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A Principes théoriques

I - Préliminaires

I.1 - Objet

Ce paragraphe, et lui seulement, s'adresse à des initiés dans la mesure où il utilise des termes qui seront définis et expliqués dans la suite. C'est normal : comment parler d'un "objet" sans savoir qu'il existe ?

Bref, l'objet essentiel de cette version est l'étude des systèmes à partir de leurs fonctions de transfert. Pour cela nous supposerons :

· qu'elles existent,

· qu'elles correspondent à des systèmes causaux,

· que les systèmes correspondant ont des domaines de stabilité.

I.2 - Présentation du document

I.2.1 - Mode d'emploi

I.2.1.1 -  Organisation
I.2.1.2 -  Prérequis
I.2.1.3 -  Notations

· ( : ensemble des réels,

· 
[image: image1.wmf]*

Â

 : ensemble des réels privé de 0,

· C : ensemble des nombres complexes,

· 
[image: image2.wmf]D

 : sauf indication contraire, discriminant d'un polynôme du second degré.

· A.N. : Application Numérique

· j : imaginaire pur tel que 
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. C'est la variable i des ouvrages de mathématiques.

· 
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 est le conjugué de x. Il arrivera que utilisions la notation 
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 : a et b sont congrus modulo 2π
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, autrement dit : logarithme népérienXE "logarithme népérien"
· 
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, autrement dit : logarithme de base aXE "logarithme de base a"
· 
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, autrement dit : logarithme décimalXE "logarithme décimal"
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, il s'agit de la fonction tangente notée selon la normalisation internationale.
· 
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 distribution échelon unitéXE "distribution échelon unité" ou distribution d'HeavisideXE "distribution d'Heaviside"
· 
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 : distribution de Dirac

· 
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 : partie réelle de z.

· 
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 signifie 
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 avec 
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 et ( aussi petit que l'on veut.

· H(ω) est la fonction (voire la distribution) définie par H(p) lorsque p est imaginaire pur (partie réelle nulle). Cela revient à écrire 
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 : ce qui est une erreur puisque bien évidemment 
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 ! Certains ouvrages écrivent H(j() pour cette raison. Nous conserverons néanmoins cet abus d'écriture afin de ne pas alourdir les formulations. Le nom de la variable suffira à discerner la fonction dont il s'agit.

· 
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 : degré du polynôme P(x).

· 
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 : H(p) est la transformée de Laplace de x(t).
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 : H(() est la transformée de Fourier de x(t).

· 
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 est l'ensemble des valeurs de ( qui vérifient la condition.

· 
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 est le plus grand entier inférieur ou égal à x, il est aussi appelé : partie entière de x (fonction plancher).

· 
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 est le plus petit entier supérieur ou égal à x (fonction plafond).

· n! : factoriel n c'est-à-dire 
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· x^0.5 = 
[image: image29.wmf]2

 cette notation est empruntée à certains langages de programmation.

· 
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 est le radian par seconde.

I.2.2 - Références

Ce document s'est parfois inspiré des ouvrages suivants :

· "Éléments de théorie du signal : les signaux déterministes", Jean-Pierre Delmas, Collection Pédagogique de Télécommunication, Ellipses, 1995, ISBN : 2-7298-4522-4

· "Automatique linéaire – servomécanismes - régulation", G. Ney, École Supérieure d'Électricité, n° : 2344, 1974

· "Distributions et transformation de Fourier", F. Roddier, Ediscience, McGraw-Hill, 1978. ISBN : 2-7042-1004-7

· "Manuel d'applications C.I.L.", Tome 3, Filtres actifs à amplificateurs opérationnels, J.F. Gazin, Thomson-CSF, Sescosem, 1974.

I.2.3 - Outils d'aide à la réalisation

Quelques unes des courbes tracées dans ce document l'ont été avec Graph, version 4.3, Ivan Johansen, 2006. Dans la suite le lien Graph permet d'accéder à une version de l'exécutable. Il suffit de le télécharger et de l'exécuter. Pour que le lecteur puisse construire les courbes lui-même je donne les équations des fonctions à insérer. Celles-ci sont indiquées en gras sur fond grisé de la façon suivante :
Équation de la fonction à insérer dans Graph : if(x<0,0,x*exp(-x))
La marche à suivre est la suivante :

· à l'aide du pointeur, sélectionner puis copier la fonction inscrite en gras sur fond grisé, ici : if(x<0,0,x*exp(-x))
· ouvrir l'application Graph,

· dans la fenêtre "Choix pour les axes", onglet "axe des abscisses" : cocher "échelle logarithmique",

· dans la fenêtre "Choix pour les axes", onglet "Paramètres", zone "Trigonométrie" cocher "Degré",

· dans l'onglet "Fonction" cliquer sur "Insérer une fonction...",

· dans la fenêtre "Insérer une fonction", dans la boîte "Équation associée à la fonction" coller l'équation précédemment copiée, ici : if(x<0,0,x*exp(-x))

· cliquer sur le bouton OK et la courbe s'affiche.

Il existe un certain nombre de logiciels de simulation. J'utilise volontiers : PSpice 9.2 de la famille Orcad.

I.3 - Échelles linéaire et logarithmique

A l'issue de ce chapitre, nous seront capables de :

· comprendre l'usage des échelles linéaires et logarithmiques,

· confectionner un axe selon une échelle logarithmique adaptée aux valeurs expérimentales de la variable étudiée,

· repérer les valeurs particulières d'une fonction dans une telle échelle,

· interpréter les valeurs particulières de sa dérivée première dans cette même échelle.

I.3.1 - La courbe d'une fonction

Dans la suite, contrairement aux ouvrages de mathématiques, nous avons choisi l'expression G(ω) et non pas f(x) tout simplement parce que G et ( sont les lettres communément utilisées pour représenter ce que nous définirons plus loin par gain et pulsation.

L'objectif est de représenter graphiquement une fonction G(ω) à l'aide de ce qu'on appelle communément sa "courbe" définie par l'expression :
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 est appelée l''échelleXE "échelle" avec laquelle est représentée ( sur l'axe des abscisses.

Généralement, dans neuf cas sur dix, f est la fonction identité c'est-à-dire 
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 et donc C(() = G((). Cette coïncidence a pour conséquence de ne pas avoir à évoquer C(l) et de confondre la courbe et la fonction au point qu'on entend parfois dire : "la courbe G(()" ! Ceci parce que toute échelle linéaire est d'un usage intuitif.

Alors, qu'est-ce qu'une échelle non linéaire et pourquoi faire ? Cela revient à se demander s'il y a un intérêt à dessiner une courbe sur une feuille de caoutchouc d'épaisseur variable pour l'observer après qu'on ait tiré dessus avec une force donnée !!? Et bien c'est qu'effectivement il y a souvent avantages à observer certaines parties d'une courbe plus précisément que d'autres. On s'arrangera en effet à ce que ces parties soient dessinées sur des parties fines de la feuille de caoutchouc, les graphiques inscrits sur elles seront zoomés… ! Il se trouve qu'en traitement du signal cet avantage est apprécié à cause, entre autres, de la dynamique importante des variables utilisées. Mais un inconvénient apparaît : sur la feuille de caoutchouc la dérivée de G(() n'a pas de représentation graphique immédiate…

I.3.2 - Échelle linéaire

Dans une première lecture on pourra faire l'économie de l'annexe : II -

 REF _Ref199392843 \h  \* MERGEFORMAT 
Notions d'axe et d'échelle. Elle doit cependant être comprise pour une complète compréhension de ce qui suit en particulier pour tout ce qui concerne le vecteur unité 
[image: image36.wmf]u

r

. La construction d'un axe selon une échelle linéaire va sans doute paraître dénuée d'intérêt au lecteur expérimenté. Nous pensons le contraire parce qu'elle prépare celle d'un axe selon une échelle logarithmique.

