IFT 1160 : PROGRAMMATION AVEC LE LANGAGE C

Chapitre 1 : Introduction, quelques éléments de base du langage C

A) Le cours IFT 1160 :

1) But du cours :

 Le cours de programmation avec le langage C a pour but d'initier

 les étudiants à un langage moderne de programmation structurée qui

 sait allier la puissance du matériel informatique à une discipline

 de programmation qui a déjà fait ses preuves dans le monde moderne

 de l'industrie informatique (UNIX, MS-DOS, OS-2, WINDOWS, dBASE ...

 qui, sont tous écrits en langage C).

2) Objectifs du cours :

 1) Familiariser l'étudiant avec le langage de programmation C et

 avec quelques nouveautés du langage C++.

 2) Permettre à l'étudiant de créer des programmes simples mais qui

 requièrent une connaissance complète du langage utilisé, en

 l'occurrence le C.

 3) Préparer l'étudiant à un cours plus avancé, par exemple, le cours

 IFT 1166 : Programmation Orientée Objet avec C++.

3) Population cible :

 Ce cours de programmation s'adresse à une population qui a déjà

 une connaissance de base en langage de programmation structurée et

 qui désire connaître les fondements d'un langage de programmation

 qui est de plus en plus utilisé par les grandes firmes d'informatique.

 Le langage C++ occupe le premier rang avec 71 % tandis que le langage

 C se classe bon deuxième avec 58 %.

4) Cours préalable :

 Afin de profiter pleinement des notions introduites au cours,

 l'étudiant doit connaître les concepts de programmation structurée

 incluant les notions de boucles, de tableau à un seul indice, des

 sous-programmes en plus d'être très à l'aise avec l'algorithmique.

 C'est pour cette raison qu'une bonne connaissance d'un langage de

 haut niveau est exigée pour faire ce cours. Nous exigeons que les

 étudiants intéressés complètent avec succès un cours d'introduction

 à la programmation, comme le cours IFT 1810 (ou IFT 1870, IFT 1875)

 par exemple. Toutefois, un étudiant ayant suivi un autre cours de

 programmation structurée pourra se débrouiller avec un surplus de travail.

5) Ordre de présentation des matières :

 Dans un premier cours de programmation, les étudiants ont vu les

 notions suivantes :

 - type, constante, variable, opérateurs, lecture, écriture

 - la sélection simple et multiple

 - les 3 boucles : répéter ..., tant que ..., pour ...

 - tableau à un seul indice

 - fichier de type texte

 - sous-programme et paramètres

 Notre objectif est de vous permettre de comprendre et d'écrire

 le plus vite possible des programmes écrits en langage C. Durant

 les trois premières semaines d'une session régulière (automne ou

 hiver), nous présentons ces matières en C sans tout ré-expliquer

 en détail. Une autre difficulté en C est qu'un sujet peut très

 souvent être traité de plusieurs manières différentes. Nous

 présentons la manière la plus simple et quelques autres manières

 les plus couramment utilisées. Contrairement à la plupart des

 livres qui présentent toutes les matières dans l'ordre théorique,

 nous choisissons de présenter les matières dans l'ordre pratique,

 dépendant de l'importante du sujet à traiter.

 La clientèle de ce cours n'est pas homogène : pour la plupart,

 ce cours est un deuxième cours de programmation ; pour quelques

 autres qui connaissent assez bien la programmation, c'est plutôt

 le langage C qui les intéressent. Pour ces raisons, certains

 exercices du présent cahier ont un degré de difficulté différent

 en plus d'être de natures différentes. On permet aussi à l'étudiant

 de choisir quelques numéros différents dans l'énoncé d'un travail

 pratique.

B) Les éléments de base de la programmation en C :

1) Allure d'un programme simple écrit en C :

1.a) Programme sans sous-programme, niveau simple :

 Le programme suivant permet de saisir 2 entiers, d'afficher

 à l'écran les deux entiers lus, de permuter leurs valeurs

 et finalement d'afficher de nouveau leurs valeurs.

 /* Fichier : Allure1.C (1er exemple sur l'allure d'un programme

 en C : Programme sans des déclarations

 globales ni de sous-programmes.)

