THEME BAC 2006

BEWATOR©
[image: image43.png]

:: Sommaire ::

· Introduction – Page 3
· Analyse Fonctionnelle – Page 4
· Etude du système
1. Etude de la partie de commande du Moteur – Page 7
2. Etude de la mesure de position – Page 14
3. Etude de la gestion du clavier et du chauffage – Page 19
4. Etude du dialogue entre les modules – Page 25
· Conclusion – Page 30
.:: Introduction ::.

Dans certains établissements, le contrôle d’accès aux locaux est très important. Dans notre cas, il s'agit de la polyclinique de l'Atlantique situé à Saint-Herblain.

Cette polyclinique est très réputée pour la polyvalence et la qualité de ses prestations. L'accès des personnes au site doit être surveillé pour une meilleure sécurité et une meilleure hygiène. L'établissement s'étend sur 31 700 m² et environ 790 personnes travaillent sur le site. Il y a 5 portes principales (Océane, Chézine, Erdre, Sèvres et Loire) toutes très distantes les unes des autres, sans compter les portes de service.

C'est pourquoi ils utilisent des portes automatisées à gestion centralisée. Celles-ci peuvent être munies de radar de présence et s'ouvrent à l'approche d'une personne, de lecteur de carte magnétique ou encore de clavier numérique
Le système Bewator ici étudié, est un système permettant la gestion de l'ouverture/fermeture et de l'accès aux portes automatisées dans un service hospitalier.

 Il doit être capable :

· De gérer l'accès pour toutes les personnes du service de jour comme de nuit, en évitant les intrusions de personnes non autorisées.

· De gérer toutes les portes avec un seul poste informatique, via un réseau intranet. Dans notre étude, le système d'origine a été adapté en deux cartes (BC43 et DC11) plus une maquette de simulation de la porte (Groom), ceci dans le but de pouvoir étudier l'objet technique.

.:: Les cartes ::.

	[image: image2.jpg]L7805CY
WCC1A022)
MOROCCO

	BC 43

Cette carte permet le dialogue Homme <=> machine par l'intermédiaire du clavier et des signaux lumineux et sonores.

Elle est reliée à DC11 via une connexion bifilaire

	[image: image3.jpg]=i
-fm=

	DC11

Cette carte permet le dialogue machine <=> machine. Elle relaie les informations des cartes BC43 vers les concentrateurs SR32i pour être traité sur le poste informatique de gestion.

	[image: image4.jpg]

	Groom

Cette carte, plus un moteur, permet la transformation des ordres d'ouverture/fermeture en action mécanique. Elle est reliée à BC43 via une connexion série et elle alimente le moteur d'une porte.

.:: Diagramme Sagittale ::.

[image: image1.jpg]

Personnel médical et patients : C’est l’ensemble des personnes habilitées a utiliser les portes, elles sont détectées par le système bewator ou alors elle entrent un code d’accès. Le système leur répond par signaux sonores et lumineux.
Responsable de la sécurité : C’est la personne habilitée par le service hospitalier a déterminer les horaires d’ouvertures pour les patients et visiteurs ainsi que le contrôle d’accès du personnel médical. Il envoi les ordres vers le système et reçoit le listing des activités journalières via un poste informatique
Service technique et maintenance : C’est l’ensemble des personnes habilitées par le service technique de l’entreprise produisant le système Bewator à intervenir sur les appareils défectueux ou en panne. Ils peuvent reconfigurer le système et reçoivent des informations visuelles via les indicateurs lumineux.

OT1 : Système de gestion et de commande Bewator : C’est la partie commande du système Bewator composé des modules BC43 et DC11, elles reçoivent des informations de chacune des parties précédentes et leurs renvoient des informations visuelles ou sonores en fonction des modules. Elle communique également avec la partie opérative du système en lui envoyant les ordres d’ouverture/fermeture.
OT2 : Ouvre Porte Besam : service orthopédique : C’est la partie opérative du système. Elle permet l’ouverture de la porte de ce service à partir des ordres de OT1 et de la configuration effectuée par le service de maintenance. Cette partie peut être dupliquée pour chaque porte de l’établissement (exemple : Bloc opératoire, service de réanimation, etc.).

.:: Schéma fonctionnel de niveau 1 ::.
[image: image42.jpg]“av

Circuit e chauffage

&

1
):r-m-wl

Qs
P12z

Ce schéma représente le système dans son ensemble avec le besoin principal, celui de donner l’accès quand il en reçoit la demande.

.:: Schéma fonctionnel de niveau 2 ::.

Ce schéma représente le système avec les besoins et de tous les paramètres d’envoi d’information

.:: Schéma Fonctionnel du 1er degré ::.

Ce schéma représente l’ensemble des composants du système avec les besoins et les demandes ainsi que tous les autres paramètres qui rentrent dans le cahier des charges tels que les interventions à distance ou de configuration, ainsi que les retours d’informations

Etude du système

1 - Etude de la partie de commande du Moteur

 Dans cette partie, nous étudierons la partie commande du moteur de la porte ainsi que les structures qui permettent son ouverture/fermeture.
 Le système permet l'ouverture/fermeture des portes pour l'ensemble du personnel hospitalier, y compris les personnes handicapées ou transportées sur brancards par exemple.
C'est pourquoi l'ouverture/fermeture doit être automatisée. On utilise pour cela le système Bewator qui comprend un moteur qui doit pouvoir tourner dans les deux sens. Celui utilisé ici est un moteur 12 Volts Bipolaire. Pour changer le sens de rotation d'un moteur, il suffit d’inverser son alimentation à ses bornes. Pour cela, on utilise un montage électrique appelé « Pont en H ». Il peut se résumer au schéma suivant :

[image: image5.jpg]12v 12v

Moteur 12V

 Pour faire tourner le moteur dans un sens, on ferme les interrupteurs 1 et 4 (position verte), pour l'autre sens de rotation, on ferme les interrupteurs 2 et 3 (position rouge).

 Etant donné que cette opération doit être automatisée, on utilise un montage électrique .Seulement, il est nécessaire d'avoir un début et une fin d'ouverture/fermeture de la porte progressive, pour éviter un démarrage brusque qui pourrait blesser, ou une fermeture trop rapide pouvant entraîner des pincements de doigts. Voici le cycle d’ouverture voulu :
[image: image6.png]‘Angle d'ouverture
4

S

S

15

1w

Ports ot afutible de 0430

f—

BV

GV

GV

Tev .

