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Transformateurs Monophasés
I) Présentation
I.1) Notations :

	On notera d’un indice

· 1 le primaire

· 2 le secondaire

· v ou 0 les grandeurs à vide

· n les grandeurs nominales

· cc les grandeurs en court-circuit

Le primaire est en convention récepteur alors que le secondaire est en convention générateur.

Les bornes homologues sont telles qu’un courant entrant par celles-ci crée un flux orienté dans le même sens. Les tensions vues sur ces points sont de même polarité.
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Remarque : 

Il n’y a pas de lien entre la convention choisie et les bornes homologues. 

Ceci fait que suivant les auteurs les orientations des vecteurs et tensions peuvent différer.
Si l’orientation des tensions en fonction des bornes homologues est la suivante les relations marquées d’un ( seront de signe opposé
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I.2) Principe :

Le transformateur est constitué  de deux bobines couplées par un noyau de fer conduisant le flux créé par l’une jusqu’au secondaire. Les tensions induites sont proportionnelles aux nombres de spires.
I.3) Relations générales d’un transformateur parfait: 
	Si on fait rentrer un courant par les bornes homologues, il apparaît une fém e telle que la bobine se comporte comme un générateur.

Toutes les pertes sont négligées : le flux traverse donc les deux bobinages ainsi : 
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· rapport de transformation 
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 avec V20 et V1N tensions efficaces au primaire et au secondaire et N1 et N2 nombres de spires au primaire et au secondaire.

· Relation de Boucherot :
Si on suppose que le champ est sinusoïdal alors 
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 soit


[image: image11.wmf]11

4,44

2ˆ

2

VNfBS

p

=

123

 et  
[image: image12.wmf]22

ˆ

4,44

VNfBS

=

 avec 
[image: image13.wmf]2

 max

f :  fréquence (Hz);

B : valeur maximale du champ magnétique 

(T) 

S : section du circuit magnétique (m)

ì

ï

í

ï

î


· Relation sur les courants :
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Si on applique le théorème de Gauss sur le contour parcouru par le flux (C alors :
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 si on considère la perméabilité du matériau très grande 
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 On a donc avec les conventions choisies 
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· Le bilan des puissances est simple :

P1 = V1.I1.cos(1 = P2 = V2.I2.cos (2; et (1 = (2
Q1 = Q2 = V2.I2.sin (2  et

S1 = V1.I1= V2.I2= S2.
II) Transformateur réel
II.1) Transformateur à vide :

II.1.1) Equations et schéma équivalent
	Le transformateur se comporte comme une bobine à noyau de fer : 
L’équation des flux donne : 
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Si l’on considère le courant sinusoïdal ce qui n’est en toute rigueur pas le cas on peut passer aux grandeurs complexes.


[image: image24.wmf]111011010

fC

VrIjIjN

wwf

=++

l

 avec 
[image: image25.wmf]1010

'

C

VjN

wf

=

 et 
[image: image26.wmf]220

C

VjN

wf

=-

(
· r1 est la résistance interne de la bobine primaire

· 
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 est l’inductance de fuite primaire

· Lµ est l’inductance magnétisante

· RF représente les pertes fer

II.1.2) Représentation de Fresnel
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II.1.3) Bilan de puissances :
A vide le transformateur absorbe 

· 
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:pertes Joules de l'enroulement primaire

avec 

:pertes fer du circuit magnétique

 qui mesuré est égal à 
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 qui mesuré est égal à 
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II.2) Transformateur en charge :

II.2.1) Equations et schéma équivalent
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	Tensions
	En convention récepteur
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	En convention générateur
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avec 
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	Schéma
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On s’aperçoit alors que le rapport de transformation 
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Un bilan plus précis des ampères tours 
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 (. Si l’on ne néglige pas la force magnétomotrice 
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 alors on peut identifier cette perte d’ampère tours à un courant magnétisant que l’on trouve d’ailleurs à vide (le courant secondaire étant nul) : 
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II.2.2) Représentation de Fresnel
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II.2.3) Bilan de puissances
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II.3) Transformateur dans l’hypothèse de Kapp :