 */

 #include <stdio.h> /* standard input output header file

 fichier d'en-tête des entrées-sorties

 standards */

 void main() /* fonction "principale" */

 { int valeur1, valeur2, temporaire ;

 /* Saisie les 2 entiers */

 printf("Entrez 2 entiers suivis par la touche <Entrée> ");

 scanf ("%d%d", &valeur1, &valeur2);

 /* Affichage de ces 2 valeurs */

 printf("Avant l'échange, valeur1 = %d, valeur2 = %d\n",

 valeur1, valeur2);

 /* Permutation (échange) ces deux valeurs */

 temporaire = valeur1 ;

 valeur1 = valeur2 ;

 valeur2 = temporaire ;

 /* Ré-affichage de ces 2 valeurs */

 printf("Après l'échange, valeur1 = %d, valeur2 = %d\n",

 valeur1, valeur2);

 }

 Exécution:

 Entrez 2 entiers suivis par la touche <Entrée> 53 17

 Avant l'échange, valeur1 = 53, valeur2 = 17

 Après l'échange, valeur1 = 17, valeur2 = 53

 Cliquez sur le bouton de fermeture

 Explications sommaires du programme :

 Ce programme comporte :

 1) des commentaires délimités par /* et */

 2) des fichiers d'en-tête

 #include <stdio.h>

 stdio.h (standard input/ouput header file) est le nom d'un

 fichier d'en-tête permettant de gérer les entrées et sorties

 standard (scanf, printf, etc)

 Pour la plupart des programmes en C, on inclut ce fichier d'en-tête.

 L'utilisation d'un fichier d'en-tête permet d'utiliser surtout des

 fonctions prédéfinies (implantées et fournies avec le compilateur).

 3) d'une seule fonction (pour cet exemple), c'est la fonction

 principale (main)

 4) d'un bloc d'énoncés délimités entre { et }

 5) de la déclaration de trois variables de type entier (int pour

 integer) :

 int valeur1, valeur2, temporaire ;

 Une instruction se termine par le point virgule.

 6) des instructions d'affichage :

 printf("messages et codes de format", liste d'informations à

 afficher);

 le mot "print" signifie "imprimer", "afficher"

 le suffixe "f" signifie "avec format". Exemple %d est le code

 pour afficher un entier, le caractère \n vient de "new line"

 signale un changement de ligne (comme VBCRLF du Visual Basic).

 7) de l'opérateur d'affectation avec le symbole "=" (comme Visual

 Basic) : valeur1 = valeur2 ;

 8) de l'instruction de lecture avec format :

 scanf("Codes de format", liste des adresses des variables) ;

 le mot "scan" signifie "balayer" dans le sens de "lire".

 En C, on lit une liste des valeurs selon certains codes de

 format et on dépose aux adresses des variables correspondantes.

 La notion "adresse de" (opérateur "&") sera abordée dès la

 deuxième semaine de cours.

 9) de l'instruction

 printf("\nCliquez sur le bouton de fermeture ");

 permettant de rappeler l'usager à quitter l'écran des résultats

 en cliquant sur le bouton de fermeture d'une fenêtre.

1.b) Programme avec sous-programme, niveau simple :

 Le programme suivant permet de lire 2 réels valeur1 et valeur2,

 d'afficher les deux valeurs lues ainsi que :

 - la plus grande valeur parmi ces deux réels

 - la valeur absolue de valeur1 - valeur2

 /* Fichier : Allure2.C (2 ième exemple sur l'allure d'un programme)

 Programme avec des déclarations globales et de

 sous-programmes.

 */

 #include <stdio.h>

 /* une fonction en C : cette fonction détermine et retourne

 la plus grande valeur entre deux réels x et y

 */

 float plusGrande (float x, float y)

 {

 if (x > y)

 return x ;

 else

 return y ;

 }

 void main()

 { /* prototype (sera abordée vers la troisième semaine du cours)

 de la fonction Absolue */

 float valeur1, valeur2 ;

 float absolue(float z) ; /* l'écriture de cette fonction se

 trouvera après son appel */

 /* Saisie les 2 réels */

 printf("Entrez 2 réels ");

 scanf ("%f%f", &valeur1, &valeur2);

 /* Affichage de ces 2 valeurs */

 printf("Les valeurs lues: valeur1 = %6.2f, "

 "valeur2 = %6.2f\n", valeur1, valeur2);

 /* Affichage de la valeur la plus grande */

 printf("La plus grande valeur est : %6.2f\n",

 plusGrande(valeur1, valeur2));

 /* Affichage de la valeur absolue de (valeur1-valeur2) */

 printf("La valeur absolue de %6.2f est %6.2f\n",

 valeur1-valeur2, absolue(valeur1-valeur2));

 printf("\nCliquez sur le bouton de fermeture ");

 }

 /* cette fonction se trouve après son appel */

 float absolue (float z)

 {

 if (z < 0)

 return -z ;

 else

 return z ;

 }

 Exécution:

 Entrez 2 réels 5.7 10.5

 Les valeurs lues: valeur1 = 5.70, valeur2 = 10.50

 La plus grande valeur est : 10.50

 La valeur absolue de -4.80 est 4.80

 Cliquez sur le bouton de fermeture

 Explications sommaires du programme :

 A part des explications identiques au dernier exemple, le

 programme comporte aussi :

 1) d'une fonction (comme FUNCTION en VB) qui calcule et

 retourne la valeur la plus grande entre 2 réels :

 float plusGrande (float x, float y)

 { etc ...