I.3.2.1 -  Définition

L'échelle linéaireXE "échelle linéaire" est définie par :
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où :

· 
[image: image38.wmf]0
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. C'est un scalaire (coefficient sans dimension).

· l est un nombre de vecteurs unités (
[image: image39.wmf]u
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). 
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 et il est sans dimension. La connaissance de l permet de nous positionner sur l'axe représenté par un trait horizontal dans le cas des abscisses. L'usage est que l'on :

· matérialise certaines valeurs entières de l par de petits tirets en travers de l'axe en y inscrivant la valeur en regard,

· munisse l'extrémité droite du trait horizontal par une flèche elle-même orientée vers la droite.
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· ( est un nombre d'unités de vitesse angulaire : le rad/s. 
[image: image42.wmf]Â
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 et il est sans dimension. C'est la variable à repérer sur l'axe. On l'appelle pulsationXE "pulsation". On préfèrera prendre la lettre f lorsque l'unité de vitesse est 2( rad/s. On parle alors de fréquenceXE "fréquence". La variable et son unité sont inscrites vers l'extrémité droite de l'axe, généralement dessous et entre parenthèses pour la seconde. Après avoir mentionné que l'échelle est linéaire, au moins deux valeurs de ω doivent être inscrites et matérialisées par de petits tirets en travers de l'axe. Sinon il n'est pas possible de retrouver l'échelle, c'est-à-dire la valeur de a, autrement qu'en la précisant par ailleurs comme par exemples : 2 cm = 1 rad/s, 1 division = 2 rad/s,… On parle de normalisationXE "normalisation" de l'axe, elle est incontournable. Afin de faciliter la lecture de l'axe les deux valeurs précédemment évoquées seront des valeurs simples comme 0 et 1 par exemple. Il peut se faire que d'autres valeurs soient préférables. Les valeurs supplémentaires sont choisies en fonction de l'intérêt qu'elles présentent.
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Remarque : 
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. Sachant que 
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 on en déduit a = 0,5. Notons que 1/a est la valeur de ω qui s'inscrit en l = 1. On peut aussi dire que 1/a est la quantité qu'il faut ajouter à ω pour faire que l croisse de 1.

On pourrait mentionner quelque part 2 cm = 2 rad/s puisque c'est ici le cas (attention aux paramétrages de votre écran : les centimètres n'en sont peut-être pas !). Ceci dispenserait alors d'inscrire l et ses différentes valeurs. On pourrait aussi laisser l'utilisateur mesurer lui-même le module de 
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 et donc ne pas préciser que 2 cm = 2 rad/s. On peut même aller plus loin dans la mesure où finalement 
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 ne sert à rien dans la lecture de l'axe. D'ailleurs notons qu'on peut en changer cela revient à modifier a. En conséquence et conformément à l'habitude l'axe peut être dessiné comme ci-dessous :
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Remarque : sans précision l'échelle d'un axe est linéaire. Il n'est donc pas nécessaire de la préciser si c'est le cas.

→Début niveau 2 : espace vectoriel
Remarquons que (a) est la matrice, uniligne et unicolonne, associée à la transformation linéaire de l'espace des pulsations à l'espace spatial qu'est l'axe sur la feuille de papier sur laquelle nous allons représenter la variable 
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→Fin niveau 2 : espace vectoriel
I.3.2.2 -  Construction pratique

Le problème s'énonce ainsi.

Soit à tracer la courbe d'une fonction G((). On suppose que ( varie entre une valeur minimale 
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 et une valeur maximale 
[image: image51.wmf]7

,

34

)

max(

=

w

. On souhaite repérer cette variable sur l'axe des abscisses selon une échelle linéaire.

Une démarche identique sera utilisée pour l'échelle logarithmique. C'est pour cette raison que, quand bien même ils sont inutiles comme cela a été dit précédemment, nous allons conserver l et 
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 parce que nous en aurons besoin pour l'échelle logarithmique.

1. On détermine l'amplitude des valeurs de l c'est-à-dire 
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. Sachant que 
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Or, comme c'est le cas dans notre exemple, 
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 a toutes les chances d'être un réel et élaborer un axe avec 
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 non entier n'est guère commode. Il est admis, absolument par tout le monde de lui choisir l'entier le plus proche qui permet de repérer toutes les valeurs exigées de (. On montrerait que cet entier est défini par :
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2. Le choix de a est totalement libre et il est toujours possible de choisir 
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 de façon que a = 1.

3. On détermine l'amplitude des valeurs de l, soit 
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Remarque : l'axe repérera la valeur minimale de l = 9 et la valeur maximale de l = 35.

4. Soit L la largeur du support utilisé. On en déduit l'unité géométrique 
[image: image62.wmf]l
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Exemple : si le support utilisé est une feuille de papier au format A4, et si l'on souhaite préserver une marge à gauche et une marge à droite chacune de 2 cm, alors L = 21–2(2 = 17 cm, d'où : 
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. Il est bon d'arrondir ce résultat à une valeur inférieure plus commode à l'usage au détriment de l'usage total de la largeur de la page. Nous avons choisi :
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Remarque : on ne peut arrondir à une valeur supérieure car alors il ne serait plus possible de représenter toutes les valeurs de ω initialement souhaitées.

5. La valeur de l = ω = 9 est matérialisée à gauche par un tiret vertical en travers de l'axe. On matérialise au moins une autre valeur et pourquoi pas l = ω = 11 qui se trouve à 1 cm à droite de la valeur précédente. Ceci est un minimum si l'on précise que l'axe respecte une échelle linéaire. Mais d'une part cette précision n'est pas toujours exprimée et d'autre part il est admis que le concepteur de l'axe repère davantage de valeurs afin d'en permettre une lecture plus immédiate. Dans l'exemple ci-dessous nous avons repéré toutes les valeurs impaires de ω.
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Remarques :

· le vecteur unité a été déporté de l'axe pour ne pas nuire à sa lisibilité (voir annexe : II -

 REF _Ref199392842 \h  \* MERGEFORMAT 
Notions d'axe et d'échelle). Rappelons qu'il n'apporte aucune information et qu'il pourra être omis.

· l = ω ( la lettre "l" et ses valeurs n'ont pas besoin d'être inscrites.

D'où la représentation finale de l'axe avec les repères des valeurs extrêmes souhaitées de ( :
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Maintenant d'autres valeurs de ω peuvent être repérées selon l'intérêt qu'elles présentent dans l'expérimentation faite par l'auteur mais conformément à l'énoncé elles sont au moins comprises entre 9,5 et 34,7.

I.3.2.3 -  Avantages / inconvénients

L'échelle linéaire est de loin la plus utilisée pour les deux avantages suivants :

· une grande simplicité d'utilisation : il suffit de compter un nombre (entier ou réel) d'unités pour repérer une valeur de (. L'unité peut être un nombre de cm (0,5 cm sur notre figure) ou de carreaux sur une feuille quadrillée.

· elle est la seule utilisée en analyse mathématique pour représenter graphiquement la dérivée première de G(ω).

Inconvénients de l'échelle linéaire : on aimerait bien pouvoir représenter sur X toutes les valeurs de ( (en fait, tous les vecteurs 
[image: image67.wmf]v
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). Mais aucun support (la feuille de papier sur laquelle est tracé X) ne le permet pour deux raisons :

· il est de dimension finie et donc les grands vecteurs (( grand) ne peuvent être représentés par des valeurs correspondantes de l,

· l'outil utilisé (crayon à papier) pour dessiner les vecteurs possède une résolution finie. Autrement dit, la mine de crayon, aussi fine soit-elle, ne permet pas de distinguer deux vecteurs dont les correspondants sur X ont une différence inférieure à son épaisseur.

