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I-Introduction.

Dans l’ensemble  des nombres complexes
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,un vecteur 
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L’addition vectorielle dans 
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 correspond a l’addition des  des nombres complexes.
Une autre similarité entre le plan des réels et celui des complexes est que la norme 
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 du vecteur 
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 est égale au module de son affixe z.
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Une Isométrie   peut donc être considerée  comme une fonction  
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 qui préserve les distances
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Des exemples d’isométries dans le plan des réels,sont les translations de vecteur non nul d’affixe
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,ou les rotations autour de l’origine d’angle 
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 qui transforme  
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 EMBED Equation.DSMT4  [image: image19.wmf](
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est le nombre complexe égal à 
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Si 
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 qui est l’affixe d’un vecteur orthogonal au vecteur d’affixe
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 une autre proprieté importante de 
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 est que le module des nombres complexes est compatible avec la multiplication ,la division et  l’opération du conjugué.
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Pour toutes ces raisons,nous pouvons déterminer les isométries du plan, en utilisant les nombres complexes.

Au paragraphe II, nous établirons les formules des toutes les isométries de
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Nous justifierons,les caractéristiques géométriques de chaque isométrie  et prouverons le type  d’équation qui lui correspond au paragraphe III.
Nous terminerons le présent exposé,en décrivant une méthode pour déterminer la droite de réflexion et le vecteur de translation, pour les symétries axiales ou glissées.
II)Equations générales des isométries du plan.
Considerons les fonctions :
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avec 
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Ces fonctions sont  des isométries :
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Nous allons prouver que toute isométrie a pour équation soit 
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Nous avons besoin du lemme suivant.

Lemme 1.2 :

 Toute isométrie du plan qui laisse fixe 0,1 et i  est l’isométrie identité.

Preuve :soit 
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 une isométrie laissant fixe 0,1,i :
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Géométriquement 
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se trouvent à égales distances des trois points O, A et B d’affixes respectives O(0),A(1) et B(i).Donc 
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sont confondus avec le point de rencontre de médiatrices des segments OA  et OB.On déduit que
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Etablissons la preuve algébrique de cette affirmation, en élevant au carré chacune des identités du début on obtient :
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Effectuons les produits des paranthèses pour la deuxième et la troisième égalité on trouve :
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Comme 
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Les nombres complexes 
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ont la même partie réelle et la même partie imaginaire,ce qui prouve que 
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Théorème 1.2.

Toute isométrie du plan est donnée par une des deux équations :
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Démonstration :

Soit h une isométrie quelconque de
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.Définissons 
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Considérons maintenant la fonction définie par  
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Nous affirmons que 
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 est une isométrie qui laisse fixe 0 et 1 parce que :
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Trouvons  la valeur
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se touve donc sur le cercle unité et sur le cercle centré en 1 et de rayon  égale à
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.Les solutions sont  (0,1) ou (0,-1),les valeurs possibles de   
[image: image77.wmf]()

ki

sont donc  
[image: image78.wmf]i

 ou 
[image: image79.wmf]i

-

 .

Si 
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,par le Lemme 1.2 
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  alors 
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 est une isométrie qui laisse fixe 0,1 et i donc 
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On a donc de la definition de : 
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Corollaire : toute isométrie est inversible .
Toute isométrie du plan  est de la forme :  

[image: image92.wmf]()

hzz

ab

=+

ou 
[image: image93.wmf]()

hzz

ab

=+



 EMBED Equation.DSMT4  [image: image94.wmf],,1,

abab

Î=

£

quelconque,d’après le théorème 1.2.

 En passant à l’inverse,on obtient suivant le cas : 
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. Dans chaque cas l’inverse  est donc une isométrie,car son équation correspond à une des formes générales des isométries.
Nous verrons que les différentes isométries du plan se classent en cinq catégories :

L’isométrie identité,les translations ,rotations,réflexions et les symétries glissées.

Une symétrie glissée est par définition ,la composition d’une réflexion par une translation,de vecteur parallèle à la droite de réflexion.
Le tableau suivant illustre les relations que nous allons prouver,entre le type d’isométrie du plan et son équation dans
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TABLEAU DES ISOMETRIES DE 
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Dans ce tableau 
[image: image100.wmf]2

,  1  et 

abaga

Î==

£



[image: image101.wmf]               Equation                 

                          Points fixes.

