 qui est un espace vectoriel.

Note

La multiplication scalaire se réduit à deux multiplications de réels.

4. Multiplication dans l'ensemble des nombres complexes
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En pratique, il suffit d’effectuer suivant la règle du produit de polynômes et de remplacer  
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Les propriétés de groupe ne sont plus ici aussi évidentes.

a. Opération interne et partout définie : évident d’après la définition.

b. Associativité
On veut montrer que : 
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d’où : 
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  et l’opération est associative.

c. Commutativité
On veut montrer que : 
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d’où : 
[image: image75.wmf]z

z

z

z

'

'

=

  et l’opération est commutative.

d. Le neutre doit être 1 (pour que cette opération prolonge l’opération correspondante dans 
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).
Il est évident d’après la définition que le nombre  
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  est neutre à gauche et à droite pour la multiplication.  Il est unique.

e. Existe-t-il un symétrique à tout élément z de 
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.  Si oui, lequel ?

On cherche donc un nombre complexe 
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Il faut donc 
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 , ce qui était à prévoir.

Donc tout complexe non nul admet un symétrique à gauche ( et dès lors à droite, vu la commutativité) pour la multiplication, qui s’écrit : 
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 et qui s’appelle inverse de z.
Il résulte de ceci que  
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 n’est pas un groupe puisque 0 n’a pas d’inverse. Par contre, 
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) est un groupe commutatif.
En effet, on a sans problème : 

· 
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· associativité, par héritage de 
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 dans 
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· neutre : 
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· symétrique de z : 
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· commutativité, par héritage de 
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 dans 
[image: image94.wmf]0
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5. Distributivité de la multiplication par rapport à l’addition
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d’où : 
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En résumé

· 
[image: image103.wmf],

+

C

   est un groupe commutatif ;

· 
[image: image104.wmf]0
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  est un groupe commutatif ;

· la multiplication distribue l’addition dans 
[image: image105.wmf]C

.

Ceci se traduit mathématiquement par : 
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De ce qui précède, il résulte clairement que 
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, l’addition et la multiplication définies dans 
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 ou dans 
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 donnent le même résultat.
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Propriétés

6. Propriétés des nombres complexes conjugués

· 
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La somme et le produit de deux nombres complexes conjugués sont des nombres réels.

7. Propriétés du module

· 
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Évident d’après la définition
· 
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Évident d’après la définition
· 
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En effet : * 
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En effet : 
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Évident d’après ce qui précède
· 
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En effet : 
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d'où 
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c'est-à-dire 
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(Inégalité de Minkowski)
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Montrer que   
[image: image141.wmf]z

z

z

z

+

£

+

'

'
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c’est-à-dire 
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· Si 
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ce qui est aussi évident.
IV. Calcul dans l'ensemble des nombres complexes

8. Addition et soustraction

Exemples

· 
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9. Multiplication et division

Exemples

· 
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Racine carrée

Un nombre complexe admet toujours deux racines carrées opposées.

Note
Dans le cas où z est un réel, les racines sont faciles à calculer. Dans les autres cas, il est aisé de voir que les racines carrées seront de la forme 
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Exemples

· Les racines carrées de - 3 sont 
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· Recherchons les racines carrées de  
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Méthode 1 : on cherche un nombre complexe  
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Comme 
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Pour 
[image: image172.wmf]2,

x

=

 on trouve 
[image: image173.wmf]2

1

2

y

==

.

Pour 
[image: image174.wmf]2,

x

=-

 on trouve 
[image: image175.wmf]2

1

2

y

==-

-

.

Les racines carrées sont donc : 
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Méthode 2 : on cherche un nombre complexe  
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On cherche donc deux nombres réels 
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On obtient 
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Les racines carrées sont donc : 
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Remarque

Il n’y a que deux combinaisons de signes correctes car le produit  xy  a le même signe que la partie imaginaire.

Résolution d’une équation du second degré dans l'ensemble des nombres complexes

On veut résoudre l’équation : 
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10. Équation à coefficients réels  (a, b, c 
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11. Équation à coefficients complexes (a, b, c 
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 EMBED Equation.DSMT4  [image: image194.wmf]C
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On calcule les racines du discriminant 
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On obtient  
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Comme 
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ce qui entraîne
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Conclusion
Dans l’ensemble des nombres complexes, toute équation du second degré possède deux racines (distinctes ou non). En particulier, lorsque ses coefficients sont réels, ses racines sont soit réelles, soit complexes conjuguées.