/' temps
Dot temie

PV : Petite Vitesse GV : Grande Vitesse
L’ouverture s’effectue d’abord à grande vitesse puis a petite vitesse pour s’arrêter. La porte est maintenue ouverte pendant une durée réglable de 0 à 30 secondes . Au terme de ce temps d’arrêt, elle se referme à grande vitesse et termine sa course a petite vitesse pour s’arrêter en douceur.

C'est pourquoi on utilise la méthode dite « PWM /MLI», la Modulation en Largeur d’Impulsion. Avec ce dispositif on varie le rapport cyclique sans varier la fréquence pour augmenter ou diminuer la valeur moyenne d'un signal, et dans notre cas avec le moteur, on fait varier la vitesse de rotation, fonction de l'alimentation du moteur.

 Concrètement le principe est de fermer et d'ouvrir les interrupteurs par paires pour augmenter/diminuer le rapport cyclique et faire varier la vitesse, tout ceci à fréquence fixe.

[image: image7.png]

Voici un schéma résumant le MLI. En faisant varier le temps haut t, on fait varier la durée d'alimentation sur la période T qui reste elle constante. On a alors une tension moyenne qui défini la vitesse de rotation du moteur. Cette durée est réglable pour les simulations de relevés sur la carte Groom par une varistance nommé PV.
[image: image8.jpg]svvee

PV

fo0
e

U1
-oscrenan T
fom ey o 2
S R =
P Reron 24
2 o =
Em pred
R R
fm oot o)
] R o
TRER rcantosamon |-t
Semos 2 ez
L] m—T
(e
5t
]
Reantek 12
RETRr 22

eI

- Quand la varistance est à sa valeur maximum (100kΩ) alors le rapport cyclique est ≈1, le temps haut du signal Vitesse MLI est maximum, donc le moteur tourne dans le sens 1 à vitesse maximum

- Quand la varistance est a sa valeur minimum (<1kΩ) alors le rapport cyclique est de ≈0, le temps haut du signal Vitesse MLI est minimum , donc le moteur tourne dans le sens 2 a vitesse maximum

- Quand la varistance est au milieu de sa valeur (50kΩ) alors le rapport cyclique est de ½, le temps haut du signal est égale au temps bas et le moteur ne tourne plus, car il est autant alimenté dans un sens que dans l'autre
On relève maintenant le signal vitesse en fonction de la consigne PV en concordance de temps :

[image: image9.png]1 CR1 5Volt 100 us
N Ol 2. 2Volt 100 ns: 5

 [image: image10.png])

D ent

5y 2

V7ot 100 us,
Vet 100.us:

1 : Consigne PV 2 : Vitesse

On constate ici que le temps haut varie en fonction de la tension de commande PV
Voici les caractéristiques du montage du rapport cyclique et de Vmot moyen en fonction de la consigne
[image: image11.jpg]Rapport.
Vot me
t moy

eychique
e ®
100 a0
50
consigne
¥ * ¥ (wolts)
w0
Consie 0

(volts)

Les valeurs sont proportionnelles , on a le résultat escompté au début de l’étude

On relève le signal vitesse et la tension Vmot en concordance de temps :

[image: image12.png]Tek N, BTigd M Pas: (L0005 CHY

3 Couplage
-
1 ¢Limite Bande
i
{ 1 BOMHz
i L0 Voltssdiv
| Gros
W sonde
1
&T‘ ‘ Inverser
£ : : 3 0ff
STV P, ool
CH1 5.00v CH2 500mY M 1.00ms CH1 .~ 30.8mV

1 : Vitesse 2 : Vmot avec une sonde attenuatrice

On observe que le signal vitesse commande bien le moteur , ici avec un rapport de 50% , le moteur est à l’arrêt
Hacheur
Pour remplacer les interrupteurs, on aurait pu utiliser des relais, mais ceux-ci ne sont pas adaptés à une utilisation en hacheur. Des transistors bipolaires sont également écartés car ils sont commandés en courant et ils créent une perte de tension trop élevée pour l’usage effectué ici.
On utilise alors des transistors de type MOS à enrichissement, commandés en tension et pouvant supporté des fréquences de fonctionnement assez élevées.
 Le moteur dans les phases de démarrage et d'arrêt demande un grand couple pour vaincre les frottements et il se peut que des surtensions apparaissent. C'est pourquoi il est nécessaire de mettre des diodes de protections aux bornes de chaque transistor MOS pour éviter de les endommager. Mais en regardant la documentation constructeur, on s'aperçoit de ceci :

[image: image13.jpg]‘— SGS-THOMSON IRF520
YJ ivicroELEcTRONICS IRF520FI

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS

INTERNAL SCHEMATIC DIAGRAM

)
¢

oy

s

 Une diode Zener est déjà présente à l'intérieur de chaque transistor MOS. Il n'y a donc pas de diode a ajouté en plus.

 Si maintenant la fréquence de fonctionnement utilisé est comprise entre 20Hz et 20kHz, on produit une nuisance sonore pour l'homme du fait que ces fréquences sont les limites de l'audition humaine. C'est pourquoi on montera la fréquence d'utilisation des interrupteurs à plus de 20kHz.

 La commande d'ouverture/fermeture est établie par un microcontrôleur. Seulement la tension de sortie maximum de ce composant est très inférieure à celle requise pour commander un transistor de puissance. C'est pourquoi on établi un montage intermédiaire de puissance pour chaque interrupteur (situé sur la carte Groom) .
Montage de puissance
[image: image14.jpg]28V 12v

MOS

Le signal de commande du microcontrôleur va en fait commander un transistor NPN bipolaire.

· Quand celui-ci est saturé, VGATE passe au travers et rien ne se passe de plus dans le montage.
· Quand celui-ci est bloqué, VGATE rencontre un interrupteur ouvert à la place du transistor NPN , il va donc rendre passant le transistor MOS. Il se crée alors un canal dans le transistor qui permet au 12V d’alimenter le moteur dans la suite du montage.
 La diode Zener est ici présente pour créer une tension de basculement (VGSTH), tension de la source à la grille. Sans cette tension, comparable au VBE dans un transistor bipolaire NPN par exemple, le transistor MOS ne peut être passant. C'est à cause de la tension de la diode Zener qu'une tension de 28V est appliquée ici car il fait un minium de :
	12V + 12V = 24V

 Ici, avec 28V, on y est supérieur. La résistance R18 ici sert a limité le courant de la diode Zener. A l’origine, on avait une diode Zener de 5.1V et les résistances R14 et R18 n’avait pas de bonnes valeurs. Voici toutes les modifications qui ont du être apportées :
	R6 = R8
	1KΩ