 }

 Cette fonction se trouve avant son utilisation (son appel)

 dans la fonction principale.

 2) du code format %f pour la lecture d'un réel ou du code format

 %6.2f pour afficher un réel sur 6 colonnes avec 2 chiffres

 après le point de décimal.

 3) d'une fonction (comme FUNCTION en PASCAL) qui calcule et

 retourne la valeur absolue (sans compter de signe) d'un réel :

 float absolue (float z)

 { etc ...

 }

 Cette fonction est écrite (implantée) après son utilisation (on

 l'appelle dans la fonction principale). Dans ce cas, on ajoute

 un prototype pour permettre au compilateur de vérifier la syntaxe

 et de comprendre l'appel de la fonction.

1.c) Résumé sur l'allure d'un programme écrit en C :

 Un programme écrit en C comporte souvent :

 1. des fichiers d'en-tête : #include <xxxx.h>

 2. des déclarations "globales" (plus tard dans le cours)

 3. une fonction principale (main)

 4. des sous-programmes (en C on n'a que des fonctions) qui

 se trouvent avant et/ou après la fonction principale

 5. des commentaires

2) Quelques éléments de base du langage C :

2.a) Les commentaires : /* */ :

 Le C et le C++ supporte des commentaires entre /* et */

 Pour le cours IFT 1160, on suggère le style suivant pour les

 commentaires :

 1. un long commentaire, par exemple, au début de votre

 programme :

 /*

 ++

 + Auteurs : 1) IFT 1160, groupe ... +

 + 2) groupe ... +

 ++

 + TP # x , trimestre : xxxxxx Date : xx / xx / 20xx +

 ++

 + But du programme : Ce programme permet de +

 ++

 */

 2. de courts commentaires :

 float tps , /* la taxe TPS */

 tvq ; /* la taxe des ventes du Québec */

2.b) Identificateur :

 C'est une suite de caractères choisis parmi les lettres ou les

 chiffres, le premier caractère étant une lettre. Le C permet aussi

 le caractère "souligné" qui est considéré comme une lettre :

 tp1, TAUX_TPS, prixAPayer, ... sont des identificateurs valides.

 Attention :
 En C, les caractères majuscules et minuscules sont différents:
 TP1 et tp1 sont 2 identificateurs différents en C.

 La plupart des identificateurs prédéfinis sont en minuscules :

 main, int, float, char, etc...

2.c) Quelques types de base :

 Les valeurs possibles de chacun des types suivants sont reliées

 avec notre environnement de travail :

 Type Signification Nombre octets Exemple Limite

 --

 int entier 2 -5, 3214 -32768 à 32767

 float réel 4 -1.7, 6.82 3.4e-38 à 3.4e+38

 char un seul caractère 1 'A', '4' 256 caractères

 Le type booléen n'existe pas en C. Zéro représente faux et une

 valeur non nulle représente vrai : avec cette instruction :

 printf("expression 1 = %d, expression 2 = %d", 5 == 7-2, 5 > 10);

 on affiche : expression 1 = 1, expression 2 = 0.

 Les autres types (long, double, etc ...) seront présentés plus

 tard (voir la liste dans les annexes).

2.d) Opérateur d'affectation :

 Le C utilise l'opérateur "=" pour affecter une expression à une

 variable.

d.1) Affectation classique :

 int age ;

 float taille ;

 char sexe ;

 age = 23 ; /* 23 ans */

 taille = 1.75 ; /* mesure 1.75 mètre */

 sexe = 'f' ; /* de sexe féminin */

d.2) Affectation multiple :

 int nbFemmes, nbHommes ;

 nbFemmes = nbHommes = 0 ;

 Cette affectation permet d'affecter d'abord 0 à nbHommes.

 Ensuite, elle affecte la valeur de nbHommes (qui est zéro)

 à nbFemmes.

