Cours 5 : Vos propres fonctions

Dans le livre : 3.1 à 3.11 et 3.17

Introduction :

La mode en matière de programme ferait honte à l’industrie de la haute couture. En effet, depuis 10 ans les programmes ont engraissés dramatiquement alors que nos rachitiques mannequins travaillent toujours sur leur taille de guêpe . La taille des systèmes d’exploitation est passée de disquette (au singulier), à disquettes (au pluriel), à CD-ROM. Avec des applications de cette envergure, il est impensable de concevoir le tout en un seul module. Il faut non seulement utiliser les langages évolués de développement, mais encore bien les utiliser.

Les prochaines pages vous informerons sur l’outil le plus important des langages de programmation de deuxième génération, de troisième et même de quatrième. Il s’agit de la fonction (procédure, module). Nous savons déjà que des fonctions (laissons tomber le style Lulu), existent pour certaines opérations mathématiques complexes, mais encore faudrait-il arriver nous aussi à faire des fonctions.

Le plus difficile pour un programmeur n’est pas de trouver un algorithme qui permet de trouver une solution à un problème, mais d’en trouver une clair, élégante, lisible. De nos jours, dans la plupart des cas, on ne s’intéresse que très peu à la vitesse d’exécution (du moins dans la plupart des cas que vous rencontrerez dans mon cours). Ce qui est plus décisif est de se construire des fonctions aux noms évocateurs qui permettent de nourrir un algorithme. De trouver une solution simple et facile à comprendre pour résoudre un problème obscure et complexe. Voici donc quelques règles du pouce qui pourront vous aider à implanter un algorithme que vous aurez échafaudé (lisez bien règles du pouce et non loi).

Les règles sur les fonctions :

1. Une fonction ne fait qu’une chose ;

2. Le nom de la fonction décrit cette chose ;

3. Une fonction reçoit un nombre limité de paramètre (2-3 dans 90% des cas) ;

4. Le passage par référence est mâââl ;

5. Une fonction compte moins de quinze lignes ;

6. Une fonction n’a qu’une structure de contrôle « parent » ;

7. Avec de bonnes fonctions, on ne fait jamais de copie-coller.

Prenez le temps de bien choisir vos fonctions, leur nom, leurs paramètres, c’est la clé vers la lisibilité, la modularité, la réutilisation.

Le M.O. des Fontions

Une fonction est un bloc d’instruction nommé. Ce nom doit respecter toutes les contraintes des identificateurs. Ce nom doit être significatif. Une fonction peut recevoir de l’information en paramètre, la modifier et retourner une et une seule valeur. La valeur retournée détermine le type de retour de la fonction. Une fonction est donc caractérisée par un identificateur, une signature et un type de retour.

Les prototypes.

Pour des raisons de lisibilité et pour permettre la récursivité, dans certains cas, on déclare les fonctions avant de les définir. La déclaration d’une fonction permet ensuite d’effectuer des appels de celle-ci avant sa définition. Les déclarations de fonctions se font habituellement au début d’un programme, après les inclusions (#include), avant le main. Souvent les constantes sont utilisées dans la déclaration de certaines fonctions, on définira donc les constantes avant les déclarations de fonctions dans ce cas. Voici un exemple :

#include <stdio.h>

int CalculTotal(int H);

int CalculInverse(int J);

void Afficher(int N);

int main ()

{

int y = CalculTotal(6);

Afficher (y);

return 0;

}

int CalculTotal (int H)

{

return CalculInverse(H);

}

void Afficher (int N)

{

printf ("%i\n", N);

}

int CalculInverse (int J)

{

return 1-J;

}
Puisque toutes les fonctions ont été déclarée, on a pas besoin de gérer leur ordre de définition. Elles existent toutes, depuis leur déclaration. On pourrait aussi les déclarer dans un ordre précis qui nous éviterait d’effectuer ces déclarations. La norme consiste cependant à déclarer les fonctions en les regroupant en ordre logique d’utilisation, plutôt que de les déclarer dans un ordre d’utilisation, l’entretien étant ainsi plus facile à faire.

Tout de même, voici un ordre qui évite les déclarations, plus court mais dans une large application, illisible.

#include <stdio.h>

int CalculInverse (int J)

{

return 1-J;

}

int CalculTotal (int H)

{

return CalculInverse(H);

}

void Afficher (int N)

{

printf ("%i\n", N);

}

int main ()

{
int y = CalculTotal(6);

Afficher (y);

return 0;

}
Les Paramètres :

Les paramètres sont de l’information que l’on envoie à une fonction. Sans les paramètres, les fonctions serait beaucoup moins intéressantes, surtout sans variable globale. Les paramètres peuvent également former un contenant, que l’on envoie en paramètre avec ou sans information et qui après l’exécution de la fonction pourra avoir changé de valeur.