L'échelle logarithmique pallie, en partie, cet inconvénient.

I.3.2.4 -  Exemple : échelle cartographique

→Début niveau 2 : échelle cartographique
L'échelle utilisée en cartographie procède du même principe : représenter une longueur sur le terrain par une longueur sur un papier. La différence est qu'il n'y a pas application d'un espace vectoriel dans un autre mais application d'un espace dans lui-même (espace spatial). Il s'agit donc d'un changement de base. Sachant que a est systématiquement égal à 1, si 
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 est l'unité de l'axe X et si 
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 est le vecteur de base sur le terrain, il existe essentiellement deux façons de préciser l'échelle adoptée :

· par l'indication de la correspondance 
[image: image70.wmf]W
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. Exemple : 1 cm ↔ 2,5 km,

· par le rapport des modules des unités : 
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→Fin niveau 2 : échelle cartographique
I.3.3 - Échelle logarithmique

La compréhension complète de ce chapitre nécessite celle de l'annexe : II -

 REF _Ref199392843 \h  \* MERGEFORMAT 
Notions d'axe et d'échelle. Nous allons suivre le même enchaînement que celui du § : I.3.2 -

 REF _Ref201072596 \h  \* MERGEFORMAT 
Échelle linéaire. Nous conseillons vivement au lecteur de s'y reporter dans la mesure où nous n'avons pas repris ici, parce qu'identiques, certains commentaires.

I.3.3.1 -  Définition

XE "échelle logarithmique"L'échelle logarithmique est définie par :
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où :

· 
[image: image74.wmf]1
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. C'est un scalaire. appelé : base logarithmiqueXE "base logarithmique",

Si a prenait une valeur telle que 
[image: image75.wmf]1
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 l'échelle serait décroissante. Dans une telle échelle lorsque l augmente ω diminue. Ceci est contraire à toutes les habitudes de repérage. Ce serait vouloir compliquer les choses sans aucun avantage.

Si a = 1 l'échelle n'est pas définie…!

· l et ω ont des rôles et des matérialisations identiques à ceux du chapitre sur l'échelle linéaire, voir : I.3.2.1 - 

 REF _Ref200981841 \h  \* MERGEFORMAT 
Définition. Les notions de pulsation et de fréquence sont analogues. Là encore la normalisationXE "normalisation" de l'axe est incontournable pour pouvoir le lire. Si l'on sait que l'échelle est logarithmique, au moins deux valeurs de ω doivent être inscrites et matérialisées par de petits tirets en travers de l'axe. Exemple :
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Remarques :

· ω = 0 est rejeté à l'extrême gauche de l'axe (
[image: image77.wmf]-¥

®

l

). Cette valeur n'est donc pas représentable,

· la valeur 
[image: image78.wmf]1
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 est représentée par l'origine de l'axe (l = 0),

· les valeurs négatives de ω ne peuvent être représentées. Nous verrons que dans nos applications cela est sans importance.

· les valeurs de ( comprises entre 0 et 1 sont représentées sur l'axe par des valeurs négatives de l. Plus ( est proche de 0 et plus l tend vers ((. Dans la pratique il est rare de s'intéresser à des valeurs extrêmement petites (proches de 0+). Cela reste bien évidemment possible mais augmente la longueur de l'axe comme nous le verrons plus loin.

· dans l'exemple précédent 
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. Sachant que 
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 on en déduit a = 3. Notons que a est la valeur de ω qui s'inscrit en l = 1. On peut aussi dire que a est le coefficient par lequel il faut multiplier ω pour faire que l croisse de 1. On pourrait mentionner quelque part 2 cm ( ω est multiplié par 3 (attention aux paramétrages de votre écran : les centimètres n'en sont peut-être pas !). Ceci dispenserait alors d'inscrire l et ses différentes valeurs. On pourrait aussi laisser l'utilisateur mesurer lui-même le module de 
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 et donc ne pas préciser que 2 cm ( ω est multiplié par 3. On peut même aller plus loin dans la mesure où finalement 
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 ne sert à rien dans la lecture de l'axe. D'ailleurs notons qu'on peut en changer cela revient à modifier a : 
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 est choisi librement.

· comme on vient de le voir, sur un axe dont l'échelle est logarithmique on observe qu'en se déplaçant d'une quantité constante vers la droite la variable est multipliée par une quantité constante. C'est une caractéristique de ce type d'échelle et il est possible de s'en apercevoir à condition alors qu'un minimum de trois valeurs de ω soient repérées. La mention du type d'échelle, "échelle logarithmique", n'est alors pas nécessaire.

En conséquence de tout ce qui vient d'être dit, et conformément à l'habitude, l'axe précédent peut être dessiné comme ci-dessous :
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I.3.3.2 -  Repérage dune valeur particulière

Un axe a été tracé selon la figure suivante. On demande de repérer exactement la valeur ( = 100.
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– Figure : 1 –

· Détermination de l'échelle. Dans la mesure où l'échelle n'est pas précisée elle est soit linéaire soit logarithmique. On observe ici qu'elle est logarithmique puisque les valeurs successives indiquées (10, 30, 90,…) sont repérées de façon équidistante et multipliées par 3 systématiquement.

· Détermination de 
[image: image86.wmf]u
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. Nous le choisissons de façon que son origine et son extrémité correspondent à des valeurs de ( repérées sur l'axe, d'où la figure ci-dessous en appelant 
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[image: image88.wmf]30

=

w

l

 les composantes respectives de leurs distances (voir annexe II -

 REF _Ref199392842 \h  \* MERGEFORMAT 
Notions d'axe et d'échelle) :
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· Détermination de la base logarithmique. 
[image: image90.wmf]1
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. D'où a = 3.

· Détermination de la composante de la distance de la graduation de ( = 100. Soit 
[image: image91.wmf]100
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 cette composante. Alors 
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· Détermination de la distance à l'origine de l'axe de la graduation de ( = 100. Soit 
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 cette distance. 
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. A l'aide d'un double décimètre on mesure 
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. Mais on ne dispose pas de l'origine de l'axe…!! D'où la suite :

· Détermination de la distance entre la graduation de ( = 10 et celle de ( = 100. 
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. D'où la distance correspondante : 
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· Le résultat :
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Remarques :

· les valeurs de l correspondant aux valeurs repérées de ( ne sont pas, ici, des nombres entiers, pourquoi pas.

· deux graduations de ( suffisent pour définir 
[image: image100.wmf]u
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. Par exemple la réponse à la question précédente aurait été identique si l'usager avait défini le même axe de la façon suivante :
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En effet 
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 aurait pu être défini comme suit :
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et dans ce cas la nouvelle base logarithmique devient : 
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Du coup les nouvelles distances deviennent :
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Le nouveau module de 
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 est (mesuré avec un double décimètre) : 
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· lorsque l'échelle est explicitement précisée deux valeurs repérées de la variable sont suffisantes pour retrouver les paramètres de l'axe.

I.3.3.3 -  Module, décade, octave
EXTRAIT…
II - Signaux et systèmes : types et modèles

II.1 - Signal

Dans la suite nous appellerons signalXE "signal" toute manifestation ayant la forme d'une grandeur physiquement mesurable évoluant en fonction d'une ou plusieurs variables. Exemples :

· la tension électrique mesurée en volts à la sortie d'un microphone en fonction du temps (variable temporelle),

· la température mesurée en degrés à la surface d'un corps en fonction de l'endroit (variable spatiale) où la sonde est placée,

· l'intensité lumineuse mesurée en lumen à la surface d'un écran affichant une image en fonction de la distance au coin supérieur droit (variable spatiale),

· …

Dans la première version de ce document nous nous limiterons à une tension électrique à variable temporelle. Nous la noterons : x(t). Nous supposerons en outre :

· x(t) signal à temps continuXE "signal à temps continu" : elle est définie 
[image: image109.wmf]Â
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. S'oppose à cette qualité les signaux à temps discretXE "signal à temps discret", ils ne font pas partie de cette première version.