	R9 = R10
	10KΩ

	R12 = R14
	47KΩ

	D4 = D5
	12V

Le calcul de pont diviseur en tension effectué avec les valeurs précédentes donnait un courant insufisant pour que la diode joue son rôle. Le point de la caractéristique voulu se trouvait dans le « coude » de la courbe de caractéristique de la Zener, donc notre diode ne protégeait pas suffisamment le transistor.
Inhibition du moteur :

 On doit pouvoir bloquer ce système de commande via la commande inhibition en cas de problème.
Seulement cette commande n'est reliée qu'au transistor MOS Q3.
On établi un tableau récapitulatif du sens de rotation du moteur en fonction des états de chaque transistor et d’inhibition

[image: image15.emf]inhibition Vitesse Q7 Q1 Q8 Q9 Q2 Q6 Q3 Q5 Q4 VmotEtat du Moteur

0 0

S B B S B OFF ON ON OFF

-12

Rotation AH

0 1

B S S B B ON OFF OFF ON

12

Rotation H

1 0

S B B S S OFF ON ON OFF

0

Arret

1 1

B S S B B ON OFF OFF ON

12

Rotation H

Avec ce tableau , on voit que l’inhibition censé bloquer la porte ne la bloque que dans un sens , cependant ce blocage intervient pour bloquer l’ouverture donc il ne pose pas de gros problème de sécurité car la porte peut toujours se refermer
 Si on avait voulu bloquer la porte dans son intégralité, il aurait fallu rendre passant le transistor Q9, ce qui bloquerait le MOS Q4 et le deuxième sens de rotation de la porte. Ainsi la porte serait hors service.
Commande commune des transistors de puissance :

 Le montage de commande est reproduit 4 fois pour alimenter le moteur dans les deux sens. Cependant, il n'y a qu'un seul signal de commande en sortie du microcontrôleur, il y'a donc un système d’inversion et de duplication des signaux de commande
[image: image16.jpg]o

@

@

- C0 est le signal de commande du microcontrôleur
- C1, C2, C3 et C4 sont les signaux de commande pour chaque transistor MOS

On utilise une porte a hystérésis pour créer un temps de décalage et éviter un court-circuit de basculement. Si tous les transistors basculaient en même temps, alors il y aurait des courts circuits dangereux pour les cartes et pour l'alimentation ainsi que pour la sécurité du service hospitalier. C'est pourquoi on utilise une porte inverseuse a hystérésis.
Conclusion sur cette partie de commande moteur :

Avec cette étude, on a rempli le cahier des charges qui consistai à :

· commander la porte dans les deux sens, ce qui est réalisé par le pont en H

· commander la porte danger, grâce à la protection de la porte hystérésis

· la variation de la vitesse d’ouverture, réalisé par l’ensemble PWM,

· l’inhibition du moteur, seulement réalisé dans un sens, mais qui interdit l’ouverture de la porte,

On peut donc dire qu’on rempli la première partie du cahier des charges.

Voici le schéma complet de la partie commande du moteur avec toutes les parties que nous venons de voir :
[image: image17.png]Voo Voo

inbibtion {K Qa2

2 - Etude de la mesure de position

Le système Bewator doit être capable de déterminer par lui même sa position d'ouverture pour réguler sa vitesse, comme cela a été vu précédemment.
 Pour cela, le système dispose d'une roue crantée directement fixée sur l'axe moteur ainsi que d'un système d'opto-coupleurs. Un opto-coupleur est un transistor qui a la particularité de réagir en fonction de la lumière. Dans notre cas on dispose d'un opto-coupleur à fourche muni d'une partie émettrice de type infrarouge donc qui n'est pas perturbée par la lumière ambiante. Le transistor de l’opto-coupleur est passant lorsque il reçoit de la lumière sur sa base, c’est le même principe qu’un transistor commandé en courant, sauf que le courant est remplacé par la lumière.
Voici la représentation schématique d’un opto-coupleur :

[image: image18.jpg]

Le système consiste à ce que les dents de la roue obstrue la réception de l'opto-coupleur et ainsi influe sur la saturation du phototransistor.
[image: image19.png]BLOQUE PASSANT

On voit sur ce schéma que lorsque une dent de la roue obstrue l’opto-coupleur, on interdit le passage de lumière et on bloque ainsi le transistor de réception
[image: image20.png]o @S0

M Pas: Zﬂﬂllrm CH1

i
{

CH1

5.00Y

CHZ S5.00V

M %oms

Gt TaE

En sortie de l’opto-coupleur, on obtient un signal qui se rapproche d’un signal carré mais celui-ci n’est pas parfait et il risquerait d’être mal interprété par le microcontrôleur. C’est pourquoi les deux signaux d’acquisition (OP1 et OP2) sont traités par une porte 74HC14 inverseuse à hystérésis. En sortie de cette porte, on obtient un signal inverse de celui des opto-coupleurs mais relativement net et précis pour que le microcontrôleur ait bien deux niveaux logiques
[image: image21.jpg]MPos: 240005 LIRS

orron]

opre)

i T o

OAT 50T CHZ SV

Par relevé, on constate que le signal en sortie de l’opto-coupleur OP1 est inversé et redressé, ce qui donne OPTO1

Sens de rotation du moteur :
Le système est en fait muni de deux opto-coupleurs afin de déterminer le sens de rotation de la porte. L’opto-coupleur est placé de telle sorte que lorsque l'un est obstrué, l'autre ne l'est pas. C'est en comparant les signaux de sortie des deux opto-coupleurs qu'on arrive à connaître le sens de rotation du moteur.

[image: image22.png]P .smp M Pos: ~16.80ms _ SAUY./RAP
rrrrererg oot = 16.80ms P SAUY/RAPRE

Lont

Fermeture ©

Opto1 € Mise en
1 LM-J

mémaire

Y S e B

AT i

CHT 500V 'CHZ SO0V M Tddms 172
RefA 5004 10.0ms RefB 5.00% 10.0ms

On prend Opto1 en référence et on observe les variations de Opto2 :

· Si il y’a un front descendant sur Opto2 quand Opto1 est au niveau haut alors on est en ouverture

· Si il y’a un front montant sur Opto2 quand Opto1 est au niveau haut alors on est en fermeture
On complète le programme de la carte groom « Groom_sens.c » qui détermine le sens de rotation

	#include "Groom2.h"

void main (void)

{

CommandePorte()

 }

static void interrupt isr(void)

{

if (RBIF)

{

if (Opto1!=Opto1Precedent) // Si front sur Opto1

 (**** A completer ****)

Opto1Precedent=Opto1;

if (sens) position--; else position++;

ledv=sens;

RBIF=0;

};
On complète par ceci :

{

if (Opto1==Opto2) sens=0; else sens=1; // Si on a un front sur Opto1 et un niveau haut sur Opto2, on a ouverture

}

 else

{

if (Opto1==Opto2) sens=1; else sens=0; // Si on a un front sur Opto1 et un niveau bas sur Opto2 , on a fermeture

}

Relevé de la position angulaire :

Dans notre étude, nous avons été mené à vérifier la position angulaire de la porte en fonction du nombre de dents. En raison de jeux et de frottements important dans la maquette, il est nécessaire de réaliser les mesures avec un angle de départ « mort » depuis lequel on peut mesurer le rapport réel entre ces deux facteurs.

