Une liste d’exercices, non classés, dont l’adaptation aux nouvelles maquettes est, pour certains, franchement inadaptée et, pour d’autres, à discuter

Avertissement : les premiers exercices de la liste sont, pour la plupart, inadaptés aux programmes actuellement en vigueur. Leur formulation est souvent discutable mais elle respecte les textes originaux.

Exercice A1


(Liban – Série mathématiques – 1966)

Enoncer et démontrer les théorèmes de Poncelet relatifs à la parabole.

Exercice A2


(Liban – Série mathématiques – 1966)
Caractère de divisibilité par 11. 

Exercice A3


(Liban – Série mathématiques – 1966)

Trouver, à partir de la définition de la dérivée, la dérivée de y = sin x. On suppose connu que 
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tend vers 1 lorsque x, exprimé en radians, tend vers 0. 

Exercice A4


(Liban – Série mathématiques – 1967)

Trouver, à partir de la définition de la dérivée, la dérivée de la fonction y = cos(ax + b), où x est la variable indépendante et a et b des constantes. On supposera que la limite de 
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, lorsque x, exprimée en radians, tend vers 0, est connue. 

Exercice A5


(Montpellier – Mathématiques élémentaires – 1967)
a) Qu’appelle-t-on barycentre du système de trois points de l’espace, A, B, C, respectivement affectés des coefficients 1, 2, 3 ?

Application : On donne quatre points de l’espace, A, B, C et D. Déterminer géométriquement l’ensemble des points M tels que 
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b) On suppose maintenant que les quatre points A, B, C et D ont pour coordonnées, dans un repère d’origine O, A(+2, -2, +3), B(+
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1

,-2,-3), C(+3, 0, -3), D(-4, +2, +3). Donner l’équation de l’ensemble des points M caractérisés comme précédemment.

Exercice A6


(Reims – Mathématiques élémentaires – 1967)
Sachant que 
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 a pour limite 0 quand X ( +( (résultat du cours, concernant le logarithme népérien, qu’on ne démontrera pas ici), en déduire que :

a) xLog x tend vers 0 quand x tend vers 0 par valeurs positives ;

b) x.ex tend vers 0 quand x ( - (.

Exercice A7


(Liban – Série mathématiques – 1967)
Etablir les formules qui permettent de transformer en produit la somme de deux sinus et la somme de deux cosinus.

Exercice A8


(Nantes – Mathématiques et technique – 1967)
On sait que l’ensemble des homothéties-translations forme un groupe pour le produit des transformations ponctuelles. Rappeler la signification de ce théorème.

Le théorème subsiste-t-il :

a) pour l’ensemble des homothéties (H) de centre O dont le rapport est un nombre rationnel strictement positif ;

b) pour l’ensemble des homothéties (Hn) de centre O donné, de rapport n, où n est un entier relatif différent de zéro ?

  Question de cours du baccalauréat (session de février 1960 – sections A’, C, M et M’)

  Le candidat doit traiter l’une des trois questions suivantes, au choix :

  Exercice A9

  Somme et produit des racines d’une équation du second degré. Recherche de deux nombres ayant   

  pour somme et pour produit deux nombres donnés s et p.

  Exercice A10

  Etudier le signe du trinôme 
[image: image6.wmf].

33

x

4

x

5

2

+

+

-


  Exercice A11

  Géométrie cotée : condition nécessaire et suffisante pour que deux droites soient parallèles.

  Question de cours du baccalauréat (session de février 1960 – sections technique A)

  Le candidat doit traiter l’une des trois questions suivantes, au choix :

  Exercice A12

   Condition nécessaire et suffisante pour que deux nombres x’ et x’’ aient pour somme S et pour produit P.

  Exercice A13

  Descriptive : intersection d’une droite et d’un plan.

  Méthode : épure et notice explicative, le plan étant défini par ses traces.

  Exercice A14

   Variation et représentation graphique de la fonction : 
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  Question de cours du baccalauréat (session de février 1960 – section mathématiques)

  Le candidat doit traiter l’une des trois questions suivantes, au choix :

  Exercice A15

  Géométrie descriptive : un plan P quelconque est déterminé par une horizontale et une frontale. Un   

  Point (a,a’) est situé hors du plan. Déterminer la distance de ce point au plan P. 

  Exercice A16

   Etablir les formules de transformation en produits de la somme et de la différence de deux sinus et 

  de deux cosinus.

  Application :   Résoudre l’équation : cos x + cos 3x = sin x + sin 5x. 