Réel, formel :

Histoire d’avoir un vocabulaire clair et éviter les populaires : « Non, lui d’en haut… » ou encore « Lui envoyé tsé… », définissons formellement et réellement les paramètre réels et formels.

Le paramètre réel, est la valeur ou la variable qui est mis entre parenthèse lors de l’appel de la fonction. Il existe vraiment en mémoire, il est réel… doh !

Le paramètre formel est la variable local qui est définie lors la définition de la fonction. Il est là pour la forme de la fonction.

Exemple : (notez que les deux paramètres formels n’ont pas le même identificateur):

#include <stdio.h>

int CalculTotal(int J);

//J est un paramètre formel

int main ()

{
int y = CalculTotal(6);

//6 est un paramètre réel

y = CalculTotal(y) ;

//y est un paramètre réel

return 0;

}

int CalculTotal (int H)

//H est un paramètre formel

{
return H;

}

Les paramètres d’une fonction sont des variables locales à cette fonction dont la portée et la durée de vie sont celles d’une variable locale « standard ». La particularité est que les paramètres sont initialisés avec la valeur du paramètre réel envoyé. C’est pourquoi on dit que l’on envoie de l’information à la fonction.

Passage par Valeur et par Référence :

Il existe deux mode de passages en paramètre à une fonction. Le passage par valeur qui ne permet pas de modifier le paramètre réel et le passage par référence qui permet de modifier le paramètre réel. Notez que le passage par référence n’existait pas de façon formelle en C pur et que ce n’est qu’avec le C++ que ce type de passage a été formalisé sans faire de passe-passe. Nous verrons plus tard dans le cours ces dites passe-passe.

Par Valeur :

D’abords, définissons le passage en paramètre par valeur, et expliquons également un peu le mécanisme sans s’embourber. Le passage en paramètre par valeur au niveau de la conception est un moyen d’envoyer de l’information à une fonction. C’est le passage en paramètre par défaut et celui qui devrait être le plus utilisé. Lorsqu’un passage en paramètre par valeur est fait, la valeur du paramètre réel ne sera pas modifiée quelque soit les affectations qui seront faites sur le paramètre formel.

Au niveau du code, il suffit de déclarer les paramètres formels comme on le ferait de toutes variables locales, excepté que l’on sépare les déclarations par des virgules et que l’on ne peut faire de définitions multiples sur le même type :

(
int Fonction (int x,y,q, float y) ;

//c’est pas bon

il faut écrire :

int Fonction (int x, int y, int q, float) ;
//Ça c’est bon.
)

Au niveau de la compilation, un espace mémoire est réservé pour le paramètre formel et est initialisé à la valeur du paramètre réel envoyé. C’est pourquoi le paramètre réel n’est pas modifié. Notez que puisque le paramètre est copié, si la variable est de grande taille, la copie peut être longue et pourrait amener des problèmes de mémoire. Ce ne sera pas le cas durant le cours.

Exemple de passage par valeur :

#include <stdio.h>

int PasDeModification (int H);

void Afficher (int N1, int N2);

int main ()

{

int x = 18;

int y = PasDeModification(x);

Afficher (x,y);

return 0;

}

int PasDeModification (int H)

{

H = 1000;

return H;

}

void Afficher (int N1, int N2)

{
printf ("Premier: %i, Deuxieme: %i\n", N1, N2);

}
Résultat sur la fenêtre console d’une exécution:

Premier: 18, Deuxieme: 1000

Puisque le paramètre réel (x) ne peut être modifié dans la fonction, il garde sa valeur même si 1000 est affecté à H (paramètre formel) dans la fonction PasDeModification. Par contre, la valeur 1000 est retournée à la dernière ligne de PasDeModification, donc 1000 est affecté à y. Le passage par valeur et la valeur de retour sont deux mécanismes complètement différents et indépendants.

Lorsque l’on représente la mémoire dans une trace d’exécution et qu’un passage par valeur est effectué, on représente le paramètre par valeur comme on le ferait pour une variable locale.

Par Référence :

Le passage par référence au niveau de la conception, permet d’envoyer de l’information (mais ce n’est pas obligatoire), mais si des modifications sont faites, le paramètre réel sera modifié également. Cela permet, par exemple, de retourner deux valeurs avec une fonction en envoyant deux paramètres par référence. Les deux paramètres réels étant modifiés, les résultats du calcul sur ces deux valeurs sera disponible dans la fonction appelante.

Au niveau du code, le passage par référence ne se fait pas par défaut (sauf pour les tableau et les objets). Il faut mettre une perluète (&) devant l’identificateur du paramètre. L’appel avec le paramètre réel, se fait de la même façon que pour le paramétrage par valeur. L’utilisation du paramètre dans la fonction se fait de la même façon que pour toute autre variable locale.

Au niveau de la compilation, le compilateur se définie un pointeur sur le type du paramètre envoyé et c’est adresse du paramètre réel qui est envoyé. Puisque c’est l’adresse du paramètre réel qui est envoyé et que la fonction affecte la mémoire pointée (l’espace mémoire du paramètre réel) plutôt qu’une copie de cette mémoire, le paramètre réel sera modifié par des affectations.