Sur ce schéma ci-joint, on voit en rouge l’angle « mort » et en bleu l’angle mesuré.

Pour déterminer ce rapport, on a modifié le programme de la carte Groom par un programme qui compte 30 incrémentations de l’opto-coupleur (Groom30.hex). Ainsi en mesurant l’angle effectué, on peut déterminer le rapport.
[image: image23.png]M Pas: 386.0ms CH2

Couplage

ol RERE B BELEL L S Limite Bande
optoz 2 : : 3 : . - 7

Wolts/div

Giros]
d

opto1 1

So

Ineeerser

0t

CH S B S W s (5 T

Ici on a le relevé des signaux d’opto-coupleurs dus au programme Groom30.hex

En effectuant la mesure avec un rapporteur, on obtient un angle de 20°. On a donc un rapport de :
	30 coups d’horloges / 20 degrés = 1.5

Ce qui donne donc un rapport d’environ 1.5
Compter les impulsions :

Cependant pour 20 degrés nous n’obtenons pas 20 mais 30 incrémentations.

Exemple :

[image: image24.png]CH2

Couplage
LC]

JLimite Bande
[GH

Wolts/div

Sonde

CHT B EHE S A0 Taims CH1 7 400

Ici pour 12 impulsions sur chaque opto-coupleurs, le microcontrôleur compte 48 impulsions. Le microcontrôleur compte donc les fronts montants et descendants sur chaque signal d’entrée.
Etude du blocage de la porte :
Si un obstacle arrête la course de la porte durant son ouverture, celle-ci s’arrête automatiquement, et par dans le sens inverse après une certaine durée. Nous allons étudier cette fonction.
On effectue des relevés sur les opto-coupleurs de la porte, on provoque un blocage et on analyse les signaux obtenus.
[image: image25.png]Blocage

A\

2)

DR 15 Vot 50 m

On a sur le deuxième signal une durée de l’état bas supérieur aux précédentes, c’est donc par la durée d’un état que le programme détermine si il y a blocage
Cette durée est de 41ms après mesures sur l’oscilloscope. On peut donc penser que dans la partie du programme qui s’occupe du blocage, si une variable dépasse la valeur 40, alors il y a blocage de la porte.
On complète ensuite le programme « Groom_sans_obstacle » qui détermine le cycle d’ouverture/fermeture
	#include "Groom.h"

void main (void)

debut:

 {

initialise();

while(1)

{

led =0;

CCPR1L =128;

while(depart);

blocage =0;

 EN_b =0;

CCPR1L =128 +gv;

while(position <position15);

NL0_opto1 =40;

EN_b =1;

while((position < position75) && !blocage);

if(blocage)

{

led =blocage;

CCPR1L =128;

delai =4000; while(delai);

CCPR1L =128 -pv;

while(position >0);

goto debut;

}

CCPR1L =128 +pv;

while(position < position90);

CCPR1L =128;

porteouv =1;

delai =can(3)*40; while(delai);

 while(!depart);

porteouv =0;

CCPR1L =128 -gv;

while(position >position15);

CCPR1L =128 -pv;

while(position >0);

CCPR1L =128;

}

}

	· Extinction de la LED

· Mise à la valeur 128 de la CCPRIL qui correspond a un arrêt du moteur

· Mise à zéro de la variable blocage

· Mise à zéro de Enable_blocage

· On lance l’ouverture à grande vitesse..

· .. jusqu'à ce que position = 15

· On détermine la durée de blocage

· Mise à un de Enable_blocage

· Tant que position =15 et que ..

· .. si blocage ..

· LED prend la valeur de blocage

· CCPR1L s’arrête

· On attend 4 secondes (4000 x 100µs)

· La porte se ferme à petite vitesse..

· .. jusqu'à ce que position=0

· Revenir au début

· On poursuit l’ouverture à petite vitesse.

· .. tant que position = 90

· On arrête la porte

· La porte est ouverte

· La porte reste ouverte selon la durée fixée par la résistance variable

· La porte n’est plus ouverte

· On lance la fermeture à grande vitesse jusqu'à ce que position = 15

· On poursuit la fermeture à petite vitesse jusqu'à ce que position=0

· On arrête la porte

Conclusion sur cette partie de mesure de position :

Avec cette étude, on a rempli le cahier des charges qui consistai à :

· Relever le changement de position, réalisé par le microcontrôleur et les opto-coupleurs
· Déterminer la position de la porte, réalisé par le microcontrôleur et les opto-coupleurs
· Déterminer la vitesse, réalisé par le microcontrôleur et les opto-coupleurs
· Déterminer le blocage, réalisé par le microcontrôleur et les opto-coupleurs
On peut donc dire qu’on rempli la deuxième partie du cahier des charges
3 - Etude de la gestion du clavier et du chauffage
Les personnes de la polyclinique peuvent accéder au service en cas d’urgence ou bien pour les services de nuit et disposent pour ceci d’un code personnel . Les portes disposent de 2 claviers disposés de chaque coté et permettent d’entrée et sortir du bâtiment. Nous allons désormais étudier le fonctionnement complet de ces claviers.
Configuration du clavier
A partir du schéma structurel, on détermine la configuration des PORT et TRIS.

[image: image26.emf]RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0 TRISX

PORT A 1 1 1 0 0 0 0 1 E1

PORT B 1 1 1 1 1 1 0 1 FD

PORT C 1 0 0 1 0 1 1 1 97

PORT D 0 0 1 1 1 1 1 1 3F

· Quand une Entrée/Sortie du Microcontrôleur prend la valeur 0, elle devient une sortie, c'est-à-dire que le PIC commande la sortie et détermine son niveau logique suivant le programme
· Quand une Entrée/Sortie du Microcontrôleur prend la valeur 1, elle devient une entrée, c'est-à-dire que le PIC ne peut pas agir sur cette broche et ne peut que lire les informations. Ces informations influent ensuite sur le programme du PIC (les entrées surlignées sont celles non câblées, elles sont mises a 1 par défaut)
On peut alors écrire la première partie du programme de la carte BC43.