  Placer sur le cercle trigonométrique les extrémités des arcs correspondant aux solutions trouvées.

  Exercice A17

  Discuter, selon les valeurs de m, le nombre des racines de l’équation : cos x + 
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  Déterminer effectivement ces racines pour m = -
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, et placer sur le cercle trigonométrique les 

  Extrémités des arcs correspondants.

  Question de cours du baccalauréat (session de février 1960 – section technique et économique)

  Le candidat doit traiter l’une des trois questions suivantes, au choix :

  Exercice A18

  Dérivée d’un produit de deux fonctions de la même variable, et dérivables.

  Application : dérivée de y = cos x ( sin x.






Question de cours du baccalauréat (session de février 1960 – section technique et économique) (suite)

  Exercice A19

  Enoncer les résultats connus relatifs aux propriétés simples, totales et composées.

  Application : une urne A contient 6 boules blanches et 5 noires ; une urne B contient 9 boules blanches et 4 

  noires.

  On tire une boule de chacune : quelle est la probabilité pour qu’on obtienne deux boules de la même couleur ?

  Même question pour deux boules de couleurs différentes.

  Exercice A20

  Rappeler, sans démonstration, les formules donnant les expressions de cos(a+b), cos(a-b), sin(a+b), sin(a-b).

  En déduire les formules donnant cos(a+b+c) en fonction des sinus et cosinus des arcs a, b, c, puis cos 3a en 

  fonction de cos a et enfin sin 3a en fonction de sin a.

Exercice A21

On se propose de démontrer la propriété :

Quels que soient les réels  strictement positifs a et b :
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où ln désigne la fonction logarithme népérien.

Soit a un réel strictement positif donné.

On considère la fonction F définie sur 
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1. Justifier que la fonction F est dérivable sur 
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 et déterminer sa fonction dérivée F’ sur cet intervalle.

2. Que peut-on dire des fonctions F et ln ? 

3. En déduire une relation entre les fonctions F et ln.

4. Calculer F(1). 

5. Conclure.

Exercice A22
CONGRUENCES ET MULTIPLICATION (spécialité)
1°) On rappelle la définition suivante : si x(, y(Z et n est un entier supérieur ou égal à 2, on dit que x est congru à y modulo n et on note x (y [n] lorsque n divise x – y.

a) Démontrer que la relation de congruence est compatible avec la multiplication, c’est-à-dire que si a ( a’ [n] et b ( b’ [n] alors ab ( a’b’ [n].

b) En déduire que si x ( y [n] alors, pour tout entier naturel k, xk ( yk [n].

2°) Application : 

a) Déterminer un entier naturel k tel que 167k ( – 1 [33].

            b) Déterminer le reste dans la division euclidienne de 1672004 par 33.

Exercice A23



Etude simultanée de deux suites

Les questions A, B et C sont indépendantes.

A. 
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Une étude de ces deux suites est faite ci-dessous.

Enoncer soigneusement les définitions ou théorèmes utilisés dans les cadres grisés, numérotés de 1) à 6).

· Pour tout entier n, 
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1) Définition d’une suite géométrique de raison q :




Donc la suite 
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 est géométrique de raison 
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2) Théorème donnant la limite de la suite géométrique 
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Donc la suite 
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· De plus 
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3) Définition d’une suite croissante :
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 donc la suite 
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4) Définition d’une suite décroissante :
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 donc la suite 
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5) Définition de deux suites adjacentes :



6) Théorème des suites adjacentes :



Puisque de plus, on a montré précédemment que la suite 
[image: image28.wmf])

(

n

n

u

v

-

 converge vers 0, les suites 
[image: image29.wmf])

(

n

u

 et 
[image: image30.wmf])

(

n

v

 sont adjacentes et convergent vers la même limite l.

· On appelle 
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la suite définie pour tout entier n par 
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Donc la suite 
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 est constante.

Pour tout n, 
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Puisque les trois suites sont convergentes, les règles d’opérations sur les limites nous permettent d’affirmer que :
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Les suites 
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B. La démonstration du théorème 6) nécessite plusieurs étapes.

Démontrer seulement l’étape suivante :

Si deux suites 
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· pour tout 
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· la suite 
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alors elles sont convergentes et ont la même limite.

C. Voici trois affirmations. Pour chacune d’elles, vous direz si elle est vraie ou fausse, en justifiant votre réponse.

1. Si deux suites 
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2. Si deux suites 
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3. Si deux suites 
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