 L'affectation multiple est utile pour initialiser des

 compteurs et des totaliseurs :

 int nbFemmes ;

 float somTailleFem ;

 somTailleFem = nbFem = 0 ;

d.3) Déclaration et initialisation (avec une affectation) :

 Le C permet de déclarer et d'initialiser en même temps la

 valeur :

 int nbHommes = 0 ;

 float plusPetite = 100000.0 ;

d.4) Affectation élargie :

 Le C permet de simplifier certaines affectations :

 A = A + 5 ; peut s'écrire aussi : A += 5 ;

 B = B * 3 ; peut s'écrire aussi : B *= 3 ;

 A = A / 3 ; peut s'écrire aussi : A /= 3 ;

 A = A - 5 ; peut s'écrire aussi : A -= 5 ;

 Exercice : Quelles sont les valeurs finales de a, b, c ?

 int a = 1, b = 2, c = 3 ;

 a += b += c += 12 ;

d.5) Attention :

 En C, à cause des conversions "implicites" (effectuées

 par le compilateur), on a moins de conflits de type

 qu'en PASCAL :

 Avec les déclarations :

 int age ;

 float taille ;

 char lettre ;

 les affectations suivantes sont valides :

 age = 23.87 ; /* Le C donne la valeur 23 à age */

 age = taille ; /* Ce n'est pas une erreur, Le C

 donne la valeur tronquée de

 taille à la variable age */

 lettre = 67 ;

 Cette dernière affectation est spéciale. Elle ne provoque

 aucune erreur et lettre vaut 'C'. En code ASCCI :

 l'ordre de 'A' est 65

 l'ordre de 'B' est 66

 l'ordre de 'C' est 67

 l'ordre de 'a' est 97

 l'ordre de 'b' est 98

 l'ordre de 'c' est 99

 Ainsi, lettre = 67 ; permet d'affecter le caractère dont

 l'ordre est 67 à la variable lettre, c'est le caractère 'C'.

 De même, l'affectation : age = 'b' ; n'est pas non plus

 une erreur : le C convertit 'b' en entier (son ordre est

 98), et dépose 98 comme valeur de la variable age.

 On utilise cette sorte d'affectation dans les conversions :

 char lettre ;

 lettre = 'B';

 lettre = lettre + 'a' - 'A'; /* valeur de lettre

 deviendra 'b' */

 A droite de l'affectation :

 lettre + 'a' vaut 66 + 97 = 163

 et lettre + 'a' - 'A' vaut 163 - 65 = 98

 Le C convertit 98 en caractère (quel est le caractère

 dont l'ordre est 98 ? C'est la lettre 'b').

 L'affectation a donc pour but de convertir une lettre

 majuscule (ici 'B') en minuscule (ici 'b').

2.e) Opérateurs arithmétiques, relationnels et logiques :

e.1) Opérateurs arithmétiques (pour les calculs) :

 +, - l'addition et la soustraction

 * la multiplication

 / la division (réelle ou entière)

 % le reste dans une division (le modulo)

 Exemples :
 6 / 4 vaut 1 (c'est la division "entière" car les deux

 opérandes sont des entiers)

 6.0 / 4 ou 6 / 4.0 ou 6.0 / 4.0 vaut 1.5

 (quand un des opérandes est de type réel, c'est la division

 réelle qui s'applique).

 17 % 5 vaut 2 car 17 divise par 5 donne 3 et il reste 2.

e.2) Opérateurs relationnels (pour les comparaisons) :

 == est égale à

 != est différent de

 < est inférieur à

 <= est inférieur ou égale à

 > est supérieur à

 >= est supérieur ou égale à

 Exemples :
 (17 % 3) == 2 vaut vrai

 5 * 4 < 8 vaut faux

e.3) Opérateurs logiques (pour les conditions) :

 ! le contraire de

 && le et logique

 || le ou logique

 Rappels :

 A && B vaut vrai <==> A vaut vrai et B vaut aussi vrai

 A || B vaut vrai <==> un des deux vaut vrai

 Exemples :
 !(27 < 13) vaut vrai (le contraire de faux)

 (15 > 4) && (5 > 17 % 3) vaut vrai

 (6 <= 5) || (12 > 8.5) vaut vrai

e.4) Priorité entre ces 3 types d'opérateurs :

 De plus en moins priorité :

 1. les parenthèses

 2. opérateurs unaires : ! (le contraire)

 3. * / %

 4. + -

 5. < <= > >=

 6. == !=

 7. &&

 8. ||

 Conséquences : moins de parenthèses qu'en Pascal

 /* Tester si c'est un adolescent */

 if (age >= 12 && age <= 17)

 Cette liste deviendra très longue avec les autres opérateurs

 de C (voir annexe 3). Si vous oubliez l'ordre des priorités,
 ajoutez des parenthèses :

 /* Tester si c'est une femme de l'âge adulte */

 if (((sexe == 'f') || (sexe == 'F')) && (age >= 18))

3) Les constantes:

3.a) Avec la directive #define :

 En C, on utilise surtout la directive #define pour définir

 un synonyme :

 #define TAUX_TPS 0.07

 #define MAX_PERS 80

 #define Nom_A_Lire "Metrique.Dta"

 #define analyste 'A'

 Dans le programme, le compilateur remplace l'identificateur

 (comme TAUX_TPS) par la valeur définie (ici 0.07).