	VOID Init (void)

 {

 init {

 TRISA=0xE1

 TRISB=0xFD

 TRISC=0x97

 TRISD=0x3F

 PORTA=0x1E

 }

 }

· On a converti les états de chaque I/O pour chaque TRIS en une valeur hexadécimale.

· On a fait la même chose pour PORTA car celui-ci a le rôle de lire les états des touches sur le clavier.
Emission du Bip Sonore pour l’appui sur une touche
Lorsque l’utilisateur appuie sur une touche du clavier, celui-ci doit lui renvoyer instantanément un son pour confirmer son appui.
Cette fonction est réalisée par le microcontrôleur et par un Buzzer à effet Piézo-électrique. Ce composant est un convertisseur électrique → mécanique qui utilise la propriété de certains cristaux, tel que le quartz, a vibrer lorsque ils subissent une pression mécanique ou sont soumis à une différence de potentiel électrique.
Le signal doit être d’une fréquence de 833Hz et de durée 120ms. Par calcul, on trouve pour la période :

	1 / 833 = 1.2ms

Cela simplifie l’écriture du programme, il suffira de répéter 100 fois une seule partie du programme pour avoir le signal voulu. On peut maintenant écrire la suite du programme.

	VOID Bruitage (void)

 {

 unsigned char x

 for (x=0;x<100;x++)

 {

 RC3=0

 attendre(6)

 RC3=1

 attendre(6)

 }

 }
	- On nomme le programme Bruitage

- On introduit la variable x non signé

- Tant que x n’a pas atteint la valeur 100 faire :

- RC3 à l’état bas (0v)
- Attendre (6 x 100µ secondes)

- RC3 à l’état haut (5v)
- Attendre (6 x 100µ secondes)

On relève le signal du Buzzer :

[image: image27.png]Sou00rms CURSEURS

124.0ms
8.065Hz

Curseur 1
=1.000ms

I : Curseur 2
: 123.0ms

CH1 7 3.32%

 [image: image28.png]Tek - F| Ready M Pos: 55.00ms CURSEURS

Delta
1.240ms
B06.5Hz

. . : : : : Curseur 1
: o : : S3.62ms

: Sl : : Curseur 2
. . . . : : 55.06ms

CHT 2.00% CH1 7 3.32%

W Siis

· A gauche, on a la trame complète du signal du Buzzer, on relève la même durée que ce qu’on avait prévu pour le programme.

· A droite, on a le même signal dilaté, on a bien une période de 1.2ms comme prévu

Allumage de la LED pour l’appuie sur une touche
Cette fonction est la même que la précédente, excepté que dans ce cas-ci on envoie un signal lumineux à l’utilisateur à chaque appui sur une touche.
Cette fonction est réalisée par le microcontrôleur et une LED jaune. Elle doit s’allumer sur une période de 50ms

Voici la partie du programme qui concerne cette fonction
	VOID Allumage_Ledjaune (void)

 {

 RD7=1

 attendre(500)

 RC3=0

 }
	- On nomme le programme Allumage_Ledjaune:

- RC3 à l’état haut (5v)
- Attendre (500 x 100µ secondes)

- RC3 à l’état bas (0v)

Etude du fonctionnement du clavier
Le clavier utilisé dans le système est un clavier matricé. Ce type de clavier permet d’utiliser un nombre réduit de broche sur le microcontrôleur
[image: image29.png]i LL FL by

:: e
fos cem $8 Bqps ot s ™ x s
e ?m = R =
| Bt ==t == ? 3 [I
=S TN " o
[LA
PTIS :fﬁ
T e
?vﬂv :'“7

Voici le schéma du clavier
Le principe de ce clavier est de déterminer quelle touche est appuyée en observant seulement 4 entrées (RD0, RD1, RD2 et RD3). Le clavier peut être divisé en colonnes et en lignes. Lorsque un bouton est appuyé, on met en contact une ligne et une colonne. On produit alors un code que le microcontrôleur reconnaît. Etant donnée que les touches sont placées sur des colonnes et des lignes communes, il faut distinguer quelle touche est appuyée sans se tromper, c’est pourquoi on doit créer une alternance sur les colonnes. Le microcontrôleur se contente alors de comparer quelle entrée a été modifiée par rapport a l’alternance. On relève l’alternance sur PT14 PT15 et PT16 :
[image: image30.png]L d

Tek - Trig'd M Pos: —400.00s SALV./RAP
: : : : : : Corfig,

Source
CH1

Rt
i

Mise en
rnémoire

Réf &
Clui

CHT S.00% CH2 S.00% M 100us Ext. ~ —64.0mY
Refd S.00% 1000s

On observe sur ce relevé l’alternance des signaux qui permettent de déterminer quelle touche est appuyée.
Pour mieux comprendre le fonctionnement du clavier, on isole la touche S1
[image: image31.png]

· Au repos lorsque S1 n’est pas appuyée, RDO est au niveau logique 1 (5V) et RA3 envoie ses impulsions d’alternance : Le microcontrôleur ne détecte pas de changement donc la touche n’est pas appuyée.

· Lorsque S1 est appuyée, il y’a contact entre la colonne et la ligne. Les tensions sont égales donc RD0 ne change pas d’état. Mais lorsque l’alternance de RA3 arrive, RD0 ne reçoit plus de tension, donc elle passe à un niveau logique 0 (0v).

Ce principe de détection est appliqué pour chaque bouton. Ainsi on peut détecter quelle touche est appuyée sans erreur.

Pour confirmer notre étude, on effectue des relevés sur des entrées et sorties du clavier en appuyant sur des touches (ici la touche 9 et A (touche verte)).

[image: image32.png]RDO
81

RD1
86

On voit sur ce relevé que les entrées RD0 et RD1 change d’état lorsque RA1 et RA3 émettent leur alternance.