Ceci devient évident au départ de la formule qui permet de déterminer les racines d'une équation du second degré :
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Tout trinôme du second degré est donc factorisable dans 
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Généralisation

Dans l’ensemble des nombres complexes, toute équation de degré n possède n solutions complexes ou réelles.

Représentation géométrique des complexes

Considérons un système d’axes orthonormés : 
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A tout nombre complexe 
[image: image210.wmf]i

b

a

z

+

=

 faisons correspondre le point P de coordonnées 
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P est le point image du complexe z.
On dit que z est l’affixe du point P.

L’ensemble des points images des nombres complexes est le plan de Gauss ou plan complexe.

Remarques

1. L’axe Ox est appelé axe réel (c’est l’ensemble des points images des nombres réels).

2. L’axe Oy est appelé axe des imaginaires (c’est l’ensemble des points images des nombres imaginaires purs).

3. Les points images de nombres complexes conjugués sont symétriques par rapport à l’axe réel (Ox).

Propriétés

Si 
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Forme trigonométrique d’un nombre complexe

12. Définition

[image: image325.wmf]r


Appelons P  le point image de 
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P est déterminé par : 
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[image: image223.wmf]q

 est l’argument de z, il est déterminé à 
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 est le module de z, donc  
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z peut s’écrire 
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Remarque

On écrit parfois  
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 est la forme trigonométrique du nombre complexe 
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Réciproquement, à toute forme trigonométrique 
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13. Passage de la forme algébrique d'un nombre complexe à sa forme trigonométrique

Il suffit de calculer 
[image: image236.wmf]q
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Exemple

Écrire le nombre 
[image: image237.wmf]1
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 sous sa forme trigonométrique.

On cherche 
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· 
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Égalité de deux complexes mis sous forme trigonométrique

Considérons deux nombres complexes
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Ces deux nombres sont égaux si et seulement si leurs modules sont égaux et leurs arguments dont égaux à un multiple de 2
[image: image244.wmf]p

 près, ce qui s'écrit :
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14. Produit de deux nombres complexes mis sous forme trigonométrique
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Le produit de deux nombres complexes est un nombre complexe

· dont le module est le produit des modules de ces nombres : 
[image: image251.wmf]zz
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· dont l’argument est la somme des arguments de ces nombres : Arg(zz’) = ( + (’

Généralisation
Le produit de n nombres complexes s'écrit sous forme trigonométrique :
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Il en résulte que la ne puissance d’un complexe s’écrit :
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Donc:  
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Dans le cas particulier où ( = 1, on a la formule de MOIVRE :
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15. Inverse d’un nombre complexe mis sous forme trigonométrique

On considère un nombre complexe 
[image: image256.wmf]z

 différent de 0. On a
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En effet :


[image: image258.wmf]
16. Quotient de deux nombres complexes mis sous forme trigonométrique
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Évident d’après ce qui précède.
Racines nièmes d’un nombre complexe (équation binôme)

On veut déterminer les racines nièmes de 
[image: image260.wmf])
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Conclusions
· Tout nombre complexe a n racines nièmes complexes : pour les trouver, il suffit de remplacer dans l'expression précédente k par 0,1,..,n - 1.

· Les points images de ces racines nièmes sont les n sommets d’un n-gone régulier inscrit dans le cercle de rayon  
[image: image266.wmf]n

r

  et de centre O.
Exemple
Déterminer les racines cubiques de 
[image: image267.wmf]i
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· Recherchons d'abord la forme trigonométrique de ce nombre. Il vient successivement :
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· Il est maintenant facile de déterminer les racines cubiques demandées :
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 EMBED Equation  
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ce qui donne :
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[image: image274.wmf]k

z

i

=

=

+

F

H

G

I

K

J

1

2

9

12

9

12

2

6

'

cos

sin

p

p


· 
[image: image275.wmf]k

z

i

=

=

+

F

H

G

I

K

J

2

2

17

12

17

12

3

6

'

cos

sin

p

p


· On peut représenter les solutions sur un cercle de rayon  
[image: image276.wmf]2
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V. Forme matricielle des nombres complexes

