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CH4 : Analyse Factorielle Discriminante (AFD)
I. Introduction


L’AFD est une méthode d’analyse de données ayant pour objectif de discriminer (séparer ) m groupes d’individus préalablement définis, décrits par p variables quantitatives. On cherchera, ainsi, des combinaisons linéaires des p variables initiales (des axes discriminants)  qui permettent de séparer au mieux les groupes. Ceci permet, entre autres, de décrire les différences entre les groupes.

Dans le cas où l’on ne dispose que d’une variable quantitative (p = 1) le problème de comparaison des m populations peut être résolu à l’aide de l’analyse de la variance (ANOVA). D’un point de vue technique, l’AFD est l’ACP normée du nuage des centres de gravités des m groupes d’individus munis de leurs poids.

II. Données  et notations

On considère un ensemble de n individus sur lesquels on a observé p variables quantitatives, X1, …, Xp. Il en résulte un tableau X à n lignes et p colonnes. Par souci de simplification, on attribuera dans toute la suite le même poids à tous les individus ; la matrice des poids est donc 
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, où In désigne la matrice identité de rang n. Ces individus forment un nuage de points dans Rp dont le centre de gravité est donné par : 
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, où E désigne le vecteur de Rn dont toutes les composantes sont égales à 1

 G =  
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 où 
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est la moyenne de la j ème variable.

Supposons, en plus, que ces individus soient répartis en m groupes disjoints (chaque individu appartenant à un groupe et un seul) notés E1, E2, … Em  d’effectifs respectifs n1, n2, …, nm ( 
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) et notons Gk le centre de gravité de Ek :

Gk = 
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étant la moyenne de Xj dans le groupe Ek
On a 
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Le tableau de données total peut donc se présenter sous la forme :

	
	Groupe
	X1          …    Xj                  Xp

	
	1

1

1

.

.

.

m

m
	X = (xij)


xij étant la valeur de la variable Xj (j=1, …, p) observée sur l’individu n° i (i=1, …, n) et la colonne groupe indique le numéro du groupe d’appartenance de chaque individu. 

On dispose donc de plusieurs nuages de points :

· Un nuage de points (total) formé des n points.

· m nuages de points, chacun correspondant aux individus d’un groupe.

· Un nuage de points formé des m centres de gravités G1, G2, …, Gm.
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III. Variances

1. Rappels : Cas d’une seule variable quantitative

Soit X une variable quantitative observée sur n individus répartis en m groupes :

	
	E1
	…
	Ek
	…
	Em
	xkj étant la valeur de X observée sur le  j ème individu du groupe Ek

	
	x11
x12
…

x1j
…


	…
	xk1
xk2
…

xkj
…


	…
	xm1
xm2
…

xmj
…


	

	Effectifs
	N1
	…
	nk
	…
	nm
	

	Moyennes
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 : moyenne totale de X

	Variances
	V1
	…
	Vk
	…
	Vm
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 ( resp. Vk ) étant la moyenne ( resp. la variance ) de X dans le groupe Ek.

a) Variance totale de X :

 
La variance totale de X, notée V(X),  est la variance de X calculée sur tous les individus sans distinction de groupes :
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b) Variance INTER :

On appelle variance INTER de X la variance du nuage de points formé des moyennes des différents groupes :
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c) Variance INTRA

La variance INTRA est définie comme étant la moyenne des variances dans les différents groupes :
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d) Proposition :

V(Y) = VINTER + V INTRA
e) Rapport de corrélation
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Proposition :
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Plus 
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 est proche de 1, plus la variable Y discrimine les k groupes.

Exemples :


Deux groupes codés 1 et 2 et une variable quantitative X :

a)
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b)
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2. Cas de p variables : 

Dans toute la suite X sera supposé centré

2.1. Variance totale

On appelle matrice variance (ou de covariance) totale la matrice de covariance entre les p variables X1, …Xp calculée sur l’ensemble des n individus sans distinction de groupes :

V = tX PX 


2.2. Variance INTER

La matrice de covariances INTER est la matrice de covariances entre les p variables observées sur les centres de gravité des m groupes, ainsi, pour le calcul de cette matrice chaque groupe, Ek, sera représenté par son centre de gravité (l’individu moyen du groupe), Gk, affecté du poids 
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 et on calculera la matrice covariance entre les variables pour ces nouveaux individus : matrice de covariance entre les groupes (égale à l’inertie inter). Cette matrice est notée B ( Between) :
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Remarque : Dans le cas de deux groupes, on montre que B 
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2.3. Variance intra :


Soit Vk ( k=1, …, m) la matrice de covariance entre les variables à l'intérieur du groupe Ek :
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où 
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 est le tableau obtenu en observant les p variables sur les individus du groupe Ek.