Le fonctionnement du clavier est donc celui voulu
Voici la partie du programme de la carte BC43 pour la lecture des touches

	unsigned char LectureTouche (void)

{

 const unsigned char MasqueColonne[3]={0xF6, 0xFA, 0xFC};

 unsigned char i=0, touche=255;

 while (touche==255 && i<=2)

{

 PORTA=(PORTA | 0x1E) & MasqueColonne[i];

 switch (PORTD & 0x0F)

{

 case 0x0E:touche=10+i;break;

 case 0x0D:touche=7+i;break;

 case 0x0B:touche=4+i;break;

 case 0x07:touche=1+i;break;

}

 i++;

}

 if (touche==10)touche=0x11;

 if (touche==11)touche=0;

 if (touche==12)touche=0x12;

 PORTA=0x1E;

 return(touche);

}
	· On déclare : Lecture Touche variable non signée …

· MasqueColonne qui prend la valeur 3={0xF6, 0xFA, 0xFC} … i qui prend la valeur 0 et touche qui prend la valeur 255 … tant que touche est égale a 255 et que i inférieur ou égal a 2
· PORTA prend sa valeur (forcé a 1 par 0x1E) masqué a MasqueColonne qui a pris la valeur de i
· On recherche une seule valeur correspondante a PORTD masqué a 0x0F dans les lignes suivantes.
· Si PORTD=0x0E alors touche=10+i
· Si PORTD=0x0D alors touche=7+i

· Si PORTD=0x0B alors touche=4+i

· Si PORTD=0x07 alors touche=1+i

· i s’incrémente de 1

· si touche=10, alors sa valeur = 0x11
· si touche=11, alors sa valeur = 0

· si touche=10, alors sa valeur = 0x12

· PORTA est réinitialisé à 0x1E

· Retour à la première intervention de touche

La réattribution de valeur dans la fin du programme est expliquée par le fait que les informations doivent être comprises par le module SR32i et par le poste informatique.
 Par exemple lorsque la touche 0 est appuyée, le microcontrôleur reçoit le code 0x3B, ce qui correspond en ASCII au signe : . C’est pourquoi il faut remplacer ces valeurs pour que tous les modules se comprennent. Si ces valeurs n’étaient pas remplacées, il y aurait incompréhension.
 Le code utilisé pour attribuer les lettres, signes et numéros pour la transmission est l’ASCII. Ce code universel a pour inconvénient que les numéros commencent à la valeur 30 (30 pour 0, 31 pour 1, etc.), donc il faut adapter toutes les valeurs.
	void main (void)

{

 unsigned char Touche;

 Init();

 bruitage();

while(1)

{

Touche = LectureTouche();

if (Touche != toto)

{

 EnvoyerRS232(Touche+48);

 bruitage();

 Allumage_LedJaune();

 while (Touche==LectureTouche());

 Attendre(1000);

}

}

}
	· Début du programme

· Déclaration de Touche non signé

· Tant que

· Touche prend la valeur de LectureTouche

· Si Touche est différent de 255

· Envoyer la valeur de Touche + 48

· tant que touche est égal à LectureTouche

· Attendre 1000 x 100µS

En ASCII, 0 = 48 donc pour chaque touche : touche = touche+48
Détermination de la position du clavier
Pour que le suivi des personnes entrantes et sortantes de l’hôpital soit le meilleur possible, le système doit déterminer si ceux-ci ont utilisé un clavier de l’intérieur ou de l’extérieur du bâtiment. Il faut donc que le clavier envoie une information qui détermine sa position. Sur le schéma structurel du clavier, on a ceci :

[image: image33.png]

Comme les autres sorties RA, la sortie RA4 envoie une alternance de niveau bas. Elle s’intercale entre l’intervalle de RA3 et celle de RA1. Lorsque le cavalier prend une position, il crée un contact entre la colonne RA4 et une des deux lignes. RD0 ou RD1 relève alors l’alternance négative et ainsi on détermine la position du clavier.
Gestion du chauffage :

Ci-joint, le schéma du circuit de chauffage
Pour satisfaire le cahier des charges, le clavier doit être maintenu à température ambiante quelque soit le climat extérieur .C’est pourquoi il y a un module de chauffage.

La structure du montage électrique est de telle sorte qu’il s’autorégule en fonction de la température. En effet la résistance de chauffage est positionnée juste au dessus des diodes. Ces diodes sont des diodes à jonction rapides « High-Speed » qui ont la particularité d’avoir une tension de seuil qui varie en fonction de la température ambiante. Nous avons vérifiés cette caractéristique avec le logiciel de simulation PSPICE en simulant des températures allant de 20°C à 200°C. On observe les courbes suivantes :

[image: image34.jpg]798ny

s00ny

4000y

5 1(D4)

Sur ce relevé on voit que plus la température augmente, la tension de seuil diminue
Nous avons ensuite relevé les caractéristiques principales des transistors. Le transistor BC543 est un transistor NPN classique, mais le transistor TIP122 est un transistor Darlington qui accepte des tensions supérieurs à un transistor classique.
Lorsque la température est de 20°C, les tensions de seuil des diodes est d’environ 0,6V.
Lorsqu’on ajoute toutes les tensions de seuils des diodes on obtient une chute de tension de 3V au totale avec les diodes et une tension de 2V pour VPT8.

Le courant de commande du premier transistor Q3 est celui de la résistance R30.

En effectuant le pont diviseur de tension pour cette résistance, on s’aperçoit que la tension n’est pas suffisante pour saturer la base du transistor (environ 0.5V < Vbesat), il est donc bloqué.
La tension VCC rencontre un circuit ouvert en Q3 et ne peut s’engager que par la résistance R33 et se dirige vers la base du transistor Q4. Cette tension étant largement suffisante pour saturer ce transistor, il devient passant et la tension 12V traverse la résistance de chauffage.

En ayant une température de 20°C, on a donc une mise en route du chauffage.

Si maintenant le chauffage a déjà fonctionné depuis un certain temps et que la température ambiante a augmenté, la tension de seuil des diodes a fortement baissée.

Leur tension de seuil a atteint une valeur approchant les 0.3V.
La tension aux bornes de R30 est maintenant suffisante (environ 0.9V > 0.7V=Vbesat) pour commandé le transistor Q3.

Celui-ci devient passant et empêche la saturation du transistor TIP122.

La résistance de chauffage n’est plus alimentée, il n’y a donc plus de chauffage.

Avec une température de l’ordre de 50°C, le chauffage ne fonctionne plus, la fonction de chauffage est remplie.
Conclusion sur cette partie étude de gestion du clavier et chauffage:

Avec cette étude, on a rempli le cahier des charges qui consistai à :

· Reconnaître les touches appuyées, réalisé grâce aux boutons et au microcontrôleur

· Déterminer la position du clavier, réalisé par le microcontrôleur et les cavaliers

· Emission d’un son et Allumage d’un témoin lumineux, grâce au buzzer, à la led et au microcontrôleur

· Chauffer le clavier indépendamment du reste du circuit, grâce au circuit de chauffage
On peut donc dire qu’on rempli la troisième partie du cahier des charges
4 - Etude du dialogue entre les modules
[image: image35.png]

Voici une schématisation des différents liens entre les modules du système Bewator.

