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Cours de TS SPE

Interprétation ondulatoire
Acoustique 2

Correction exercices

Acoustique 2 : correction des exercices 

Exercice n°10 p 73 :

1. Si on observe des minimas de pression (d’amplitude de la tension enregistré par le micro) dans le tuyau à l’aide du micro, cela signifie qu’il y a présence d’une onde stationnaire. On observe 4 nœuds sans compter les nœuds aux extrémités, ceci signifie qu’on est placé, à la fréquence de 1340 Hz sur le 5ème harmonique.
2. On peut calculer la longueur d’onde grâce à l’emplacement des nœuds (λ/2 entre deux nœuds 
consécutifs) : 3×λ/2 = 44.5 – 6.3  
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On connaît la relation entre la célérité des ondes, la fréquence et la longueur d’onde :
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Exercice n°18 p 74 :

1. La masse linéique de la corde et sa tension restent inchangées entre les deux notes.

2. La relation générale entre la longueur d’onde et la longueur de la corde est L = n(λ/2)
Pour le mode fondamental, n = 1 donc : λ=2L 
3. On connaît la relation 
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donc les fréquences νn sont données par : 
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4. On s’intéresse à la vibration de la corde selon le mode fondamentale donc on prend n = 1. Ainsi la formule donnant la longueur de la corde s’écrit : 
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Pour le sol : 
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On remplace dans la longueur de corde qui donne la note do : 
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Exercice n°20 p 74 :
1. Toujours grâce à la relation L = n(λ/2), on a pour le mode fondamental de chaque corde  λ=2L.
2. On utilise une nouvelle fois la formule 
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3. a. On utilise la formule obtenue ci-dessus  avec la nouvelle fréquence : 
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Cette tension n’est pas envisageable, la corde ne serait pas assez tendue pour qu’elle puisse vibrer.
b. On utilise la formule
[image: image11.wmf]m

l

l

u

T

V

1

=

=

 pour en dégager la masse linéique : 
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c. Pour répondre à cette question, il nous faut la masse volumique de l’acier de valeur ρ = 7.8×103 kg.m-3.On va relier celle-ci avec le diamètre de la corde par l’intermédiaire du volume. En effet :
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Finalement d = 1.28 mm

d. De cette façon, on peut facilement modifier la tension de la corde (nylon plus extensible) tout en ayant une masse linéique plus importante.

Acoustique 2 : correction des exercices 

Exercice n°10 p 73 :

1. Si on observe des minimas de pression (d’amplitude de la tension enregistré par le micro) dans le tuyau à l’aide du micro, cela signifie qu’il y a présence d’une onde stationnaire. On observe 4 nœuds sans compter les nœuds aux extrémités, ceci signifie qu’on est placé, à la fréquence de 1340 Hz sur le 5ème harmonique.

2. On peut calculer la longueur d’onde grâce à l’emplacement des nœuds (λ/2 entre deux nœuds 
consécutifs) : 3×λ/2 = 44.5 – 6.3  
[image: image14.wmf]cm

5

.

25

2

.

38

3

2

=

Û

´

=

Û

l

l


On connaît la relation entre la célérité des ondes, la fréquence et la longueur d’onde :
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Exercice n°18 p 74 :

1. La masse linéique de la corde et sa tension restent inchangées entre les deux notes.

2. La relation générale entre la longueur d’onde et la longueur de la corde est L = n(λ/2)

Pour le mode fondamental, n = 1 donc : λ=2L 

3. On connaît la relation 
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donc les fréquences νn sont données par : 
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On s’intéresse à la vibration de la corde selon le mode fondamentale donc on prend n = 1. Ainsi la formule donnant la longueur de la corde s’écrit : 
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4. Pour le sol : 
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On remplace dans la longueur de corde qui donne la note do : 
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Exercice n°20 p 74 :
1. Toujours grâce à la relation L = n(λ/2), on a pour le mode fondamental de chaque corde  λ=2L.

2. On utilise une nouvelle fois la formule 
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3. a. On utilise la formule obtenue ci-dessus  avec la nouvelle fréquence : 
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Cette tension n’est pas envisageable, la corde ne serait pas assez tendue pour qu’elle puisse vibrer.

b. On utilise la formule
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 pour en dégager la masse linéique : 
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c. Pour répondre à cette question, il nous faut la masse volumique de l’acier de valeur ρ = 7.8×103 kg.m-3.On va relier celle-ci avec le diamètre de la corde par l’intermédiaire du volume. En effet :
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Finalement d = 1.28 mm

d. De cette façon, on peut facilement modifier la tension de la corde (nylon plus extensible) tout en ayant une masse linéique plus importante.
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