II.3.1) Simplifications
Dans l’hypothèse de Kapp 
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· Le rapport des courants est alors tel que 
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· Comme la tension primaire est  
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 alors le rapport des tensions à vide : 
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· L’approximation ainsi faite revient à considérer le schéma équivalent suivant
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On remarque que l’on peut toujours introduire les pertes fer par la présence du courant Iµ courant absorbé à vide par le transformateur
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II.3.2) Schéma équivalent

I.1.1.1) [image: image247.emf] 
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Impédance ramenée au primaire : adaptation d’impédance

Si l’on considère un transformateur parfait 
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Tout se passe comme si 
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 était branché directement aux bornes du primaire

Le transformateur joue alors le rôle d’adaptateur d’impédance.
I.1.1.2) Schéma équivalent ramené au secondaire

Pour ramener les impédances r1 et 
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 au secondaire il suffit d’exprimer U2 qu’en fonction des grandeurs du secondaire : 
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En remplaçant 
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En développant 
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En regroupant les termes 
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 Cela fait apparaître deux impédances :
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I.1.1.3) Schéma équivalent ramené au primaire

Pour ramener les impédances r2 et 
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 au primaire il suffit d’exprimer V1 qu’en fonction des grandeurs du primaire : 
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En remplaçant 
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En développant 
[image: image86.wmf](

)

(

)

12221111

2

11

ff

VVrjIrjI

mm

ww

=-++++

ll

(
En regroupant les termes 
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 (Cela fait apparaître deux impédances :
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I.1.1.4) Inductances mutuelles et coefficients de couplage
Si la bobine primaire est parcourue par 
[image: image91.wmf]11
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 de même forme est produit par les spires de ce bobinage, flux dont une fraction 
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) coupe les spires du bobinage secondaire.

Si M12 est le coefficient d'induction mutuelle entre les deux bobinages, il apparait aux bornes du secondaire une fém induite 
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 soit, en utilisant la notation complexe, 
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Inductance propre ou self inductance :
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Inductance mutuelle : 
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Rq : Si le secondaire est un circuit fermé, la fém e2 va engendrer un courant i2 lequel produit à son tour un flux dont une fraction induit dans l'enroulement primaire une fém e1 telle que 
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· Sans fuites de flux:

	Entre deux bobines parfaitement couplées : 
[image: image102.wmf]122112

ffff

===


Alors 
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· [image: image248.emf] 
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Les fuites entre les deux bobines font apparaître 
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Donc 
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 et comme 
[image: image108.wmf]1221

ff

=

 

Alors 
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 et comme 
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La méthode de Boucherot : décompose les inductances

Alors 
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 et de même 
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 où apparaissent les inductances primaires : comme 
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donc 
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 et en se servant des inductances primaires 
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Et si l'on ramène toutes les fuites au primaire en supposant 
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On chiffre le couplage plus ou moins serré des bobinages par deux coefficients :

· Coefficient de couplage : 
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  permet de voir le niveau de couplage. Il dépend surtout de la position géométrique des circuits, d’autant plus proche de 1 que les circuits sont couplés 

· Coefficient de dispersion de Blondel : On caractérise parfois le couplage par le coefficient de dispersion de Blondel qui permet de chiffrer les fuites : 
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· Sans fuite : 
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· Avec fuites : 
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Dans l’étude des transformateurs et de machines asynchrones on utilise également la définition du coefficient de dispersion de Blondel : 
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· Coefficient d’Hopkinson : rapport du flux total sur le flux utile 
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Comme on a toujours 
[image: image127.wmf]2

2

21

2

1

N

LL

N

=

 alors l‘inductance mutuelle devient 
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II.3.3) Mise sous tension

Vu du primaire, un transformateur réel est équivalent à un circuit inductif. A la mise sous tension, il se comporte comme un circuit du 1er ordre en régime transitoire.

Selon l'instant de mise sous tension, l'intensité absorbée peut atteindre des valeurs importantes :
[image: image129.emf]
La mise sous tension d’un transformateur provoque une surintensité transitoire d’enclenchement pouvant atteindre jusqu’à 13 fois le courant nominal avec des constantes de temps de 0,1 à 0,7 seconde.

Ce phénomène, dû à la magnétisation du circuit magnétique, provoque l’apparition d’un courant magnétisant important appelé « Courant de démarrage ou d’enclenchement ».

L'asymétrie et la valeur crête du courant sont maximales lorsque l'enclenchement est effectué au passage à zéro de la tension et lorsque l'induction rémanente sur la même phase atteint sa valeur la plus élevée.