· x(t) signal déterministeXE "signal déterministe". Une fonction de la variable t permet de connaître x avec certitude quel que soit t donné. S'oppose à cette qualité les signaux aléatoiresXE "signal aléatoire" dont la valeur, pour t donné, n'est pas connue avec certitude mais prévisible avec une probabilité définie. Ces signaux ne font pas partie de cette première version.

Parmi les signaux précédents nous reconnaîtrons les signaux causauxXE "signal causal". Ils se caractérisent par le fait qu'il sont nuls avant un temps donné quelconque. Dès lors qu'un décalage temporel est toujours envisageable on peut restreindre la définition d'un signal causal à :
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II.2 - Système, filtre

II.2.1 - Définitions

Nous définirons un systèmeXE "système" comme étant un dispositif capable de transformer un ou plusieurs signaux appliqués à son ou ses entrées en un ou plusieurs autres signaux restitués à son ou ses sorties. Dans ce document nous nous limiterons :

· au cas des systèmes à une entrée et une sortie définies respectivement par : x(t) et y(t). Le schéma fonctionnel est :
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· au cas des systèmes réagissant aux signaux déterministes à temps continu.

Nous nous limiterons à la catégorie des systèmes qui vérifient les propriétés suivantes :

· linéaritéXE "linéarité". Un système est linéaire si à l'entrée 
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· invariance temporelleXE "invariance temporelle". Un système est invariant dans le temps, ou encore stationnaireXE "stationnaire", si son comportement est indépendant du temps. Plus précisément si à l'entrée 
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· continuitéXE "continuité". Un système est continu si à de petites variations dans le signal d'entrée ne correspondent pas des variations extrêmement importantes du signal de sortie. Plus précisément si un signal d'entrée est une somme de signaux tels que 
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 alors lui correspond un signal de sortie tel que 
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Les systèmes vérifiant ces trois propriétés sont appelés : filtresXE "filtres". Cette version ne s'intéressera qu'à eux.

Attention on aurait tort de penser qu'un filtre est un système qui n'a pour effet que de rejeter certaines fréquences. En particulier les asservissementsXE "asservissements" qui vérifient les précédentes propriétés sont des filtres.

II.2.2 - Causalité et stabilité des systèmes

Le paragraphe précédent nous a conduit à des restrictions sur les caractéristiques des systèmes qui nous ont amené à la notion de filtre. Or ces restrictions sont insuffisantes si l'on veut pouvoir réaliser ces filtres encore une fois supposés à variable temporelle, (il n'en est pas de même avec d'autres variables). Nous allons donc restreindre la version présente de ce document aux filtres ayant les deux propriétés suivantes :

· la causalitéXE "causalité". Il s'agit de filtres dont la sortie ne dépend pas du futur. En d'autres termes 
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 ne dépend que de x(t) pour 
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. Sinon on parle de prédiction mais alors rien n'est sûr et l'on parle de probabilité et la théorie est celle des signaux et systèmes aléatoires. Les filtres causaux sont parfois appelés filtres dynamiquesXE "filtres dynamiques". Un filtre non causal est appelé anticausalXE "anticausalité".

· la stabilitéXE "stabilité". La stabilité se décline selon deux critères :

· stabilité BIBOXE "stabilité BIBO". BIBO vient de "Bounded Input Bounded Output". Autrement dit, on considère qu'un système est stable si, lorsqu'à tout signal d'entrée x(t) borné, correspond un signal de sortie y(t) également borné. Dans le cas contraire on comprend que y(t) prend des valeurs infinies qui dans la pratique ne peuvent être réalisées. Notons qu'un système est déclaré instable BIBO si un seul signal d'entrée borné n'est pas restitué par un signal de sortie borné. Nous verrons le cas d'un système (l'intégrateur) instable BIBO et pourtant capable de restituer une sinusoïde bornée à une entrée sinusoïdale elle-même bornée et possédant une valeur moyenne nulle.

· stabilité asymptotiqueXE "stabilité asymptotique". Celle-ci se définit par le fait qu'à tout x(t) transitoire correspond y(t) tel que 
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. Autrement dit à tout signal transitoire, donc temporaire, le système fait correspondre une sortie qui s'estompe de plus en plus lorsque l'entrée a disparu. Dans le cas contraire, quel qu'ait été x(t) et maintenant nul depuis longtemps, il aurait un effet toujours actuel. C'est généralement non souhaité sauf dans le cas des oscillateurs.

II.2.3 - Fonctions de transfert : définitions

La façon avec laquelle un filtre intervient sur le signal d'entrée pour élaborer le signal de sortie peut être modélisée de différentes manières. On parle de :

· fonction de transfert temporelleXE "fonction de transfert temporelle" lorsque le modèle établit la relation entre le signal d'entrée et le signal de sortie dans le domaine temporel, y(t) est une fonctionnelle de x(t) :
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· fonction de transfert fréquentielleXE "fonction de transfert fréquentielle" lorsque le modèle établit la relation entre le signal d'entrée et le signal de sortie pour des signaux d'entrée sinusoïdaux.

Nous allons détailler cela dans ce qui suit.

(Début niveau 2 : modélisation par description interne
II.2.3.1 -  Équations différentielles.

Lorsque les composants constitutifs du système sont connus il est possible de décrire la transformation qu'impose un système au signal appliqué à l'entrée à l'aide d'équations différentielles. On parle de description interneXE "description interne", ou encore de modèle de connaissanceXE "modèle de connaissance", du système. En effet les systèmes physiques, dès lors qu'ils sont sollicités par un phénomène extérieur (signal d'entrée) réagissent par des variations de leur état impactant sur la grandeur observée ou signal de sortie. Par exemple dans le cas d'un système mécanique soumis à une force extérieure, ou signal d'entrée, sa position ou signal de sortie accuse des variations de position (variable x) et/ou des accélérations/ralentissements d'ordre plus ou moins élevés (dx/dt). Bref, ces variations sont des grandeurs qui, partant d'un certain état initial modélisé par des constantes, demeurent statiques ou varient avec plus ou moins de rapidité. D'où les notions de positions, de vitesses, d'accélérations,… et donc l'écriture d'équations faisant intervenir des dérivées d'ordres plus ou moins élevés. Bref, si l'on appelle x(t) le signal d'entrée et y(t) le signal de sortie, la plupart des systèmes réels peuvent être modélisés par une équation différentielle telle que :
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Les inconvénients d'une telle modélisation sont :

· la détermination de l'équation n'est souvent possible que dans les cas simples,

· la résolution de l'équation n'est pas toujours possible,

· la même équation différentielle, lorsque 
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 sont donnés quels que soient u et v, définit plusieurs systèmes parmi lesquels certains ne sont pas des filtres.

L'avantage d'une telle modélisation : obtention directe de la fonction de transfert temporelle.

(Fin niveau 2 : modélisation par description interne
II.2.3.2 -  Fonctions de transfert, spectre ou analyse fréquentielle

I -  Réponse impulsionnelle

Il est possible de prévoir l'allure de y(t) pour x(t) donné à l'aide d'une caractéristique propre au système et révélée sans connaître les composants qui le constituent. On parle de description externeXE "description externe" ou encore de modèle de représentationXE "modèle de représentation". Cette caractéristique s'obtient à l'aide d'une mesure sur le système en le considérant comme une boîte noire. Pour ce faire il "suffit" de choisir un signal d'entrée très particulier qu'est la distribution de Dirac et de relever le signal de sortie correspondant appelé réponse impulsionnelleXE "réponse impulsionnelle" du système. Nous ne définirons pas la distribution de Dirac mais dirons simplement que c'est un phénomène variant dans le temps tel que :

· il est nul en permanence sauf que

· il monte à l'infini au temps t = 0 et en redescend exactement au même instant…!