Le système Bewator est utilisé dans toute l’enceinte de la polyclinique et les distances entre les modules DC11 SR32i peuvent atteindre plusieurs dizaines de mètres. Il faut donc établir une liaison qui ne subit pas de pertes de tension. Le constructeur utilise une liaison parallèle appelée RS232. Celle-ci ce compose au minimum de 2 fils de liaison + masse sur lesquels les informations sont envoyées en série entre module.

Cette liaison a la particularité de transmettre les informations binaires en inversant les niveaux logiques.

[image: image36.png]@ stop M Posi 236.0us TRIGGER

Vidéo

Pente

Source

™2 s]

Mode

Couplage

CH1 10.0% CH2 S00% M 100us CH1 7 500

i

Sur ce relevé, on voit que le signal TXi a été inversé et adapté en tension en TX32i

L’adaptation en signal de norme RS232 s’effectue grâce au composant MAX232. Celui-ci inverse le signal reçu et établi le niveau bas à +12V et le niveau haut à -12V. Avec de telles tensions, les pertes sur la longueur sont réduites et la transmission entre les différents modules est assurée.
Transmission et traitement des informations

On s’intéresse maintenant à l’interaction entre DC11 et le programme SR32i.

On effectue d’abord des tests dans le sens DC11 -> SR32i avec les logiciels « Gestion accès Polyclinique (23 juin 2005).exe » et « SR32i (8 Nov. 2005).exe » et une connexion sur port COM avec la carte DC11. Le programme est configuré de telle sorte que l’on observe les codes émis par la carte DC11 en valeur décimale mais également toute la trame qui les portes.
On relève les codes hexadécimaux obtenus à la suite de l’appui sur des touches

	Touche
	Code Hexadécimale
	Code ASCII

	Touche 1
	01 21 64 61 02 22 22 31 1E 03 7F 00
	ASCII 31 -> 1

	Touche 2
	01 21 64 61 02 22 22 32 1E 03 7F 00
	ASCII 32 -> 2

	Touche 5
	01 21 64 61 02 22 22 35 1E 03 7F 00
	ASCII 35 -> 5

	Touche 6
	01 21 64 61 02 22 22 36 1E 03 7F 00
	ASCII 36 -> 6

	Touche 9
	01 21 64 61 02 22 22 39 1E 03 7F 00
	ASCII 39 -> 9

	Touche A
	01 21 64 61 02 22 22 41 1E 03 7F 00
	ASCII 41 -> A

	Touche B
	01 21 64 61 02 22 22 42 1E 03 7F 00
	ASCII 42 -> B

	Cavalier Sabotage
	01 21 64 61 02 22 22 53 1E 03 7F 00
	ASCII 53 -> S comme Sabotage

On observe dans ce tableau que c’est le 8eme octet (surligné en jaune) qui porte l’information de la touche envoyée. Si le cavalier sabotage est enlevé, la carte envoie incessamment la trame de sabotage, cela signifie que le clavier a été endommagé ou est hors d’usage.
[image: image37.png]M Pos: 2.260ms TRIGGER

Vidéo

Pente

Source
CH1

Couplage

CHT 10.0% CH2 S.00% M 1.00ms CH1 “ =200y

Voici l’allure de la trame relevée à l’oscilloscope pour la touche 5
L’émission d’information de DC11 vers SR32i est correcte. On vérifie maintenant le contraire en émettant des informations du poste informatique.

On relève les codes hexadécimaux de chaque ordre émis :

	Ordre
	Code Hexadécimale

	Signal Sonore
	01 21 02 21 50 31 03 13

	DEL Rouge
	01 21 02 22 24 30 31 31 30 30 30 30 30 31 30 30 31 03 13

	DEL Verte
	01 21 02 22 24 30 33 31 30 30 30 30 30 31 30 30 31 03 13

	Ouverture : 5 secondes
	01 21 02 22 23 30 31 32 30 35 03 13

	Ouverture : 26 secondes
	01 21 02 22 23 30 31 32 32 36 03 13

	Ouverture : 47 secondes
	01 21 02 22 23 30 31 32 34 37 03 13

	Fermeture
	01 21 02 22 23 30 31 32 30 30 03 13

A partir de ce tableau on peut distinguer plusieurs choses :
· Le signal sonore se différencie des autres avec son 4eme octet

· L’allumage de la DEL Rouge est différencié de la DEL Verte par le 7eme octet

· La durée d’ouverture est exprimée en seconde et transmise par deux octets porteurs, les 9eme et 10eme octets. La valeur de la durée est séparée en dizaine et unité et inscrite respectivement sur le poids faible du 9eme et 10eme octet.

Configuration de transfert des modules
Selon le cahier des charges la transmission doit se faire à une vitesse inférieure à 1/10eme de seconde (100ms). Une des vitesses que l’on peut appliquer est 19200 baud/secondes. Cette vitesse correspond a l’envoi de bits par secondes. On peut maintenant calculer la durée de l’envoi d’un bit, puis d’un octet.

	Durée de transmission d’un bit

1/19200 = 52µs

Durée de transmission d’un octet

1octet x 52µs = 8bits x 52µs = 416µs

Durée de l’émission du code pour une LED

19 octets x 416µs = 7.91ms

D’après ces calculs, on voit que les ordres sont émis à une vitesse 10 fois inférieure à celle voulue au maximum, cette vitesse de transmission semble bien adapté à l’utilisation du système.
On doit maintenant configurer les microcontrôleurs pour qu’ils puissent comprendre les informations transmises.

D’après la documentation constructeur, cette configuration s’effectue a l’aide de différentes variables. Celles-ci sont TXSTA et RCSTA.
Ces deux valeurs font partie du module USART du microcontrôleur (USART pour Universal Asychronous Synchronous Reception Transmission, système Universel de Reception et Transmission en mode Synchrone ou Asynchrone). Elles configurent la réception et la transmission des donnés avec leurs différentes possibilités. Dans notre système, elles prennent respectivement les valeur de 90(Hex) et A4(Hex).
La vitesse de transmission des informations est gérée par le registre SPBRG. Pour régler la vitesse de transmission à 19200b/s, on doit appliquer une valeur dans la variable BRGH (Bit Rate Generator High). On la détermine par un calcul donné dans la documentation constructeur.
	 BRGH = (Frequence Quartz / (Baud Rate x 16)) -1

 = (F Quartz / (19200x16)) – 1

 = ((19200x16²) / (19200x16)) – 1

 = 15

Vérification de l’envoi des codes

On programme la carte DC11 avec le programme « 1.hex » pour vérifier l’envoi du code de la touche 1 vers l’ordinateur. On utilise pour relever le numéro le logiciel hyper terminal configuré comme le SR32i ainsi qu’un oscilloscope en mode monocoup pour observer la trame obtenue
[image: image38.png]Dent
2 Ch 2.