La forme d’onde du courant est riche en harmonique de rang 2.

Ce phénomène correspond à une manœuvre normale d’exploitation du réseau ; il ne doit donc pas être interprété comme un défaut par les protections qui devront laisser passer ce régime transitoire.
III) Exploitations de mesures et essais
III.1) Détermination du modèle : essais

III.1.1) Essai en continu détermination des résistances des bobinages

Un essai en continu où le bobinage primaire ou secondaire est parcouru par le courant nominal permet de déterminer par la méthode voltampèremétrique la résistance des bobinages.
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III.1.2) Essai à vide sous tension nominale
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On en déduit 
[image: image132.wmf]20
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Les pertes fer 
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De même 
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III.1.3) Essai en court circuit à courant nominal sous tension réduite
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Les pertes Joule permettent de déterminer 
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Donc 
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Et comme le modèle ramené au secondaire donne

On en déduit aisément 
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III.1.4) Test de la polarité ou des bornes homologues

Des courants entrants par les bornes homologues créent un flux orienté dans le même sens.

Si les tensions sont en phases elles sont homologues.
Supposons qu’au moment où les tensions atteignent leur maximum, la borne 1 soit positive par rapport à la borne 2, et que la borne 3 soit positive par rapport à la borne 4. On dit alors que les bornes 1 et 3 possèdent la même polarité. On l’indique en plaçant un point noir vis-à-vis la borne 1 et un autre près de la borne 3. Ces point sont appelés marques de polarité.
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On peut réaliser un test de polarité d’un transformateur de la manière suivante :

On raccorde une pile de 1,5 V aux bornes basse tension du transformateur à travers un poussoir S.

Lors de la fermeture (une seule impulsion) du poussoir, une tension est induite dans le secondaire. Si à cet instant l’aiguille du voltmètre dévie dans le bon sens, la borne du transformateur reliée à la borne positive du voltmètre est marquée H1 et l’autre est marquée H2. Quant aux bornes à basse tension, celle qui est reliée au pôle positif de la pile se nomme X1 et l’autre X2. 
[image: image146.emf]
III.2) Indications de la plaque signalétique

La plaque signalétique nous renseigne sur :  

Nom du constructeur et numéro de fabrication 

[image: image249.emf] 
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Les courants nominaux I2N et I1N
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Le facteur K des transformateurs :
De nombreux analyseurs de réseaux calculent le facteur K du courant de charge directement (
[image: image149.wmf]max
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Une fois le facteur K de la charge connu, il suffit de choisir un transformateur avec un coefficient de surclassement immédiatement supérieur à la valeur du facteur de charge K dans la série normalisée 4, 9,13, 20, 30, 40, 50. 

Il est important de noter qu’une charge purement linéaire – appelant un courant purement sinusoïdal- aurait un facteur K unitaire. Un facteur de charge K supérieur à 1 indique que les pertes dues aux courants de Foucault sont K fois supérieures aux pertes pour la fréquence fondamentale. Les transformateurs de facteur de charge K sont donc conçus pour avoir de très faibles pertes dues aux courants de Foucault àla fréquence fondamentale. 

http://fr.leonardo-energy.org/wp-content/uploads/2008/01/3_5_2_harmoniques_choix-et-dimensionnement-des-transformateurs.pdf
J:\COURS\04 Bts\BTS Electrotechnique\Sciences Appliquées\H2 Pollution harmonique norme CEM\CA8332\Appli_facteur_K.pdf
III.3) Chute de tension :
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En projetant sur x : 
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Donc 
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Donc 
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Il est commode d’indiquer la chute de tension pour le courant nominal par un pourcentage de la tension  à vide : 
· 
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 chute de tension

· 
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 est la chute de tension ohmique pour le courant nominal

· 
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· 
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 pourcentage de la tension primaire nécessaire pour obtenir le courant nominal lorsque le secondaire est court-circuité.

· SCC est définit comme la puissance apparente que le transformateur absorberait s’il était sous tension nominale
III.4) Rendement

Le rendement est déterminé soit :

· par la méthode des pertes séparées : essai à vide et en court circuit.