Identité                  ()            

                                        

    

Translation            

Isométrie

hzz

=

£

0

2

()  0                                   

   

               ()   =1                  

      z

1

             ()   =1,0    droite       

2

 gliss

hzz

Rotationhzz

Réflexionhzz

Symétrie

bb

b

aba

a

bb

abag

a

=+¹Æ

=+=

-

=+£+

¡

2

ée   ()   =1, n'est pas 0     

hzz

b

aba

a

=+£Æ


Soit
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,pour prouver le type d’isométrie representée par ces deux équations nous devons examiner l’existence et la nature de leurs  points fixes .Un point 
[image: image103.wmf]0

z

 est dit un point fixe d’une isométrie 
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Par exemple pour l’identité tout point du plan est un point fixe,pour la réflexion nous savons  que chaque point de la droite de réflexion reste fixe.Une rotation a un seul point fixe qui est le centre de la rotation.

La translation de vecteur non nul n’a pas de point fixe, tout comme la symétrie glissée.
Dans le cas de ces deux isométries ,elles ne sont  donc pas discernables par leurs points fixes, mais le seront comme nous allons voir par la forme de leur équation.
Considerons les points fixes de l’équation générale
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est une translation et ne possède pas de point fixe pour
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Quand  
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,elle se réduit à l’isométrie identité et dans ce  cas tous les points du plan sont des points fixes.

Si 
[image: image111.wmf]1   et 1   

aaa

=Î¹

£



 EMBED Equation.DSMT4  [image: image112.wmf]()

hzz

ab

=+

 possède le seul point fixe
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Nous savons que la seule isométrie qui possède un seul point fixe est la rotation.Reécrivons  
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 de façon équivalente.
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Nous allons montrer que c’est l’équation d’une rotation autour de
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Nous savons que 
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 est une rotation autour de l’origine O .Considerons  
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 C’est une isométrie car 
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 est inversible et la composition de deux isométries est une isométrie.On vérifie  que 
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, nous déduisons que 
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Ceci prouve les trois premières équations du tableau des isométries. 
Pour les deux dernières équations du tableau,considérons l’existence des points fixes pour l’équation 
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.C’est à dire que que nous cherchons précisément,les solutions de
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 a tout nombre  réel comme point fixe tandis que 
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 n’a aucun point fixe .
Nous prouverons donc  que :
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, soit possède tous les points d’une droite comme points fixes et c’est l’equation,d’une réflexion par rapport a cette droite.Soit qu’elle n’a aucun point fixe et répresente dans  ce cas,une symétrie glissée.
Soit 
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.On vérifie que 
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estune transformation 
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nous allons démontrer que le Noyau(
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Donc  Noyau(
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Si cette condition est verifiée :
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 est alors un point fixe de
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Comme chaque fois que  
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 En effet tout point  M d’affixe  
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Il nous reste a démontrer que 
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Pour prouver que 
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Maintenant si 
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 est bien une réflexion par rapport à la droite 
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Cas où il n’y a pas de point fixe pour 
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Nous pouvons affirmer que 
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 est dans ce cas exactement égale à la composition de la réflexion 
[image: image205.wmf]()

kzzib

ag

=+

 de droite 
[image: image206.wmf]2

ib

g

g

+

¡

 car
[image: image207.wmf]2

2

()

0

ib

b

g

a

=-£

 et de

la translation 
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.Nous déduisons que
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Ceci complète les preuves pour les équations du tableau des isométries donné à la page 7.

Nous finirons cette section, avec deux résultats qui caractérisent les isométries .  
Définition :soit f et g deux isométries ,l’isométrie obtenue par 
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est appelée le conjugué de f par g.
Théorème 3.1.

Le conjugué d’une isometrie est une isométrie de même type
D’abord le conjugué de  l’isométrie h par g 
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 est une isométrie car g est inversible et la composition de deux isométries est une superbe isométrie.
Nous pouvons vérifier aussi  que h laisse fixe 
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laisse fixe 
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On déduit que les conjugués transforment les points fixes en points fixes. 
Les isométries transforment un point en un point et une droite en une autre droite et les conjugués sont des isométries, qui portent des points fixes dans  des points fixes.
Par conséquent,les rotations ont pour conjugués des rotations et les réflexions ont pour conjugués des réflexions.

Pour une translation 
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 et une isométrie 
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et 
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.Nous pouvons prouver par opération directe,que 
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 .Le conjugué d’une translation par une isométrie est donc une translation.
Une symétrie glissée,n’est pas une translation et n’a pas de point fixe.D’après ce que nous savons sur le conjugué ,le conjugué d’une symétrie glissée est une isométrie, qui n’est pas une translation et qui ne posséde pas de point fixe,c’est donc une autre symétrie glissée.
Théorème 3.2.