 Cette déclaration permet aussi de définir les bornes des

 tableaux (chapitre 3) :

 #define MAX_EMP 125

 /* tableau des salaires hebdomadaires des 125 employés */

 float sal_Hebdo [MAX_EMP] ;

 char poste [MAX_EMP] ; /* les postes de travail ... */

 Attention :
 Le symbole # devrait être le premier caractère sur la ligne

 ou il n'est précédé que des espaces :

 void main()

 { #define PI = 3.14159

 La deuxième ligne provoque une erreur car la directive #define

 est précédée par le caractère { qui n'est pas une espace (un

 blanc).

3.b) Avec la déclaration const ... :

 Le C autorise aussi une autre manière de déclarer une constante :

 const float PI = 3.14159 , TAUX_TPS = 0.07 ;

 const int ADULTE = 18 ;

 const char PROGRAMMEUR = 'P' ;

 Cependant, le C ne permet pas d'utiliser cette manière pour

 déclarer les bornes des tableaux :

 const int MAX_EMP = 80 ;

 float salHebdo [MAX_EMP] ; /* erroné en C, valide en C++ */

 Le C++ (notre compilateur) permet et encourage l'utilisation

 de const ; à la place de #define pour avoir un meilleur

 contrôle de type.

4) Écriture et lecture en mode conversationnel :

4.a) Affichage à l'écran avec printf :

 Pour les exemples d'affichage, on utilise le symbole ^ (chapeau)

 afin de représenter une espace (un blanc).

 printf("format", liste d'informations à afficher) ;

 où format désigne des messages à afficher tels quels et des codes

 formats pour afficher des informations de type différents :

 %d pour un entier

 %f pour un réel

 %c pour un caractère

 %s pour une chaîne de caractères (plus tard dans le cours)

 etc ...

 Dans le format, on rencontre très souvent le caractère "\n" qui

 provoque un changement de ligne (new line).

 Exemples :
 Avec les déclarations et les affectations suivantes :

 int age, nbCafe ;

 float taille ;

 char sexe ;

 age = 23 ;

 nbCafe = 3 ;

 taille = 1.72 ;

 sexe = 'M' ;

 1. printf("%d%d", age, nbCafe);

 fait afficher : 233 (les 2 entiers sont collés)

 2. printf("%3d%4d", age, nbCafe);

 fait afficher : ^23^^^3

 3 espaces pour afficher l'entier age (valeur 23)

 4 espaces pour afficher l'entier nbCafe (valeur 3)

 3. printf("age = %3d, nombre de tasses de café = %4d", age,

 nbCafe);

 fait afficher : age = ^23, nombre de tasses de café = ^^^3

 4. printf("age : %4d\n\n", age);

 printf("Nombre de tasses de café : %4d\n", nbCafe);

 fait afficher : age : ^^23

 Nombre de tasses de café : ^^^3

 5. printf("%f%f%6.3f%8.2f", taille, taille, taille, taille);

 fait afficher : 1.7200001.720000^1.720^^^^1.72

 (par défaut, on a 6 chiffres après le point de décimal).

 Comme avant, on encourage la manière suivante :

 printf("La taille de la personne : %5.2f mètre\n", taille);

 qui fait afficher :

 La taille de la personne : ^1.72 mètre

 6. printf("%c%3c%5c\n", sexe, sexe, sexe);

 fait afficher : M^^M^^^^M

 7. En résumé, le bloc d'instructions suivantes :

 printf("Les informations de la personne :\n\n");

 printf(" - sexe : %5c\n", sexe);

 printf(" - age : %5d ans\n", age);

 printf(" - taille : %5.2f mètre\n", taille);

 printf(" - Nb. café : %5d tasse(s)\n", nbCafe);

 fait afficher :

 Les informations de la personne :

 - sexe : ^^^^M

 - age : ^^^23 ans

 - taille : ^1.72 mètre

 - Nb. café : ^^^^3 tasse(s)

d.5) Attention :

 Pour un long messsage qui dépasse une ligne :

 printf("L'employé est un analyste qui gagne %6.2f $ par "

 "semaine et reçoit un bonus de %5.1f $\n", salHebdo,

 bonus);

 Nous reviendrons plus tard sur les autres détails de printf.