Exemple d’utilisation d’un paramètre par référence :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
#include <stdio.h>

int Modification (int &H);

void Afficher (int N1, int N2);

int main ()

{

int x = 18;

int y = Modification(x);

Afficher (x,y);

return 0;

}

int Modification (int &H)

{

H = 1000;

return H;

}

void Afficher (int N1, int N2)

{

printf ("Premier: %i, Deuxieme: %i\n", N1, N2);

}

Résultat sur la fenêtre console d’une exécution:

Premier: 1000, Deuxieme: 1000

Puisque le paramètre réel est envoyé par référence, la valeur de x dans le « main » est modifié par la fonction Modification lorsque H est affecté.

Lorsque l’on représente la mémoire pour faire une trace d’exécution et qu’un paramètre est envoyé par référence, on place une flèche pointant sur le paramètre réel au lieu d’écrire la valeur.

Exemple de trace d’exécution avec paramètre par valeur et par référence :

8 : int x = 18;

Identificateur
Valeur

…
…

x
18

…
…

9 : int y = Modification(x);

Identificateur
Valeur

…
…

x
18

y
?

…
…

15 : int Modification (int &H)

Identificateur
Valeur

…
…

x
18

y
?

H

…
…

17 :
H = 1000;

Identificateur
Valeur

…
…

x
1000

y
?

H

…
…

18 : return H;

Identificateur
Valeur

…
…

x
1000

y
?

H

…
…

9 : int y = Modification(x);

Identificateur
Valeur

…
…

x
1000

y
1000

…
…

10 : Afficher (x,y);

Identificateur
Valeur

…
…

x
1000

y
1000

…
…

21 : void Afficher (int N1, int N2)

Identificateur
Valeur

…
…

x
1000

y
1000

N1
1000

N2
1000

…
…

23 : printf ("Premier: %i, Deuxieme: %i\n", N1, N2);

Identificateur
Valeur

…
…

x
1000

y
1000

N1
1000

N2
1000

…
…

? ? ? La fonction printf s’exécute avec les paramètre N1 et N2 envoyé par valeur.

24 : (return ;)

Identificateur
Valeur

…
…

x
1000

y
1000

N1
1000

N2
1000

…
…

11 : return 0 ;

Identificateur
Valeur

…
…

x
1000

y
1000

…
…

Retour à l’OS.

Les erreurs courante et comment les éviter :

1) Toutes les erreurs de liaison sont dues à l’une des manipulations suivantes :

1) Une fonction est déclarée mais non définie (mauvais identificateur, mauvais paramètre formel).

2) Une fonction est appelée et n’existe pas (mauvais identificateur, mauvais paramètre formel)

2) Les paramètres, lors de la déclaration, n’ont besoin d’être définis que selon leur type et l’identificateur n’est pas requis. Exemple, la déclaration suivante est légale :

void Afficher (int) ;

Mais, le conseil du jour : Copier la ligne de définition pour faire la déclaration et ajouter un point virgule à la fin.

3) Instaurer un standard pour les noms de fonctions que vous utilisez religieusement.

Comment faire un code clair, lisible, portable, réutilisable.

1) Penser

2) réfléchir

3) analyser

4) juger

5) raisonner

6)
cogiter

7) méditer

8) ruminer

9) peser

10) considérer

11)
imaginer

12) aviser

13) songer

14) estimer

15) Ensuite seulement programmer.

Allégorie de l’architecte :

Lorsqu’on bâtie une maison, la première étape est le « désign » extérieur, mais lorsque l’on construit la maison, on fait la finition en dernier. En programmation, c’est la même chose, il faut concevoir tout le programme en général, mais lorsque vient le temps de programmer, on fait les fonctions du cœur du programme d’abord.. L’affichage et l’interface n’apparaissent qu’en dernier. Il faut construire des modules indépendants qui permettront, une fois mis en relation, de résoudre la problématique. Chacun de ces modules est formés de fonctions qui mises en relation produisent ce que l’on veut.

Exercices :

1) Dans le livre :

a) P231 : Exercice 3.20

2) p233 : Exercice 3.38

3) « Reprogrammer » le laboratoire 4 en utilisant des fonctions et des procédures.

4) Programmer un calculatrice simple demande un nombre à l’usager, une opération ou l’égalité et qui calcule le résultat de ce calcul. Exemple d’entrée :

Quel est votre suite d’opération ?

3

+

4

*

7

=

Résultat : 49

5) « Reprogrammer » le laboratoire 2 en utilisant des fonctions et des procédures.

6) Pas de laboratoire obligatoire cette semaine, mais faites les exercices, il va y avoir des fonctions et des procédures et des paramètres par valeur et par référence à l’examen dans deux semaines, soit le 29 octobre 2001.