17. Analogie entre l’ensemble des nombres complexes et un sous-ensemble des matrices 2 x 2.

Exemples

 i² = - 1                  (0 + 1.i)² = -1

3² = 9                   (3 + 0.i)² = 9

(3 + i)² = 9 + 6i –1 = 8 + 6i 
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Généralisation

Au nombre complexe a + bi, associons la matrice 
[image: image280.wmf]÷
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 et vérifions si les lois d’addition, de multiplication et de multiplication scalaire dans l’ensemble des nombres complexes et dans l’ensemble des matrices de ce type génèrent la même structure. 

Considérons deux nombres complexes a + bi et a’ + b’i (a, a’, b et b’ étant des réels) et un réel r.
· (a + bi) + (a’ + b’i) = (a + a’) + (b + b’)i

· (a + bi).(a’ + b’i) 

                     = aa’ – bb’ + (ab’ + ba’)i
· r(a+ bi) = ra+ rbi 


Considérons deux matrices carrées 2 x 2 
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18. Conclusions

1. Les deux ensembles munis des trois lois ont exactement les mêmes structures. 

2. La matrice 
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 est la forme matricielle du nombre complexe a + bi, 

VI. Nombres complexes et transformations du plan

Nous savons qu’à tout nombre complexe 
[image: image290.wmf]a

bi
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 correspond un et un seul point du plan de Gauss de coordonnées 
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. Dans ce chapitre, nous désirons étudier les conséquences de certaines transformations du plan sur les points images des nombres complexes.

Note

Afin d’alléger le texte, nous confondrons le point et le nombre complexe correspondant.

1. Que devient 
[image: image292.wmf]z

a

bi

=

+

 lorsqu’on lui fait subir la translation de vecteur 
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A z, on peut associer le vecteur 
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Après avoir subi la translation de vecteur 
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2. Par une symétrie de centre O, 
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3. Par une symétrie d’axe Ox, 
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4. Par une symétrie d’axe Oy, 
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5. Pour trouver l’image de 
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a

bi

=

+

 par une rotation de centre O et d’angle (, passons à sa forme trigonométrique : 
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Donc 
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6. Pour trouver l’image de 
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 par une homothétie de centre O et de rapport k, passons à sa forme trigonométrique : 
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On peut aussi travailler sur la forme algébrique : par une homothétie de centre O et de rapport k, tout vecteur 
[image: image309.wmf]v

r

 devient le vecteur k
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[image: image311.wmf]z

kz

ka

kbi

'

=

=

+

.

[image: image334.png]Z'farx, by)

Z(a.b)





7. Enfin, pour trouver l’image de 
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 par une similitude directe de rapport k, de centre O et d’angle (, il faut se souvenir qu’une telle similitude est la composée d’une homothétie de centre O et de rapport k et d’une rotation de centre O et d’angle (. Il y a donc lieu de travailler avec la forme trigonométrique de z. Ce qui précède montre alors clairement que 
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On peut voir aussi les choses en sens inverse :

1. La transformation qui à z associe 
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 est une translation de vecteur 
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2. La transformation qui à z associe son opposé 
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 est la symétrie de centre O.
3. La transformation qui à z associe 
[image: image317.wmf]'

zzabi

==-

est la symétrie d’axe Ox.
4. La transformation qui à z associe 
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 est la symétrie d’axe Oy.
5. La transformation qui à z associe 
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6. La transformation qui à z associe 
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7. La transformation qui à z associe 
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� Considérons deux ensembles A et B, chacun muni d’une loi de composition (que, pour simplifier, nous appellerons « addition »). Un isomorphisme de A dans B est une bijection de A dans B telle que l’image de la somme de deux éléments de A soit la somme de leurs images.


� Un champ K est un ensemble muni de deux opérations appelées l'une "addition" et l'autre "multiplication" telles que � EMBED Equation.DSMT4  ��� est un groupe commutatif, � EMBED Equation.DSMT4  ���(où 0 est l'élément neutre pour l'assition) est un groupe commutatif et que l'a multiplication est distributive para rapport à l'addition.
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