RDM
1) traction compression

Lorsqu’on effectue un effort de traction où de compression sur un objet l’allongement dh dépend de la taille et de la nature du matériau.

La courbe donnant l’allongement en fonction de la force appliquée à l’objet à une partie linéaire (zone d’élasticité), on définit s contrainte conventionnelle, e déformation conventionnelle, et E le module d’Young.
Effet de poisson : cas d’une éprouvette. On observe une diminution de la section de l’éprouvette soumise à une traction simple.

Energie de déformation : en traction l’énergie nécessaire pour obtenir un allongement d1 est W.

Thermo élasticité : lorsque l’on augmente la température DT on ajoute une contrainte  
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Systèmes séries et parallèle :

En série : F1=F2=F

En parallèle : d=d1+d2
Torseur sur la mécanique des milieux continus : Cf cours

Vecteur de contrainte : Lorsque la sollicitation n’est plus simple (#traction ou compression simple) il devient nécessaire de définir un vecteur de contrainte :

= 
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=vecteur  contrainte du point M associé à la facette de normale
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 est une matrice symétrique donc diagonalisable


Etat de déformation 

Elle se décompose en 2 parties :

_un mouvement de corps rigide

_une déformation. (changement de longueur, d’angle)

Loi de Hooke :

_La matrice des contraintes est une fonction linéaire de la matrice des déformations

_Matériaux isotropes

_directions principales de contraintes et déformations sont confondues.

_Pour écrire la loi on part de l’élasticité en traction simple et on utilise le principe de superposition.

Cisaillement pur
Les élément de réduction du torseur des efforts intérieurs sur une section se réduit à un effort tranchant T.

(Voir recueil figure) 

Si e n’est plus faible par rapport à la section, il apparaît un moment de flexion Mf=F*e

Contrainte
On suppose que l’effort tranchant est appliqué uniformément sur la section(il crée une contrainte de cisaillement : 
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Déformation

Une déformation de type distorsion, augmentation d’angle 
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Donc distorsion d’angle : 
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La courbe contrainte-déformation a la même allure que le courbe de traction simple (cf recueil figure)

En élasticité linéaire on retrouve 
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 avec G module de cisaillement.
Condition de résistance en cisaillement pur

<<<pg  avecpg  contrainte pratique en cisaillement pur :
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 s : coefficient de sécurité et s>1

Torsion pure
Définition
Section soumise à une torsion pure. Le torseur des efforts intérieurs se réduit à un moment de torsion (mvt normal à la section).

On va étudier uniquement la torsion de cylindre à section circulaire pleine ou creuse. On suppose le cylindre très grand (on ne s’intéresse pas aux extrémités).

Démarche
Intuiter les déformations élastiques, puis estimer les contraintes.

Déformation
_Pas d’allongement, ni d’augmentation de diamètre
_Rotation des sections normales les une par rapport aux autres.

_On va trouver la matrice de déformation dans un repère cylindrique 
(Cf recueil figure) et on obtient :
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 avec r le diamètre du cylpgindre et 
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  l’angle de torsion (angle de rotation unitaire)
De plus je suppose que le matériau est élastique, d’après la loi de Hooke : 
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Pour trouver  
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 , on va calculer le moment de torsion agissant sur les sections normales. En intégrant le moment de toutes les contraintes 
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, j’obtient le moment de torsion appliqué sur la section :
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Pour une section circulaire de rayon R :
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 I0 : Moment quadratique polaire de la section
Condition de résistance
Il faut que spg>
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