On appelle ce phénomène distribution de DiracXE "distribution de Dirac" et on le note ( (t). Notons que le temps mis pour monter à l'infini et en redescendre est nul 
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. Ceci pour dire qu'il ne s'agit pas d'une fonction mais d'une distribution que l'on représente graphiquement par une flèche de longueur 1 au temps t = 0.

La figure suivante représente l'expérience précitée et nous verrons dans la suite comment contourner la difficulté de réaliser ( (t).
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‑ Figure : 2 ‑

Remarques :

· un grand nombre d'auteurs notent la réponse impulsionnelle avec la lettre h minuscule,

· tous les filtres possèdent une réponse impulsionnelle.

Dès lors que l'on connaît h(t) on démontre qu'il est possible de calculer y(t) correspondant à x(t) quelconque. Ce calcul est ce que l'on appelle un produit de convolutionXE "produit de convolution" ou simplement convolutionXE "convolution" défini comme suit :
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La faculté de h(t) de permettre la connaissance du signal de sortie quel que soit le signal d'entrée en fait une caractéristique propre au système. On va même jusqu'à en faire le symbole du système comme le montre la figure suivante :
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Remarques :

· le produit de convolution est noté :
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· il possède un certain nombre de propriétés : linéarité, distributivité par rapport à l'addition, commutativité,…

· conformément à la figure 2 on observe que 
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. D'où :

δ(t) est un élément neutre pour le produit de convolution (*)
La difficulté est qu'il n'existe pas de générateur capable de réaliser ( (t). On ne pourra donc pas obtenir h(t) directement en introduisant ( (t) !! En revanche il est possible de déterminer h(t) expérimentalement via une autre approche.
On démontre en effet que h(t) est l'inverse de ce que l'on appelle la fonction de transfertXE "fonction de transfert", H((). Cette dernière peut être :

· déterminée de différentes façons dont l'analyse fréquentielleXE "analyse fréquentielle" et la réponse indicielleXE "réponse indicielle" que nous allons étudier ci-dessous,

· inversée grâce à des techniques dont nous verrons des exemples plus loin.

II -  L'analyse fréquentielle

On procède comme suit, voir la figure ci-dessous, :

· on soumet un signal sinusoïdal 
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 à l'entrée du système, avec A choisi et constant, et 
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 une première valeur elle-même choisie,

· on démontre qu'un système possédant les propriétés d'un filtre restitue alors à sa sortie un signal sinusoïdal de même fréquence 
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· on recommence pour un grand nombre de valeurs de (,
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Nous obtenons ainsi deux fonctions de la variable ( :

· 
[image: image136.wmf]A

B

H

)

(

)

(

w

w

w

=

®

,

· 
[image: image137.wmf])

(

w

j

w

®


Rassemblées, ces deux fonctions définissent la fonction complexe :
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Remarques :

· Selon les auteurs, la fonction de transfert, H((), peut s'appeler : fonction de transfert fréquentielleXE "fonction de transfert fréquentielle", spectreXE "spectre", fonction de transfert harmonique XE "fonction de transfert harmonique", ou réponse en fréquenceXE "réponse en fréquence" du système,

· L'expérience précédente s'appelle : analyse fréquentielleXE "analyse fréquentielle" ou analyse harmoniqueXE "analyse harmonique" voire régime sinusoïdalXE "régime sinusoïdal" du système. Cela vient de l'intérêt d'observer le comportement d'un système sur des signaux bien connus que sont les signaux sinusoïdaux. On parle d'interprétation fréquentielleXE "d'interprétation fréquentielle". Et il se trouve que les signaux réels sont en fait une combinaison linéaire (en d'autres termes : une somme pondérée) de signaux sinusoïdaux.

· H(ω) est issue d'un rapport entre deux grandeurs de même nature : signal de sortie sur signal d'entrée. Elle donc sans dimension.

· L'analyse fréquentielle peut être menée de façon purement théorique à partir de H(ω) à condition d'en connaître son expression par une détermination elle-même théorique. C'est ainsi qu'on montre que H(() peut s'obtenir :

· par une opération mathématique pratiquée sur h(t) lorsqu'elle est connue. Cette opération s'appelle transformation de FourierXE "transformation de Fourier". On dit aussi que H(() est la transformée de FourierXE "transformée de Fourier" de h(t), voir sa définition plus loin,

· à partir de la réponse indicielle du système, voir le § : VI - Réponse indicielle,
· grâce aux éléments qui le constituent, si ces derniers sont connus bien sûr. C'est souvent le cas lorsqu'on prévoit un circuit électrotechnique. Deux techniques sont ici possibles :

· les éléments du système possèdent des transformées de Fourier connues. Il suffit alors d'en déduire la transformée de Fourier de l'ensemble grâce à des règles de combinaison somme toute assez simples (lois de Kirchoff, loi des mailles, loi des nœuds),

· les éléments du système obéissent à des lois physiques permettant d'en déduire l'équation différentielle (2), nous en verrons des exemples.

· Remarque :

· lorsqu'on s'intéresse au système, on dit de H(() que c'est sa fonction de transfert fréquentielle,

· lorsqu'on s'intéresse à h(t) en tant que signal on dit de H(() que c'est sa transformée de Fourier.

· Notation :
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EXTRAIT…
II.2.3.3 -  Le gain

Sauf cas particuliers la fonction de transfert de Laplace ou fréquentielle est une fonction complexe. Deux grandeurs la définissent :

· soit : sa partie réelle et sa partie imaginaire,

· soit : son module et son argument.

Notons que c'est ce dernier cas qui fut utilisé dans le § : II - 

 REF _Ref195345948 \h  \* MERGEFORMAT 
L'analyse fréquentielle. Effectivement, dans cette version nous nous limiterons à la définition de la fonction de transfert via son module appelé gainXE "gain" et son argument appelé phaseXE "phase". Le gain et la phase sont des fonctions de p ou de ( selon qu'il s'agit de la fonction de transfert de Laplace ou de la fonction de transfert fréquentielle. Ces fonctions sont respectivement appelées courbe de gainXE "courbe de gain" et courbe de phaseXE "courbe de phase". Il est fréquent de confondre gain et courbe de gain. Il en est de même pour la phase. Sauf cas contraires nous étudierons les courbes de gain et de phase pour p imaginaire pur autrement dit pour p = jω. Le gain peut être exprimé de deux façons différentes :

III -  Gain arithmétique

Le gain arithmétiqueXE "gain arithmétique", parfois appelé simplement gainXE "gain", est par définition 
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 selon la norme (unité) choisie pour la variable (pulsation ou fréquence). Nous utiliserons indifféremment les deux. Le gain arithmétique est généralement utilisé dans les développements théoriques. C'est un nombre sans dimension puisque selon sa définition donnée en (3) il est issu d'un rapport.

IV -  Gain logarithmique

Le gain logarithmiqueXE "gain logarithmique" est par définition 
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. Le gain logarithmique est généralement utilisé dans les études pratiques. G(ω) est, par définition, exprimé en décibelsXE " décibel", notation : dBXE "dB".
Remarques :

· 
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· 
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Ce résultat, important, exprime que pour ω ≠ 0 une dérivée nulle de l'un quelconque des deux gains (arithmétique ou logarithmique) se représente par une tangente à pente nulle quelle que soit l'échelle de l'axe des abscisses.