· par la méthode directe par un essai en charge.
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Cette fonction admet un maximum lorsque 
[image: image161.wmf]2
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Rq : Si le régime de fonctionnement du transformateur est rarement chargé on privilégiera un transformateur avec de faibles pertes fer (faible volume de fer et de champ max) et des pertes Joules plus importantes de façon à améliorer le rendement journalier.
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IV) Les différents types de transformateurs
IV.1) Transformateur de mesure : 

Transformateur utilisé pour adapter la gamme et assurer l'isolation par rapport au dispositif mesuré d'un voltmètre ou d'un ampèremètre.

IV.2) [image: image250.emf] 
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Transformateur de courant : 

Transformateur de mesure abaisseur de courant (donc élévateur de tension), soit : m > 1. On l'utilise notamment pour mesurer l'intensité d'un courant fort. Le primaire peut alors se réduire à une seule spire ! Ce type de transformateur s'utilise avec secondaire en court-circuit (dans le cas contraire, la tension apparaissant au secondaire pourrait être très élevée). 

IV.3) [image: image251.emf] 
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Transformateur d'impédance : 

Transformateur utilisé pour adapter l’impédance de deux circuits. Exemples : en audio, sortie d'un ampli BF dont la charge est un haut-parleur d'impédance normalisée ( 8( à 1000Hz) ; en réseaux, adaptation d'impédance entre lignes de normes différentes. 
IV.4) [image: image252.wmf] 
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Transformateur d'impulsions :

Transformateur utilisé pour la commande (isolée) de gachette des thyristors et des triacs. Il est important de respecter le sens de branchement des bobinages, puisque l'impulsion de courant que le transformateur transmet est orientée dans le sens de conduction des semi-conducteurs. 
IV.5) [image: image253.emf] 
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Transformateur d'isolement :

Transformateur tel que m = 1. Utilisé pour assurer une isolation galvanique entre circuits, ou encore adapter le régime de neutre (schéma de mise à la terre) aux besoins de l'installation. Exemple : IT TN-S 
IV.6) [image: image254.emf] 

U’ 2  = m U 1CC  

L 2   N1 spires r1 résistances  f1  fuites 

  R 2  

I2CC 

Transformateur à écran : 
Transformateur d'isolement incluant un écran électrostatique (utilisation : CEM) 
IV.7) [image: image255.emf] 

U’ 2  = m U 1CC  

L 2   N1 spires r1 résistances  f1  fuites 

  R 2  

I2CC 

Transformateur de sécurité : 
Transformateur à écran à isolation renforcée (utilisation : CEM et sécurité électrique) 
IV.8) [image: image256.wmf] 
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Transformateur à point milieu :
Transformateur dont le primaire ou le secondaire possède une borne de connexion supplémentaire au milieu de l'enroulement. Permet un schéma symétrique 
IV.9) [image: image257.emf] 
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Autotransformateur :
[image: image258.emf] 
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Transformateur simplifié à un seul enroulement. Ne permet pas l'isolation galvanique, mais autorise un réglage fin de la tension secondaire par déplacement du curseur servant de connexion de sortie sur l'enroulement. 
V) Refroidissement des transformateurs

Il est nécessaire de refroidir les transformateurs de grosses puissances afin d'éviter la détérioration des

vernis isolants (courant de Foucault). Ce refroidissement peut se faire de différentes façons:

V.1) Refroidissement dans l'air 

Le transformateur est mis dans une enceinte grillagée, la ventilation peut être naturelle ou forcée (ventilateur)

V.2) Refroidissement naturel dans l'huile 

Une cuve renferme le transformateur. Cette cuve est munie d'ailettes. L'huile se refroidit au contact des parois (échange thermique)
V.3) refroidissement par radiateur d'huile 

L'huile circule naturellement dans un radiateur séparé de la cuve. Ce radiateur peut être ventilé et la circulation d'huile forcée par une pompe.
V.4) Refroidissement avec hydroréfrigérant 

La circulation de l'huile s'effectue dans une cuve contenant des tubes à l'intérieur desquels circule de l'eau froide.