Toute isométrie de 
[image: image224.wmf]2
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est la composition d’au plus deux  réflexions, excepté la symétrie glissée qui est exactement la composition de trois réflexions.

Nous prouverons le théorème  pour  l’identité, la translation,la rotation et la similitude glissée

L’isométrie identité est le carré de n’importe quelle réflexion de la forme,
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Une translation 
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peur s’écrire comme le produit des réflexions 
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Pour la rotation autour de l’origine O 
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 soient les réflexions 
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 on vérifie que 
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 est la composition de deux réflexions.
.Pour une rotation arbitraire 
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,
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 est donc le conjugué de la rotation 
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autour de O, par la translation 
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.Donc 
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Par le théorème 3.1
[image: image243.wmf]()
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 étant la composition des deux conjugués de réflexion est aussi la composition de deux réflexions.Toute rotation est donc la composition de deux réflexions.
Le lecteur vérifiera aisement que pour toutes les réflexions qui ont été définies jusqu’ici on a la condition 
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La symétrie glissée qui est la composition d’une réflexion et d’une rotation est donc la composition de trois réflexions .Ce nombre de réflexions ne peut être réduit à deux .
La  composition  de deux réflexions étant donnée par 
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 qui est de la forme 
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 . Ce n’est donc pas l’équation d’une symétrie glissée.
V) Détermination de la droite de réflexion et  du vecteur de translation pour les isométries 
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Nous avons prouvé à la page 10,que cette équation  est une réflexion par rapport à la droite 

d’équation polaire
[image: image248.wmf]g
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, passant par l’origine des coordonnées O. 

Or si  
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 est l’angle que fait l’axe des abscisses avec la droite de réflexion,l’équation  polaire de cette droite est 
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. 
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et
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étant donc,deux équations polaires de la même droite,leurs vecteurs directeurs unitaires sont égaux. On déduit que  
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.
L’équation d’une réflexion  par rapport  à la droite y=mx est donc de la forme :
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()    avec tan()

i

hzezm

q

q

==

.

 Si la droite de réflexion ne passe pas par l’origine des coordonnées ,soit 
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l’affixe de l’ordonnée à l’origine.Considérons le  conjugué 
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 de la reflexion 
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 par la translation
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. Par le théorème 3.1 c’est est une réflexion de la forme 
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  qui a comme  points fixes la droite 
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   d’équation y=tan(
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Transformons cette équation générale 
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 en une forme plus linéaire.
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  comme 
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 est
un réel n égale à 
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 donc l’écriture simplifiée de 
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Si 
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 dans ce cas,il existe un nombre complexe 
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  donc 
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,est exactement

la composition de la réflexion 
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 de droite de réflexion parallèle à 
[image: image276.wmf]tan()

yx

q

=


par la translation de vecteur 
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 parallèle aussi à cette même droite.

Pour 
[image: image278.wmf]i

bnie

q

¹

 nous obtenons ainsi une belle symétrie glissée. 

 Conclusion :une application complexe de la forme 
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 est géométriquement,une réflexion  par rapport à une droite  parallèle à 
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,ou une symétrie glissée de droite et de vecteur parallèle à
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, si 
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Toute cette théorie est bien belle, mais ne remplace pas des bons exemples.

Exemple de réflexion :

Soit l’application complexe
[image: image284.wmf]()1
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.C’est soit une rélexion ou une symétrie glissée.Pour nous prononcer faisant apparaìtre
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 car 
[image: image287.wmf]i

-

 et 
[image: image288.wmf]1

i

+

 ont pour forme exponentielle complexe respective 
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 ce qui donne
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Cette application étant de la forme 
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 par ce que nous avons établi,c’est une réflexion

Par rapport à la droite 
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Comme 
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 et que la droite de reflexion est la médiatrice  du segment d’extremités (0,0) et(1,1) ,donc (0,5 ;0,5) est un point de cette droite,ce qui donne 1 pour valeur de 
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La transformation donnée est donc une réflexion de droite  
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  Exemple de symétrie glissée.Soit la transformation complexe :
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La transformation est la composition de la reflexion 
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de droite horizontale 
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car 
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,et de la translation de vecteur horizontal 3.C’est donc une symétrie glissée.

En plus,la réflexion 
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 transforme le point d’affixe 0 en point d’affixe 
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, (0,1) est donc un point de la droite 
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, l’équation de la droite de réflexion est 
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