· conformément à ce qui a été dit au § : I.3.4 – Représentation graphiques de la dérivée de G(() la pente de G(() est une représentation graphique de sa dérivée 
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 que si sa courbe est tracée dans un repère tel que l'axe des abscisses respecte une échelle linéaire. Dans ce cas et conformément à l'expression (3) sa dimension est le (dB/rad/s).

Dans le cas où l'axe des abscisses respecte une échelle logarithmique et conformément à l'expression (3) sa dimension est le (dB/l). Or l n'est qu'une variable intermédiaire physiquement pas très parlante. Sachant qu'à un accroissement dl = 1 correspond une multiplication de ( par la base logarithmique de l'échelle, sachant en outre que les bases les plus utilisées sont 10 ou 2, on exprimera la dimension de 
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 dans un repère dont l'axe des abscisses suit une échelle logarithmique en (dB/décade) ou (dB/octave).

Remarque subtile : la dimension choisie, (dB/décade) ou (dB/octave), est indépendante de la base logarithmique de l'échelle.

II.2.3.4 -  La phase

EXTRAIT…
III - Fonctions de transfert de la classe des fractions rationnelles

III.1 - Systèmes d'ordre nul

III.1.1 - L'amplificateur (atténuateur)

Il s'agit d'un système élémentaire.

III.1.1.1 -  Définitions

Système réel :
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Un tel système est appelé amplificateurXE "amplificateur".

Justifications des contraintes de définition :

· le fait que 
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 vient de ce que l'on ne s'intéresse qu'aux systèmes réels, même si l'on peut leur associer un filtre complexe associé.

· 
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 : pour les autres cas on ne parle pas d'amplificateur. Voir les paragraphes suivants.

Remarque: lorsque 
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 on préfère parler d'atténuateurXE "atténuateur".

Un amplificateur est symbolisé comme suit :
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III.1.1.2 -  Courbe de gain

Le gain logarithmique est : 
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III.1.1.3 -  Courbe de phase

Dans la mesure où 
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, nous devons recourir au système (18), soit : 
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III.1.1.4 -  Réponse impulsionnelle

L'inverse de H(p) = k est la distribution :
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III.1.1.5 -  Causalité

H(p) = k est définie quel que soit p. Elle est donc causale.

III.1.1.6 -  Stabilité

H(p) = k n'a pas de pôle et possède un numérateur et un dénominateur ayant mêmes degrés. Conséquence : seul le premier terme de la relation (20) existe : 
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III.1.1.7 -  Application

L'amplificateur est très souvent utilisé seul, toutes les fois où un signal a une amplitude trop faible pour être exploité.

On l'utilise également, toutes les fois où dans une fonction de transfert globale apparaît une constante. Celle-ci peut être isolée et considérée comme un amplificateur ayant une fonction de transfert, dans la représentation de Bode, :

· dont la courbe de gain est une constante,

· dont la courbe de phase est nulle,

· qui s'ajoute aux autres fonctions de transfert par :

· simple addition d'une constante pour la courbe de gain,

· aucune modification pour la courbe de phase (addition d'une valeur nulle).

Lorsque dans une telle fonction de transfert globale on isole une constante on parle plus volontiers de gain statiqueXE "gain statique" plutôt que d'amplificateur. Le qualificatif "statique" vient de ce qu'il est indépendant de la variable p donc de la fréquence.

III.1.2 - Le système identité

Il s'agit d'un système élémentaire.

III.1.2.1 -  Définitions

XE "système identité"
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Finalement il s'agit du cas de l'amplificateur dans lequel k = 1.

III.1.2.2 -  Courbe de gain

Le gain logarithmique est : 
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III.1.2.3 -  Courbe de phase

Dans la mesure où 
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III.1.2.4 -  Réponse impulsionnelle

L'inverse de H(p) = 1 est la distribution de Dirac :
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III.1.2.5 -  Causalité, stabilité

Ce sont les mêmes que celles de l'amplificateur.

III.1.2.6 -  Application

Le système identité se caractérise par sa transparence…! C'est un système qui ne fait rien, le signal ressort comme il est entré. En pratique on le trouvera dans les adaptateurs d'impédances qui sont supposés ne pas intervenir sur le signal.

III.1.3 - L'inverseur

Il s'agit d'un système élémentaire.

III.1.3.1 -  Définitions

XE "inverseur"
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Finalement il s'agit du système identité dans lequel k = (1. Le signal de sortie est l'opposé du signal d'entrée.

III.1.3.2 -  Courbe de gain

Le gain logarithmique est : 
[image: image173.wmf]2

2

0

1

log

20

)

(

log

20

)

(

+

×

=

×

=

w

w

H

G

. D'où :

[image: image174.wmf]0

)

(

=

w

G



[image: image175.wmf])

(

w

G

w


III.1.3.3 -  Courbe de phase

Grâce à (18) : 
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. D'un point de vue théorique ces deux valeurs sont parfaitement convenables. Pour des raisons d'interprétations pratiques nous garderons :
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III.1.3.4 -  Réponse impulsionnelle

L'inverse de H(p) = (1 est la distribution :
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III.1.3.5 -  Causalité, stabilité

Ce sont les mêmes que celles de l'amplificateur.

III.1.3.6 -  Application

L'inverseur permet de changer le signe d'un signal.

III.1.4 - L'amplificateur inverseur

XE "amplificateur inverseur"Il ne s'agit pas d'un système élémentaire. Il est défini par :

[image: image181.wmf]k

p

H

=

)

(

 avec 
[image: image182.wmf]1

et 

 

0

 

,

-

¹

<

Â

Î

k

k

k


Nous considérerons un tel système comme étant la mise en cascade d'un amplificateur et d'un inverseur. Ses propriétés s'en déduisent aisément.

III.1.5 - Le système nul

Ce système n'a aucun intérêt dans la mesure où il est défini par :
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Plus précisément un tel système rend nul tout signal affiché sur son entrée. C'est la "gomme" systématique !

III.2 - Systèmes du 1er ordre

III.2.1 - Fonctions de transfert à pôle nul : H(p) = k / bp

EXTRAIT…
B Filtre passe-bas

Il s'agit d'un système élémentaire du 1er ordre.
IV - Schéma fonctionnel
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La fonction de transfert générale est :
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La fonction de transfert fréquentielle est alors :
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Par identification avec la fonction de transfert générale :
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D'où :
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avec  : 
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 rd/s. On en déduit :
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Notons que la courbe de gain (ligne rouge) est très proche de son approximation asymptotique.
La phase a pour expression :
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V - Fonction de transfert fréquentielle

L'application numérique donne :
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Équation de la fonction à insérer dans Graph : if(x<0,0,-10log[1+3.9*10^(-5)*x^2])
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Équation de la fonction à insérer dans Graph : if(x<0,0,atan(-6.28*10^(-3)*x))
avec T = 10‑3 s
[image: image195.png]3(6), f(£).
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C Double intégrateur

EXTRAIT…
D Systèmes asservis

VI - Définition et propriétés d'un système asservi

Les systèmes asservis font partie de la théorie de l'automatiqueXE "automatique". Aussi nous n'en donnerons qu'une définition succincte l'objectif de ce chapitre étant de montrer que les systèmes asservis ne sont finalement qu'un exemple des systèmes en général et qu'il profitent pleinement de la théorie traitée dans ce cours.