V.5) Rôle du diélectrique

Le diélectrique assure le refroidissement et l'isolement des transformateurs. Selon les tensions appliquées aux enroulements, l'isolement peut être assuré par: l'air, c'est le cas des petits transformateurs en BT l'huile minérale, très employée dans tous les transformateurs de puissance, mais elle présente des risques d'incendies et d'explosion de quartz, c'est un sable qui étouffe les flammes mais rend le refroidissement plus difficile.
D’autres infos

· Transformateur type TED 

· Transformateur type TEH

· Transformateur type

http://www.augier.com/fra/public/public3fr.htm
Transformateurs Triphasés

I) Présentation
I.1) Constitution :

Un transformateur triphasé comporte un primaire et un secondaire qui peuvent être couplés de diverses manières. 
I.2) Plaque signalétique :

La plaque signalétique nous renseigne sur :  

Nom du constructeur et numéro de fabrication 
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La tension secondaire à vide U2V.

Les courants nominaux 
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I.3) Couplages :
Le rapport de transformation d’un transformateur triphasé est le quotient 
[image: image165.wmf]20
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A la différence du transformateur monophasé ce rapport n’est pas toujours égal à 
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 car il dépend du mode de couplage. 
I.3.1) [image: image260.emf] 
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Notations :

Une ligne correspond aux enroulements sur un noyau.

A,B,C sont les bornes hautes tension et a,b,c les bornes basses tension. 
Ces bornes correspondent aux bornes homologues.

On suppose les enroulements bobinés dans le même sens.

Ainsi les tensions VA et Va sont en phases
I.3.2) [image: image261.emf] 
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Indice horaire h:

L’indice horaire est un nombre h multiplié par 
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 qui indique le déphasage ( compté en sens horaire d’une tension simple ou composée du secondaire 
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I.3.3) Choix des couplages :

· La présence du neutre dans les installations basse tension permet d’obtenir 2 types de tension : simple pour les usages domestiques usuels ou composée pour l’alimentation des petits moteurs.

· Il est intéressant en haute tension d’avoir un couplage qui fait apparaître le neutre. Le neutre, les parties métalliques et magnétiques sont mises au potentiel de la terre ce qui réduit l’isolement des bobines haute tension.
· On évite d’avoir le même couplage au primaire et au secondaire pour ne pas transmettre intégralement le déséquilibre éventuel des courants. Sin le neutre est nécessaire des deux côtés alors le montage Yz ou Zy est alors communément employé.

I.3.4) Couplages courants :

	Symbole
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Exemple :

· Couplage étoile triangle Yd1 : 

· Les tensions sur une même colonne 
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· Rapport des tensions 
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· [image: image263.emf]Couplage zig zag Yz 11:
· Les tensions sur une même colonne 
[image: image203.wmf]A

V

r

 et 
[image: image204.wmf]a

V

r

 sont toujours en phase : on recherche le déphasage de 
[image: image205.wmf]AN

V

r

 par rapport à 
[image: image206.wmf]an

V

r

 (identique à 
[image: image207.wmf]AB

U

r

 par rapport à 
[image: image208.wmf]ab

U

r

). La construction de Fresnel donne 
[image: image209.wmf]AAN

VV

=

rr

 et 
[image: image210.wmf]22

ab

an

VV

V

=-

rr

r

 nous permet de déterminer 
[image: image211.wmf]11

6

an

AN

V

V

p

y

=´

r

r

 donc l’indice horaire est de 11 
· Rapport des tensions 
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 fait apparaître un triangle isocèle dans lequel 
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I.4) Modélisation
I.4.1) Modèle équivalent par phase:

On raisonne comme si le transformateur triphasé au secondaire était composé de trois transformateurs monophasés où le secondaire serait monté en étoile. On utilise alors le modèle du transformateur monophasé où la résistance et l’inductance de fuite primaires sont ramenées au secondaire.

Le modèle ci-dessous est celui de la phase A. Les tensions secondaires Va , Vb , Vc sont modifiées lorsque le transformateur est chargé. Pour la phase a, on introduit V20 tension à vide phase neutre ce qui permet de faire intervenir l’indice horaire.