On appelle matrice de  covariance intra (égale à l’inertie intra-classes), et on note notée W (within)  la matrice obtenue est obtenue en faisant la moyenne de ces matrices :
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 Proposition :


La matrice de covariance totale est la somme des matrices de covariance inter et intra :

V = B + W

En effet :


Le tableau X peut s’écrire :
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 étant le tableau associé au groupe Ek ( k=1, …, m)

La matrice de covariance totale  est V = X’PX  

D’où 
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or 
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d’où
 
[image: image33.wmf]''

kkkkkkk

XXnVnGG

=+

%%


Et en remplaçant dans (*), on obtient le résultat.

IV- Recherche des axes discriminants :


Rappelons que notre objectif est de discriminer ( séparer ) au mieux les m groupes. Pour cela, on va construire de nouvelles variables synthétiques, combinaisons linéaires des variables initiales, ( axes discriminants ) de telle sorte qu’en projection sur cet axe on ait :

· Les centres de gravité des différents groupes les plus éloignés possibles ( variance INTER élevée )

· Les individus d’un même groupe concentrés autour de leur centre de gravité ( variance INTRA faible )

4.1 Position du problème :

Soit d une combinaison linéaire des variables Xj :
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ou en notant u le vecteur colonne de Rp :

	
	
	u1
	
	

	
	
	…
	
	

	u =
	
	uj
…
	
	              d = Xu

	
	
	up
	
	


Proposition - définition

Var(d) = tuVu 

= tuBu  +  tuWu

tuBu  est appelée variance INTER de d 

et   tuWu la variance INTRA de d.

4.2 Recherche du premier axe discriminant :

On cherchera donc un premier axe d = Xu tel que :

a) Variance INTER de d ( tuBu ) 
MAXIMALE

b) Variance INTRA de d ( tuWu ) 
MINIMALE

Proposition 


La recherche du premier axe discriminant revient à résoudre le problème d’optimisation :

Chercher u (Rp tel que 

a) 
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ou de manière équivalente :

b) 
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Démonstration  (b )  (
(a)
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1. Solution :

 En considérant le problème :

Chercher u (Rp tel que :
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Le premier axe de l’AFD est donnée par d1 = Xu1 où u1 est le premier vecteur propre de V-1 B associé à la plus grande valeur propre 
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Proposition 1 
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1 = 1 
: discrimination parfaite
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1 = 0 
: Les centres de gravité des nuages de points sont confondus ( aucune discrimination n’est possible.
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1 = 1
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1 = 0

	[image: image88.wmf]0

1

2

3

4

5

6

7

0

1

2

3

h

² =0.01

[image: image89.wmf]M

M

M

F

F

X1

X2

[image: image90.wmf]0

5

10

15

20

0

1

2

3

h

² =0.95

[image: image91.png]


[image: image92.wmf]0

1

2

3

4

5

6

7

0

1

2

3

h

² =0.01

[image: image93.wmf]M

M

M

F

F

X1

X2

[image: image94.emf]3

3

1

1

1

3

2

3

2

2

Y

-3

-2

-1

0

1

2

3

X

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5




	


Définition :
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1 est appelée pouvoir discriminant de l’axe 1

Proposition 2

[image: image51.wmf]1

1

1

1

1

l

=

u

V

u

Bu

u

t

t




Proposition 3

Les deux problèmes :
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étant équivalents, il s’ensuit que u1 est aussi solution de ( 
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  maximum ). De plus u1 est vecteur propre de 

W-1B associé à la valeur propre 
[image: image55.wmf]l

1 donnée par :
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4.2 Recherche des axes de rang supérieur

L’AFD du tableau X s’obtient soit :

a) en cherchant les vecteurs propres ui et les valeurs propres associées 
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b) en cherchant les vecteurs propres ui et les valeurs propres associées 
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Nombre d’axes maximum

Le nombre  maximum d’axes que l’on puisse obtenir en effectuant l’AFD sur m groupes est ( m-1 ). Ainsi pour 2 groupes, on aura au plus un axe, et pour trois groupes au plus 2 axes.

V- Réalisation

5.1 Introduction

Dans cette présentation ‘pratique’ de l’AFD, nous traiterons le cas de deux groupes, la généralisation à plusieurs groupes se fait sans difficulté.

Données :

On observe deux variables quantitatives X1 et X2 sur un ensemble de n individus supposés répartis en deux groupes (M : masculin et F : féminin), on obtient le tableau ci dessous :

	Gr
	X1
	X2

	M

M

M

F

F
	1

3

2

3

6
	5

6

4

3

2


On a donc :

n1 = 3 
n2= 2

et n = (n1 + n2) = 5 

et on cherche à discriminer les  deux groupe ( i.e. chercher une combinaison linéaire des deux variables permettant de ‘séparer ‘ ces deux groupes).