5 VVelt 100
5 Valt, 100 ng

En affinant et en analysant le signal, on obtient ceci :

[image: image39.png]™) 4+ Bit deghn Bit dezslop

1/000 (1 1/00

.
1 3 t(s)

On obtient une trame inversée, le microcontrôleur envoie d’abord le bit de poids faible, puis le bit de poids fort. Au final on retrouve le code 31 ASCII ce qui donne bien le code du numéro 1
Sur la fenêtre du logiciel, on observe une suite de 1 qui se répète sans cesse, notre objectif d’émission est atteint.

On effectue la même méthode mais en transférant deux lettres. Pour cela on édite le programme 1.C
	#include "pic1687x.h"

void Attendre(unsigned int x)

 {unsigned int dt, a;

 a=0;

 while (a<20) {

for (dt=0;dt<x;dt++);

a++;}

}

void main(void)

 {

 TRISA = 0xFF;

 TRISB = 0xFD;

 TRISC = 0x80;

 TRISD = 0x12;

 TRISE = 0x06;

 SPBRG=15;

 TXSTA=0xA4;

 RCSTA=0x90;

 while(1)

 {

 while (TRMT == 0);

 TXREG = '1'; // Envoyer le code '1

 Attendre(10000);

 }

 }

On remplace la dernière partie par :

	while(1)

 {
 while (TRMT == 0); // attendre que le dernier octet soit transmis

 TXREG = 'T'; // Envoyer le code 'T'

 TXREG = 'S'; // Envoyer le code 'S'

 Attendre(10000);

 }

 }

On obtient les signaux suivant sur TXi et TX32i :

[image: image40.png]1) Ch 1 S Vel 100us
) G 2§ S Vlt 100 ns.

Après analyse, on obtient :

[image: image41.png]5

11 DDM

3 5

7

S

On arrive au résultat escompté, on a bien transmis le code TS.
Conclusion sur cette partie dialogue entre les modules:
Avec cette étude, on a rempli le cahier des charges qui consistai à :

· Etablir une liaison fiable sur longue distance, grâce à la liaison RS232 et au composant MAX232

· Identifier les octets porteurs d’informations, grâce au logiciel SR32i.exe

· Configurer la vitesse de transmission

· Vérifier les informations transmises
On peut donc dire qu’on rempli la quatrième partie du cahier des charges
Conclusion

Avec cette étude complète du système Bewator, nous avons vérifié si celui-ci répondait au cahier des charges établi par la polyclinique de Saint-Herblain.

L’ouverture des portes n’est pas brusque et ne peut blesser les usagers car elles sont dotées d’une détection d’obstacle, elles sont également protégées du vandalisme avec une détection de sabotage.
La gestion d’accès des portes est très simplifiée pour la personne chargée de la sécurité du site, car celui a juste pour rôle de saisir des profils de personne, avec pour chacun un code confidentiel, et a contrôler leurs allées et venues dans l’établissement sur un listing effectuer automatiquement par le système Bewator.

Les claviers utilisés sont rétro éclairés et maintenus a température ambiante afin d’assurer un confort maximal d’utilisation. Ils peuvent aussi être placé aux extrémités du bâtiment sans perturber le fonctionnement du système grâce aux liaisons RS232.
En conclusion de cette étude, on peut dire que le système Bewator est à la fois pratique, qu’il garanti la sécurité des personnes et des biens de la polyclinique tout en restant esthétique et confortable d’utilisation.

Configuration du système

OUVRE PORTE

BESAM

Bloc opératoire

Responsable de la sécurité

OUVRE PORTE

BESAM OT2

Service orthopédique

Service technique et maintenance

PERSONNEL MEDICAL et patients

Système de gestion et de commande

BEWATOR

OT1

Configuration du système

Saisie du code ou insertion carte ou accès libre

Information visuelle d’autorisation d'accès et information sonore

Configuration du système

Compte rendu visuel

Listing des activités de la journée

* Codes d'accès

* Planning des salles

* Niveau de sécurité

Ordre d'ouverture

Ordre d'ouverture

Informations visuelles

Configuration du système

Sabotage

Sélection d'une adresse

Sabotage

Paramètres de réglage

Transmission code clavier

BC43

Acquisition et transmission du code.

Configuration du BC43

FP3

Saisie code�insertion carte

DC11

Traitement des�paramètres reçus��Commande de�l'ouvre porte

FP4

SR32i

Gestion des plannings.

Vérification du droit

D’accès aux salles

		

FP2

PC : logiciel Bewapass

Saisie des informations

�Unité de commande�

FP1

Transfert des données

Information sonore

Planning des salles�Codes d’accès �Niveau de sécurité

Réception des informations

Position porte �ouverte ou fermée

Action manuelle�de commande

d'ouverture�à distance

Choix de l'adresse

Emission des�informations

Informations visuelles

Commande ouverture porte

Information visuelle d’autorisation d'accès

et information sonore

Configuration du système

Compte rendu visuel �(service technique)

Configuration du système

Ordres d'ouverture

Accès aux salles

Ouverture et fermeture automatique des portes

Planning des salles Codes d’accès�Niveau de sécurité

Transmission et mémorisation des horaires d'occupation des salles et vérification du droit d'accès

SELECTION

Accès autorisé

Demande d’accès

Saisie code insertion carte

Listing des activités�de la journée

PAGE
8

_1208894966.xls
Feuil1

		inhibition		Vitesse		Q7		Q1		Q8		Q9		Q2		Q6		Q3		Q5		Q4		Vmot		Etat du Moteur

		0		0		S		B		B		S		B		OFF		ON		ON		OFF		-12		Rotation AH

		0		1		B		S		S		B		B		ON		OFF		OFF		ON		12		Rotation H

		1		0		S		B		B		S		S		OFF		ON		ON		OFF		0		Arret

		1		1		B		S		S		B		B		ON		OFF		OFF		ON		12		Rotation H

_1208890590.xls
Feuil1

				RX7		RX6		RX5		RX4		RX3		RX2		RX1		RX0		TRISX

		PORT A		1		1		1		0		0		0		0		1		E1

		PORT B		1		1		1		1		1		1		0		1		FD

		PORT C		1		0		0		1		0		1		1		1		97

		PORT D		0		0		1		1		1		1		1		1		3F