[image: image220.wmf]201

j

VmVe

a

=×

 avec 
[image: image221.wmf]·

(

)

0

,2

6

Aa

VVh

p

ap

==-´

rr

 donc 
[image: image222.wmf]6

201

jh

VmeV

p

-

=×



[image: image223.emf] 

V1 

V ’ 1  

V ’ 2  = V 20  

N 1   N 2  

L S   N1 spires r1 résistances  f1  fuites 

  R S  

V 2  

I 2  

R µ   L µ  

I 1 µ A   I 1 µ R  

I µ  

6

jh

me







 

I 1   I ’ 1  

A  

N   n  

a  


I.5) Bilan des puissances :


[image: image224.emf] 

Puissance fournie  

1111

3cos PUI

 

 

Aux bornes de  l’enroulement  primaire   Dans   l’enroulement  primaire  

Dans   le fer  

Dans   l’enroulement  secondaire  

Charge  

Puissance fournie  

1111

3sin QUI

 

 

Pertes Joules   2

111

3

J

PrI



  Pertes fer  

22

2

11

1

3

3

ferµµA

µµ

VU

PRI

RR



 

Pertes Joules  

2

222

3

J

PrI



 

Puissance  absorbée par le  flux de f uite  

2

111

3

ff

QI

 



 

Puissance magnétisante  

22

2

11

111

3

33

MµRµµR

µµ

VU

QVILI

LL











 

Puissance  absorbée par le  flux de fuite  

2

222

3

ff

QI

 



 

Puissance  utile  

2222

3cos PUI

 

 

Puissance  disponible  

2222

3sin QUI

 

 


II) Essais
II.1) Détermination du modèle : essais

II.2) Essai à vide sous tension nominale

Les pertes fer 
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De même la puissance réactive » nécessaire à l’installation flux » 
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II.3) [image: image264.emf]Essai en court circuit à courant nominal sous tension réduite

Les pertes Joule permettent de déterminer 
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[image: image265.emf]On en déduit aisément 
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II.4) Diagramme de Kapp :

Comme en monophasé on obtient 
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II.5) Rendement :
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Le rendement est déterminé soit :

· par la méthode des pertes séparées : essai à vide et en court circuit.

· par la méthode directe par un essai en charge.
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II.6) Mise en parallèle de deux transformateurs 
Les transformateurs sont des machines statiques dont la durée de vie est très longue.

Supposons que l’on construise une usine dont l’ensemble des récepteurs absorbe une puissance apparente de 1 MVA. On installera un transformateur d’alimentation de puissance apparente légèrement supérieure à 1 MVA. 
Si l’usine décide de s’agrandir et que l’ensemble des récepteurs doit absorber, 3 MVA, deux solutions se présentent. 
· Une première solution est de débrancher le transformateur existant et de le remplacer par un transformateur de puissance un peu supérieure à 3 MVA, c’est une solution ‘’chère’’.

· Une deuxième solution consiste à acheter un transformateur de puissance apparente un peu supérieure à 2 MVA et à le placer en parallèle sur le transformateur déjà en place. Cette solution est moins onéreuse.

Mais, pour que l’on puisse coupler à vide 2 transfos triphasés, il faut que leurs diagrammes vectoriels de tension coïncident (pas de ddp entre deux bornes), il faut que les deux transformateurs possèdent le :

·  Même rapport de transformation

·  Même ordre de succession des phases

·  Même décalage angulaire ou même indice horaire (éventuellement séparés de 4 ou 8) , ils doivent donc appartenir au même groupe.
· De plus, pour avoir une répartition correcte des puissances entre les 2 transfos en charge, il faut aussi qu’ils aient la même chute de tension donc pratiquement la même tension de court -circuit
II.7) Transformateur triphasé en charge en régime sinusoïdal déséquilibré 
Si le système des tensions primaire et secondaire est équilibré, on peut alors déterminer les courants secondaires par la méthode de Fortescue par exemple.

Puis l’étude du théorème d’Ampère permet de trouver la relation entre courants primaires et secondaires.
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Sur chaque colonne en négligeant le courant à vide (donc µ infini), le théorème d’ampère est applicable et donne
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II.8) Transformateur triphasé en charge en régime non-sinusoïdal de courant équilibré 
Si le système des tensions primaire et secondaire est équilibré et sinusoïdal

L’étude du théorème d’Ampère permet de trouver la relation entre courants primaires et secondaires.
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Sur chaque colonne en négligeant le courant à vide (donc µ infini), le théorème d’ampère est applicable et donne
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Les composantes continues des courants n’interviennent pas dans le couplage, mais modifient le flux magnétique.

C’est ce qui se passe par exemple dans le cas du redresseur à diode.
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