Lorsque dans un système on observe que son schéma fonctionnel peut être considéré comme étant constitué :

· d'un sous-ensemble appelé chaîne principaleXE "chaîne principale" qui produit directement le signal de sortie,

· d'un sous-ensemble appelé boucle de contre-réactionXE "boucle de contre-réaction" qui réintroduit le signal de sortie vers l'entrée via un différenciateur, on dit aussi de chaîne de retourXE "chaîne de retour", on parle alors de système asserviXE "systèmes asservis". Ceci se justifie par le fait que dans de tels systèmes le signal de sortie est lié au signal d'entrée de façon qu'une perturbation d'origine quelconque soit corrigée le mieux possible. Pour cette raison on parle volontiers de consigneXE "consigne" pour le signal d'entrée.
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Lorsque les deux sous-ensembles, chaîne principale et boucle de contre-réaction, sont caractérisés par leurs fonctions de transfert respectives il est possible d'en déduire la fonction de transfert, notée FT, du système global. On a pour habitude de définir :

· 
[image: image197.wmf])
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bo

la fonction de transfert de la chaîne principale. Elle est aussi appelée fonction de transfert en boucle ouverteXE "boucle ouverte", notée BO, dans la mesure où elle correspond à la FT du système lorsque la boucle de contre-réaction est déconnectée.

· β(p) la FT de la boucle de contre-réaction.

· 
[image: image198.wmf])
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 la FT du système global. Elle est aussi appelée fonction de transfert en boucle ferméeXE "boucle fermée", notée BF, dans la mesure où elle correspond à la fonction de transfert du système lorsque la boucle de contre-réaction est effectivement connectée.

D'où la représentation suivante :
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Si l'on appelle X(p) et Y(p) les transformées de Laplace respectives des signaux d'entrée et de sortie alors :
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D'où 
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 la fonction de transfert du système global :
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EXTRAIT…
VII - Exemple : asservissement de position

EXTRAIT…
E Annexes

VIII - Notions d'axe et d'échelle

XE "axe"

XE "échelle"Nous n'avons pas souhaité introduire les notions d'espace affine et de norme. Bien qu'elles conduisent à une définition rigoureuse de repère elles supposent une abstraction certaine et ne sont pas nécessaires à notre objectif que sont la construction et l'utilisation d'un axe gradué selon une échelle logarithmique.

→Début niveau 2 : espace vectoriel
Définissons un axeXE "axe", X, comme un espace vectoriel de dimension 1 dont les vecteurs, [image: image203.wmf]d

r

, sont des distances spatiales dans une direction donnée
 à partir d'un point donné appelé origine et noté O. En d'autres termes X est l'espace vectoriel défini sur le corps des réels, (, et généré par le vecteur de base [image: image204.wmf]u

r

 ci-dessous représenté. [image: image205.wmf]u
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 est appelé unitéXE "unité". On peut écrire : [image: image206.wmf]u
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 où l est la composante de [image: image207.wmf]d

r

 sur la base [image: image208.wmf]u

r

. X constitue ainsi l'axe des abscisses que nous utiliserons désormais.

Remarque : les éléments de X étant des grandeurs spatiales, il est possible de leur associer des couples de points définis par une origine commune, le point O, et leurs différentes extrémités. Ceci pour dire que les éléments de X peuvent être dessinés sur un support physique quelconque (feuille de papier, écran d'oscilloscope,…),

La position de O ainsi que la longueur
 de [image: image209.wmf]u

r

, notée [image: image210.wmf]u

r

, sont choisis arbitrairement par l'utilisateur en fonction de ses besoins : amplitude de la variable à représenter, grandeur du support sur lequel est dessiné X,… [image: image211.wmf]u

r

 peut être défini par : un nombre de centimètres, un nombre de carreaux (sur une feuille de papier, sur l'écran d'un oscilloscope,…),…etc…

Lorsque la direction est horizontale [image: image212.wmf]u

r

 est traditionnellement orienté vers la droite.
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→Fin niveau 2 : espace vectoriel
En pratique, dans le cas de l'axe des abscisses, on représente graphiquement X :

· par une ligne horizontale munie en son extrémité droite d'une flèche vers la droite,

· en notant le vecteur [image: image214.wmf]u

r

 qu'exceptionnellement. Il est parfois reporté à l'extérieur de l'axe pour ne pas nuire à sa lisibilité,

· en matérialisant par des tirets verticaux ou graduationsXE "graduations" l'origine (l = 0) et l'unité (l = 1), c'est-à-dire l'extrémité de [image: image215.wmf]u

r

. Remarque : l est la première lettre du mot "longueur" ou de "linéaire".

· en matérialisant, par des tirets verticaux ou graduationsXE "graduations", les extrémités de quelques multiples entiers de l'unité, ([image: image216.wmf]u

k

r

×

), correspondant aux premières valeurs entières de l, ou éventuellement d'autres selon les besoins,

· en inscrivant la valeur de l auprès du tiret correspondant,

· en inscrivant les lettres l et X du côté de l'extrémité droite de l'axe.
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→Début de niveau 2 : espace vectoriel
L'axe X va nous permettre de représenter graphiquement les valeurs d'une variable [image: image218.wmf]v

r

 appartenant à un espace vectoriel monodimensionnel W. Car en fait lorsqu'on s'intéresse à la fonction G(ω) la variable ω est une grandeur physique représentée par un vecteur et l'on peut regretter la confusion tacite qui est faite entre la variable et sa composante (élément de () sur une base donnée. Soit [image: image219.wmf]W
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 un vecteur de base de W, il nous servira d'unitéXE "unité". Il existe alors (, unique, tel que : [image: image220.wmf]W
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. ( est la composante de [image: image222.wmf]v
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 sur [image: image223.wmf]W
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, c'est un scalaireXE "scalaire". On ne devrait donc pas écrire G(ω) mais [image: image224.wmf](
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Exemple emprunté au domaine qui nous intéresse : W est l'ensemble des vitesses angulaires [image: image226.wmf]v

r

. Si :

· [image: image227.wmf]W

r

 est une vitesse angulaire de 1 rad/s dans le sens positif (antihoraire), ω est alors appelée pulsationXE "pulsation".

· [image: image228.wmf]W

r

 est une vitesse angulaire de 2( rad/s dans le sens positif (antihoraire), ω est alors appelée fréquenceXE "fréquence". Dans ce cas on préférera prendre la lettre (. Remarquons que 2( rad/s correspond à une vitesse angulaire de 1 tour/s.

La nature physique d'une grandeur définit sa dimensionXE "dimension". Celle de [image: image229.wmf]W

r

 est une vitesse angulaire. Nous dirons que la dimension de [image: image230.wmf]v

r

 est le radian/seconde et noterons :

[image: image231.wmf][

]

)

rad/s

(

dim

=

v

r


Notons la différence avec la notion de dimension d'un espace vectoriel telle est définie en algèbre linéaire. Dans cette acception les espaces considérés ici ont tous une dimension de 1.

La représentation graphique de [image: image232.wmf]v

r

 à l'aide de l'axe X s'établira à l'aide d'une application
 [image: image233.wmf]d
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 de W sur X. Cette application peut également s'écrire [image: image234.wmf]u

l

r

a

r

×

W

×

G

w

:
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 donnés cela entraîne une application telle que [image: image237.wmf])
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→Fin de niveau 2 : espace vectoriel
La correspondance [image: image238.wmf])
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 est appelée échelleXE "échelle". Pour simplifier elle sera toujours choisie continue et croissante. Rappelons que l et ω :

· sont sans dimension. Toutes les fois où cela sera nécessaire on rappellera la dimension de la variable associée. En particulier la dimension de la variable sera notée sur l'axe destiné à la représenter.

· n'ont d'existence que lorsque des unités (vecteurs de base [image: image239.wmf]u

r

r

et 

 

W

) ont été définies dans l'espace de la variable, W, ainsi que sur l'axe X.