Rappel :

L’AFD est obtenue en diagonalisant V-1B ou W -1B, il s’agit, donc, de calculer ces différentes matrices (au fait, il suffit d’en calculer deux, ici, dans un but didactique,  nous calculerons les 3 matrices)

5.2 Calcul de V (matrice de covariance totale ) :

Rappel :

La matrice variance (ou de covariance) totale la matrice de covariance entre les variables quantitatives calculée sur l’ensemble des n individus (ici les 5 individus ) sans distinction de groupes. Elle est donnée par :

V = X’cPXc 

où :

Xc est le tableau centré associé aux variables quantitatives
· D la matrice des poids des individus, ici on attribuera le même poids à tous les individus, il s’ensuit que cette matrice est égale à 
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, I5 étant la matrice identité de rang 5.

a) Centrage :

 Xc = X – EG’

où :

· G est le centre de gravité du nuage de points, G=X’PE 

· 1 est le vecteur de R5 dont toutes les composantes sont égales à 1 

G = 
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d’où :

	
	X1
	X2

	Xc =
	-2

0

-1

0

3
	1

2

0

-1

-2


Soit alors : 
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Calcule de la matrice de covariance INTRA, W

Rappel :

Notons  Vk ( k=1, 2) la matrice de covariance entre les variables à l'intérieur du groupe n° k :


[image: image63.wmf]''

1

kkkkk

k

VXXGG

n

=-

%%


où 
[image: image64.wmf]k
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 est le tableau restreint aux individus du groupe k.
On appelle matrice de  covariance intra, et on note notée W (within)  la matrice obtenue en faisant la moyenne (pondérée par les nk ) de ces matrices :
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a) Calcul de V1
Le tableau associé au premier groupe est :

	
	X1
	X2

	
[image: image66.wmf]1

~

X

=
	1

3

2
	5

6

4


En attribuant le même poids à tous les individus, le centre de gravité de ce groupe est :

G1 = 
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 et la matrice de covariance est :
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b) Calcul de V2
Le tableau associé au deuxième groupe est :

	
	X1
	X2
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En procédant de la même manière que dans a), on trouve :

G2 = 
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 et la matrice de covariance est :
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c) Calcul de W :

W = 
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N.B. On aurait pu récupérer dans le tableau centré au lieu du tableau initial . 

Calcul de la matrice de covariance INTER, B

Rappel :

La matrice de covariances INTER est la matrice de covariances entre les variables observées sur les centres de gravité des m groupes, ainsi, pour le calcul de cette matrice chaque groupe, k, sera représenté par son centre de gravité, gk, affecté du poids 
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 et on calculera la matrice covariance entre les variables pour ces nouveaux individus : matrice de covariance entre les groupes .Cette matrice est notée B ( Between) :
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La matrice formée des centres de gravités est donnée par :

	
	X1
	X2

	
	2

4.5
	5

2.5

	
	
	


La matrice des poids est :
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Et la matrice de covariance inter est :

B = 
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 On a bien  V = B + W

5.2 AFD

Rappel :

Soit 
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une matrice 2x2, alors :

· Det(A) = ad-bc

· Si A est  inversible ( i.e. det (A) ( 0)  alors son inverse, A-1, est donné par :
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(cette matrice vérifie AA-1 = A-1 A = Identité : définition )

Application :


[image: image80.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

-

=

10

8

8

14

5

1

V


(
det (V) = 
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a) Calcul de V-1 B

V-1 B = 
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b) Diagonalisation de V-1 B

La valeur propre non nulle de V-1B est 
[image: image84.wmf]l

 = 0.79, qui est le pouvoir de  discriminant de l’axe ( rappelons que plus cette valeur est proche de 1 meilleure est la discrimination) 

Un vecteur propre associé à cette valeur propre est donné par : 
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Les coordonnées des individus sur l’axe discriminant sont données (à un coefficient de proportionnalité prés) par C = Xcu :  

	
	M
	5

	
	M
	6

	C = 
	M
	1

	
	F
	-3

	
	F
	-9


VI- AFD SOUS SAS

EXEMPLE

1. DONNEES 

	age
	revenu
	patrimoine
	emprunt
	groupe

	45
	250
	1300
	600
	3

	47
	160
	1150
	450
	3

	38
	165
	850
	370
	1

	36
	175
	770
	250
	1

	29
	99
	450
	400
	1

	39
	170
	1400
	120
	3

	27
	120
	1400
	160
	2

	51
	160
	1300
	320
	3

	32
	155
	1500
	350
	2

	35
	170
	1400
	180
	2


2. PROGRAMME

proc candisc data=afd out=out simple anova distance;

class groupe ; /* la variable contenant les codes des groupes */

var  age      revenu      patrim      emprunt ; /* variables quantitatives */

run;

data g ;

set out ;

x=can1;

y=can2;

xsys='2';

ysys='2';

text = groupe ;

symbol1 v=none ;

run;

proc gplot data=g;

plot y*x/annotate = g frame href = 0 vref=0 ;

run;
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