4.b) Lecture de données avec scanf :

 scanf("codes format", liste des adresses des variables à lire);

 Nous utilisons l'opérateur "&" (adresse de) qui sera présenté en

 détail au prochaine chapitre.

 1. Lecture d'un seul entier ou un seul réel :

 printf("Entrez l'âge de la personne ");

 scanf ("%d", &age);

 On lit la valeur et on dépose à l'adresse de la variable age

 (son emplacement en mémoire).

 Au message d'incitation : Entrez l'âge de la personne

 l'usager peut taper l'âge (avec ou sans espaces) suivi de

 la touche <Entrée> :

 Entrez l'âge de la personne ^^^^^23

 age vaut 23

 Entrez l'âge de la personne 23

 age vaut aussi 23

 printf("Entrez la taille de la personne ");

 scanf("%f", &taille);

 Au message : Entrez la taille de la personne, si on tape

 ^^^1.65 suivi de la touche <Entrée>, taille vaut 1.65

 2. Lecture des valeurs numériques :

 printf("Entrez l'âge et la taille de la personne ");

 scanf("%d%f", &age, &taille);

 Au message : Entrez l'âge et la taille de la personne, il

 suffit de taper 2 valeurs séparées par au moins une espace

 suivie de la touche <Entrée> :

 Entrez l'âge et la taille de la personne 41^1.70

 age vaut 41 ans et taille vaut 1.70 mètre.

 3. Lecture d'un caractère :

 printf("Entrez f, F, m ou M pour le sexe ");

 scanf("%c", &sexe);

 Au message : Entrez f, F, m ou M pour le sexe on tape tout

 de suite le caractère suivi de la touche <Entrée> :

 Entrez f, F, m ou M pour le sexe f

 sexe vaut 'f'

 Par contre :

 Entrez f, F, m ou M pour le sexe ^f

 sexe vaut ' ' (caractère d'espace)

 On utilise souvent getchar() pour la lecture d'un

 seul caractère :

 printf("Entrez f, F, m ou M pour le sexe ");

 sexe = getchar();

 4. Lecture de plusieurs informations :

 printf("Entrez sexe, age et taille ");

 scanf("%c%d%f", &sexe, &age, &taille);

 Avec : Entrez sexe, age et taille m^19^1.68

 sexe vaut 'm', age vaut 19 et taille vaut 1.68

 Il y a d'autres moyens de lecture; nous les aborderons

 plus tard dans le cours.

5) Instruction composée (bloc d'instructions) :

 Quand on a plusieurs instructions à faire, on les délimite

 entre "{" (début) et "}" (fin).

 if (rang == 9)

 { printf("C'est le mois de septembre\n");

 nbJrs = 30 ;

 }

 Il est obligatoire de terminer chacune des instructions simples

 dans le bloc par le point virgule.

6) La sélection avec if (condition) ... :

6.a) Syntaxe :

 if (condition) if (condition)

 instruction 1 OU instruction 1

 else

 instruction 2

 6.b) Fonctionnement :

 Si la condition vaut vraie (c'est-à-dire, en C, sa valeur

 est non nulle) on exécute l'instruction numéro 1

 Dans le cas contraire (sinon) et si la clause else se

 présente, on effectue l'instruction 2.

6.c) Remarques :

 1) La clause else est facultative (optionnelle).

 2) La condition (l'expression) est entre parenthèses.

 3) Le "then" (alors) n'existe pas comme en PASCAL.

 4) L'instruction sous le if (instruction1) et l'instruction sous

 le else (instruction2) peuvent être simples (une seule action),

 structurées (une autre instruction de contrôle) ou composées

 (bloc d'instructions). Si c'est une instruction simple, il faut

 la terminer par le point virgule (même si elle se trouve devant

 la clause else).

6.d) Exemples :

 1. if (age <= 11)

 printf("C'est un enfant\n") ;

 else

 printf("C'est un adolescent ou un adulte\n") ;

 2. if (sexe == 'f' || sexe == 'F') nbFem = nbFem + 1 ;

 3. if (sexe == 'm' || sexe == 'M')

 { nbHom = nbHom + 1 ;

 printf("Sexe : Masculin\n");

 } /* pas de point virgule ici */

 else

 { nbFem = nbFem + 1 ;

 printf("Sexe : Féminin\n");

 somTaille = somTaille + taille ;

 } /* point virgule est optionnel ici */

 4. Cas de if imbriqué (if à l'intérieur d'un autre if, un style

 d'écriture (voir annexe 3)) :

 if (poste == 'A') {

 bonus = 123.45 ;

 printf("analyste\n");

 } else if (poste == 'P') {

 nbProgrammeur = nbProgrammeur + 1 ;

 printf("Programmeur\n");

 totSalProg = totSalProg + salHebdo ;

 } else

 printf("Autre poste\n");

 5. Cas spécial :

 int a, b = 5 ;

 if (a = b) /* on reçoit souvent un "warning" */

 printf("Est-il possible ?\n");

 else

 printf("L'instruction sous else\n");

 À première vue, on croit qu'il y a erreur :

 une comparaison s'écrit : if (a == b) au lieu de

 if (a = b).