En pratique :

· les lettres X et l ne sont jamais inscrites. Il arrive toutefois, lorsque cela est utile, de préciser l'unité spatiale choisie comme par exemple lorsque la courbe a été tracée sur un oscilloscope puis recopiée sur une feuille de papier. Dans ce cas on inscrira à l'endroit de l : "[image: image240.wmf]carreaux
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Remarques :

· l sera utilisée lorsque nous aurons à interpréter géométriquement la dérivée de G(ω),

· nous rappelons qu'en général sur les oscilloscopes un carreau est une division… attention en lisant les documentations techniques à ne pas confondre avec les petits traits du réticule !

· quelques valeurs de ω, celles ayant une pertinence certaine selon l'auteur, seront inscrites généralement sous le trait matérialisant X,

· la lettre ω et sa dimension seront inscrites à droite sous le trait matérialisant X,

· l'échelle doit être signalée quelque part sans quoi l'axe n'est pas exploitable. A défaut, pour des échelles simples, telles que linéaires ou logarithmiques, la simple inscription de quelques valeurs de ω est suffisante pour retrouver l'échelle.

Exemple :
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Remarque : l'exemple précédent ne peut être exploité dans la mesure où l'échelle n'est pas précisée et où les valeurs de ω ne permettent pas de la retrouver.

Dans le cas particulier d'une échelle linéaire où l = aω il est toujours possible de choisir [image: image242.wmf]u

r

 de façon que a = 1. Alors l = ω et il n'est plus utile d'inscrire une quelconque valeur de l. L'exemple ci-dessous montre cette situation de loin la plus fréquente.
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→Début de niveau 2 : espace affine
La remarque suivante s'adresse uniquement au lecteur averti afin qu'il puisse trouver là, en quelques mots, un exemple de la théorie des espaces euclidiens. En effet celle-ci aurait établi que dans un espace affine de dimension 1 représentant les vitesses angulaires nous aurions défini un repère dont l'origine aurait été un point choisi O et dont les autres points auraient été associés aux vecteurs [image: image244.wmf]v

r

 de W (espace des vitesses angulaires). Le vecteur [image: image245.wmf]u

r

 évoqué plus haut aurait été un vecteur de W dont la norme aurait servi à définir une unité. Il aurait appartenu ensuite à l'utilisateur d'associer un point du repère à ce vecteur unité.

→Fin de niveau 2 : espace affine
IX - Écart de gain maximum entre un 1er ordre et son approximation

EXTRAIT…






� Ne pas confondre avec le "sens".


� La théorie de l'algèbre linéaire parle de norme�XE "norme"�


� Notons que d'un point de vue strictement algébrique une application est bien une correspondance.





Copyright © 2009 Jean-Paul Guillois. All rights reserved worldwide.
http://pagesperso-orange.fr/jp-tech/


_1286462273.unknown

_1286462305.bin

_1286462454.unknown

_1286462660.unknown

_1286462679.unknown

_1291378894.unknown

_1298905850.unknown

_1299684155.unknown

_1299834438.unknown

_1299834464.unknown

_1299751989.unknown

_1299340454.unknown

_1299436168.unknown

_1299436916.unknown

_1299436960.unknown

_1299435869.unknown

_1299340382.bin

_1295515578.unknown

_1297776131.unknown

_1297843469.unknown

_1296644118.unknown

_1295793754.unknown

_1294158253.unknown

_1295021558.bin

_1295101574.unknown

_1295358072.bin

_1295020542.unknown

_1295021195.unknown

_1295021235.unknown

_1294158305.unknown

_1293389696.unknown

_1293389734.unknown

_1291379223.bin

_1293389616.unknown

_1291379071.bin

_1286462683.unknown

_1286462687.unknown

_1286463072.unknown

_1286463073.unknown

_1286463074.unknown

_1286462688.unknown

_1286462685.unknown

_1286462686.unknown

_1286462684.bin

_1286462681.unknown

_1286462682.unknown

_1286462680.bin

_1286462670.unknown

_1286462675.unknown

_1286462677.unknown

_1286462678.unknown

_1286462676.unknown

_1286462672.unknown

_1286462674.unknown

_1286462671.unknown

_1286462666.bin

_1286462668.bin

_1286462669.unknown

_1286462667.unknown

_1286462663.unknown

_1286462664.unknown

_1286462661.bin

_1286462550.unknown

_1286462656.unknown

_1286462658.bin

_1286462659.unknown

_1286462657.unknown

_1286462654.unknown

_1286462655.unknown

_1286462551.unknown

_1286462546.unknown

_1286462548.unknown

_1286462549.unknown

_1286462547.unknown

_1286462543.unknown

_1286462544.unknown

_1286462455.unknown

_1286462436.unknown

_1286462444.unknown

_1286462448.unknown

_1286462451.unknown

_1286462452.unknown

_1286462449.unknown

_1286462446.unknown

_1286462447.unknown

_1286462445.unknown

_1286462440.unknown

_1286462442.unknown

_1286462443.bin

_1286462441.unknown

_1286462438.unknown

_1286462439.unknown

_1286462437.unknown

_1286462428.bin

_1286462432.unknown

_1286462434.unknown

_1286462435.unknown

_1286462433.unknown

_1286462430.unknown

_1286462431.unknown

_1286462429.unknown

_1286462309.unknown

_1286462425.unknown

_1286462426.unknown

_1286462310.unknown

_1286462307.unknown

_1286462308.unknown

_1286462306.unknown

_1286462289.unknown

_1286462297.unknown

_1286462301.bin

_1286462303.bin

_1286462304.unknown

_1286462302.unknown

_1286462299.unknown

_1286462300.unknown

_1286462298.unknown

_1286462293.unknown

_1286462295.unknown

_1286462296.unknown

_1286462294.unknown

_1286462291.bin

_1286462292.unknown

_1286462290.unknown

_1286462281.unknown

_1286462285.unknown

_1286462287.bin

_1286462288.unknown

_1286462286.bin

_1286462283.unknown

_1286462284.unknown

_1286462282.unknown

_1286462277.unknown

_1286462279.unknown

_1286462280.unknown

_1286462278.bin

_1286462275.unknown

_1286462276.unknown

_1286462274.unknown

_1286462239.unknown

_1286462255.unknown

_1286462265.unknown

_1286462269.unknown

_1286462271.unknown

_1286462272.unknown

_1286462270.unknown

_1286462267.bin

_1286462268.bin

_1286462266.unknown

_1286462259.unknown

_1286462261.unknown

_1286462263.unknown

_1286462260.unknown

_1286462257.unknown

_1286462258.unknown

_1286462256.unknown

_1286462247.unknown

_1286462251.unknown

_1286462253.unknown

_1286462254.unknown

_1286462252.unknown

_1286462249.bin

_1286462250.unknown

_1286462248.unknown

_1286462243.unknown

_1286462245.unknown

_1286462246.unknown

_1286462244.bin

_1286462241.unknown

_1286462242.bin

_1286462240.unknown

_1286462223.unknown

_1286462231.unknown

_1286462235.unknown

_1286462237.unknown

_1286462238.unknown

_1286462236.unknown

_1286462233.unknown

_1286462234.unknown

_1286462232.unknown

_1286462227.unknown

_1286462229.unknown

_1286462230.unknown

_1286462228.unknown

_1286462225.unknown

_1286462226.unknown

_1286462224.unknown

_1286462212.unknown

_1286462219.unknown

_1286462221.unknown

_1286462222.unknown

_1286462220.unknown

_1286462216.unknown

_1286462218.unknown

_1286462215.unknown

_1286462207.unknown

_1286462210.unknown

_1286462211.unknown

_1286462208.unknown

_1286462205.unknown

_1286462206.unknown

_1286462204.unknown