 Cependant, à notre surprise, le bloc fait afficher :

 Est-il possible ?

 Premièrement, le compilateur affecte b à a, ainsi a vaut 5.

 Après, il vérifie : if (a) , c'est-à-dire, si a est non nul.

 Comme a vaut 5 qui n'est pas zéro, la condition vaut vraie,

 le compilateur fait exécuter l'instruction sous if.

 7) La sélection multiple avec switch ... :

 Cette instruction est semblable à SELECT CASE ... en Visual Basic.

7.a) Syntaxe :

 switch (expresion)

 { case constante 1 : suite 1 d'instruction(s)

 case constante 2 : suite 2 d'instruction(s)

 case constante n : suite n d'instruction(s)

 default : suite n+1 d'instruction(s)

 }

 Le mot "default" a le sens de "autrement".

 Exemple d'illustration de cette syntaxe :

 char poste ;

 float bonus ;

 switch (toupper(poste)) /* suivant que le poste

 (en MAJUSCULE) vaut */

 { case 'A' : bonus = 235.50 ;

 printf("analyste\n");

 break ;

 case 'O' :

 case 'P' : bonus = 175.00 ;

 break ;

 case 'S' : bonus = 150.75 ;

 printf("Secrétaire\n");

 break ;

 default : printf("poste erroné\n");

 }

 7.b) Fonctionnement :

 1. l'expression sous switch est évaluée; sa valeur vaut x,

 par exemple. On exécute toutes les instructions à partir

 de cette case jusqu'à la rencontre d'un "break" ou la

 fin de switch.

 2. dans le cas où la valeur de l'expression est différente

 à toutes les constantes citées :

 si la clause "default" (autrement) existe :

 on effectue la suite d'instructions sous

 cette clause et on quitte le switch ;

 si la clause "default" n'existe pas, on

 quitte le switch.

7.c) Remarque :

 1. L'expression dans switch(expression) est une expression

 entière. Le cas d'un caractère est accepté car le

 compilateur convertit un caractère (exemple 'A') en entier

 (son ordre : ici 65).

 2. La suite d'instruction(s) peut être vide : aucune

 instruction.

 3. Pour sortir de switch après avoir effectué des

 instructions voulues, ne pas oublier de terminer

 avec un "break".

 4. La clause "default" est facultative.

7.d) Exemples :

 Exemple 1 :

 Écrire un bloc d'instruction permettant de saisir le rang d'une

 journée de la semaine (1 : dimanche, 2 : lundi, ...) et

 d'afficher un message du genre :

 On travaille très fort! (pour lundi à jeudi)

 La fin de semaine s'en vient (pour vendredi)

 Youpi! c'est la fin de semaine (pour samedi, dimanche)

 rang erroné! (pour rang imprévu)

 Solution :

 int rang ;

 printf("Entrez le rang d'une journée (entre 1 et 7) ");

 scanf ("%d", &rang);

 switch (rang)

 { /* du lundi à jeudi : */

 case 2 :

 case 3 :

 case 4 :

 case 5 : printf("On travaille très fort!\n");

 break;

 /* le vendredi : */

 case 6 : printf("La fin de semaine s'en vient\n");

 break ;

 /* samedi ou dimanche : */

 case 7 :

 case 1 : printf("Youpi! c'est la fin de semaine\n");

 break ;

 /* autrement : */

 default: printf("rang erroné!\n");

 }

 Exemple 2 :

 Pour satisfaire tout le personnel, la société "LA GÉNÉREUSE"

 décide d'accorder une bonification de 500 $ aux analystes,

 400 $ pour les programmeurs, opérateurs et 375 $ pour les

 secrétaires.

 Écrire un programme en C permettant :

 - d'obtenir le salaire hebdomadaire

 - d'obtenir le poste de travail : c'est un seul caractère

 dont :

 'A' ou 'a' pour analyste

 'P' ou 'p' pour programmeur

 'O' ou 'o' pour opérateur

 'S' ou 's' pour secrétaire

 - de calculer le boni à accorder dépendant du poste

 - d'afficher à l'écran un message du genre :

 C'est un opérateur qui gagne 567.89 $ par semaine et

 reçoit 400.00 $ de bonus.

 Solution :

 #include <stdio.h>

 #include <ctype.h>

 void main()

 { char poste ;

 float bonus, salHebdo ;

 #define BONUS_A 500.0 /* Bonus pour un analyste */

 #define BONUS_OP 400.0 /* Bonus pour un programmeur*/

 /* ou un opérateur */

 #define BONUS_S 375.0 /* Bonus pour un secrétaire */

 printf("Entrez le poste de travail et le salaire hebdo. ");

 scanf ("%c%f", &poste, &salHebdo);

 poste = toupper(poste) ;

 printf("C'est un ");

 switch (poste) {

 case 'A' : bonus = BONUS_A ;

 printf("analyste ");

 break ;

 case 'O' :

 case 'P' : bonus = BONUS_OP ;

 if (poste == 'O')

 printf("opérateur ");

 else printf("programmeur ");

 break ;

 case 'S' : bonus = BONUS_S ;

 printf("secrétaire ");

 }

 printf("qui gagne %6.2f $ par semaine et reçoit %5.1f $ "

 "de bonus\n", salHebdo, bonus);

 printf("\nCliquez sur le bouton de fermeture ");

 }

7.e) Exercices :

 Numéro 1 (niveau simple) :

 Écrire un programme permettant de saisir un caractère

 représentant le code d'une figure :

 'c' ou 'C' pour un cercle

 'r' ou 'R' pour un rectangle

 'k' ou 'K' pour un carré

 Dans le cas d'un cercle, le programme saisit son rayon,

 il le calcule et l'affiche à l'écran :

 le périmètre (2 x PI x Rayon) et

 la surface (PI x (Rayon au carré))

 Dans le cas d'un rectangle, le programme saisit la

 longueur et la largueur. Il le calcule et l'affiche à

 l'écran :

 le périmètre (2 x (Longueur + Largueur))

 la surface (Longueur x Largueur)

 Dans le cas d'un carré, le programme saisit le côté.

 Il le calcule et l'affiche à l'écran :

 le périmètre (4 x Côté)

 la surface (Côté x Côté)

 Si le code est imprévu, nous affichons un message pertinent.

 Numéro 2 (niveau raisonnable) :

 Écrire un programme permettant d'obtenir le jour et le mois

 de naissance et d'afficher le signe du "zodiaque" correspondant.

 Ceux-ci sont :

 Bélier du 21-3 au 20-4

 Taureau du 21-4 au 20-5

 Gemeaux du 21-5 au 21-6

 Cancer du 22-6 au 22-7

 Lion du 23-7 au 22-8

 Vierge du 23-8 au 22-9

 Balance du 23-9 au 22-10

 Scorpion du 23-10 au 21-11

 Sagittaire du 22-11 au 20-12

 Capricorne du 21-12 au 20-1

 Verseau du 21-1 au 19-2

 Poissons du 20-2 au 20-3

 Numéro 3 (bon exercice de révision) :

 Écrire un programme en C permettant de saisir le rang

 d'un mois (1 pour janvier, ..., 12 pour décembre) et

 d'afficher le nombre de jours du mois saisi. Dans le cas

 du mois de février, on doit saisir aussi l'année (exemple :

 1995) et détermine si l'année est bissextile (29 jours au

 mois de février) ou non.

 Notez que :

 1. Janvier, Mars, Mai, Juillet, Août, Octobre, Décembre

 ont 31 jours.

 2. Avril, Juin, Septembre, Novembre ont 30 jours.

 3. Un algorithme qui peut déterminer si une année est

 bissextile se présente comme suit :

 Soit an les deux derniers chiffres d'une année

 (an vaut 95 pour annee vaut 1995 ==> an = annee % 100).

 Soit siecle les deux premiers chiffres (siecle vaut 19

 pour annee vaut 1995 ==> siecle = annee / 100).

 annee est bissextile (29 jours en février) <===>

 (an est différent de zéro ET an est un multiple de 4)

 OU

 (an est zéro ET siecle est un multiple de 4)

 Exemples: annee = 1996 ==> an = 96 et siecle = 19

 La condition : 96 est différent de zéro et

 96 est un multiple de 4

 est vérifié. L'année 1996 est bissextile.

 annee = 2000 ==> an = 0 et siecle = 20

 La condition : an est zéro et

 20 est un multiple de 4

 est vérifié. L'année 2000 sera bissextile.

Chapitre 1 : Introduction, quelques éléments de base du langage C
Page 26

