DSP
T A B L E D E S M A T I E R E S

PAGE

1. INTRODUCTION AUX DSP ORIENTÉS APPLICATIONS INDUSTRIELLES. ...1

1.1 INTRODUCTION..1

1.2 PRÉSENTATION DES DSP. ...2

1.2.1 Généralités. .. 2

1.2.1.1 La numérisation.. 2

1.2.1.2 Rôle du DSP... 3

1.2.1.3 Les diverses approches possibles. ... 4

1.2.1.4 Approche processeur ... 6

1.3 CLASSIFICATION DES DSP ..7

1.3.1 Virgule fixe ou flottante .. 7

1.3.1.1 Les DSP à virgules flottantes .. 7

1.3.1.2 Les DSP à virgules fixes ... 8

1.3.2 Classification virgule fixe / flottante des DSP .. 9

1.3.3 Performance des DSP.. 10

1.3.4 Puissance de calcul d’un DSP ... 10

1.3.5 Mesure du temps d’exécution (« Benchmark »).. 11

1.4 ARCHITECTURE FONCTIONNELLE ..12

1.4.1 Architecture d’un processeur... 12

1.4.2 Architecture de Von Neumann et de Harvard ... 13

1.4.3 Utilisation de pipelines... 14

1.5 MÉTHODES ET OUTILS DE DÉVELOPPEMENTS..15

1.5.1 Généralités ... 15

1.5.2 Définition des ressources nécessaires.. 16

1.5.3 La sélection du DSP le plus adapté ... 17

1.5.4 Structure matérielle de développement ... 17

1.5.4.1 Le simulateur.. 18

1.5.4.2 Le module d’évaluation... 18

1.5.4.3 L’émulateur temps réel.. 18

1.5.5 Structure logicielle de développement .. 19

1.5.6 Utilisation d’un logiciel pour programmer une interface C... 20

1.5.6.1 Intérêt d’un logiciel convivial : génération de codes pour DSP .. 20

1.5.6.2 Les générateurs de codes vers dSPACE.. 20

1.5.6.3 Les logiciels de développement .. 21

1.6 SPÉCIALISATION..21

1.6.1.1 Commande de moteurs.. 21

1.6.1.2 Traitement de signaux simultanés ... 21

1.6.1.3 DSP pour téléphones cellulaires.. 22

1.6.2 Exemple de la famille ADSP21xx d’Analog Devices... 22

1. INTRODUCTION AUX DSP ORIENTÉS APPLICATIONS INDUSTRIELLES.

1.1 INTRODUCTION

Depuis plusieurs années, le traitement numérique du signal est une technique en plein essor.

Cette technique s’appuie sur plusieurs disciplines, citons les principales :

− l’électronique analogique et numérique
− les microprocesseurs (classiques ou dédiés au traitement du signal),
− l’informatique (algorithmes, systèmes de développements, exploitations),
− les mathématiques du signal (traitements du signal).

Parmi ces disciplines, nous allons plus précisément faire une description des processeurs de

traitements des signaux, plus communément désignés par l’acronyme Anglais DSP (Digital

Signal Processor).

Les domaines d’applications du traitement numérique du signal sont nombreux et variés

(traitements du son, de l’image, synthèse et reconnaissance vocale, analyse, compression de

données, télécommunications, automatisme, etc.). Chacun de ces domaines nécessite un

système de traitement numérique, dont le coeur est un (parfois plusieurs) DSP ayant une

puissance de traitement adaptée, pour un coût économique approprié.

Les microprocesseurs sont en perpétuelle évolution, chaque nouvelle génération est plus

performante que l’ancienne, pour un coût moindre. Les DSP, qui sont un type particulier de

microprocesseur, n’échappent pas à cette évolution. Dans ces conditions, pour comprendre,

choisir, et utiliser judicieusement un DSP, nous allons tenter d’expliquer l’architecture d’un DSP(différence avec un microprocesseur classique), sa performance ainsi que les developpement de traitement du signal,

schema
Figure 1-1 : Chaîne complète typique d’un système de traitement numérique du signal

Un DSP est un type particulier de microprocesseur. Il se caractérise par le fait qu’il intègre un

ensemble de fonctions spéciales. Ces fonctions sont destinées à le rendre particulièrement

performant dans le domaine du traitement numérique du signal.

Comme un microprocesseur classique, un DSP est mis en oeuvre en lui associant de la

mémoire (RAM, ROM) et des périphériques. Un DSP typique a plutôt vocation à servir dans

des systèmes de traitements autonomes. Il se présente donc généralement sous la forme d’un

microcontrôleur intégrant, selon les marques et les gammes des constructeurs, de la mémoire,

des timers, des ports série synchrones rapides, des contrôleurs DMA, des ports d’E/S divers.

Tous les systèmes à bases de DSP bénéficient des avantages suivants :

− Souplesse de la programmation
− Implémentation d’algorithmes adaptatifs :(possibilité d’adapter une fonction de traitement numérique en temps réel suivant certains critères d’évolutions du signal) .

− Stabilité : en analogique, les composants sont toujours plus ou moins soumis à des

variations alors qu’en numerique ces problemes n’existent pas .

− Répétabilité, reproductibilité : les valeurs des composants analogiques sont

définies avec une marge de précision plus ou moins grande. Dans ces conditions,

aucun montage analogique n’est strictement reproductible à l’identique.

Un programme de traitement numérique est reproductible.
1.2 PRÉSENTATION DES DSP.

1.2.1 Généralités.

1.2.1.1 La numérisation.

Utilisés initialement pour gérer la carte son des micro-ordinateurs, en utilisant des données numériques extraites d'un signal, on rend les systèmes de commande et de gestion électroniques beaucoup plus fiables, et reproductibles. On fixe ainsi l'amplification ou la bande

passante d'un filtre numérique, et ceci de manière définitive.

La très bonne précision en temps (donc en fréquence) des composants numériques provient

de l'extraordinaire stabilité de la fréquence d'oscillation du quartz, fréquence qui sera celle de

l'horloge du processeur, en pratique choisie entre 20 MHz et 200 MHz.

La bonne précision en niveau de tension des composants numériques est due à la qualité des

convertisseurs analogique /numérique et numérique/analogique, et en premier lieu, à la

stabilité de la caractéristique de tension de la diode Zener interne de référence des

convertisseurs. Ensuite intervient le nombre de bits (unité binaire d'information) utilisé pour

caractériser une donnée. La conversion s'effectue le plus souvent avec 8 bits, 10bits 12 bits

voire 14 bits en usage plus performant. Enfin, de nouveaux types de convertisseurs dits

sigma-delta (Σ - ∆) permettent une conversion analogique/numérique avec un faible bruit de

quantification.

La capacité en nombre de bits de données est l'une des caractéristiques de la puissance de

traitement du processeur. Il existe des microprocesseurs et des microcontrôleurs 8 bits, à 16

bits et même plus.

Les DSP devant être encore plus performants, les données numériques seront à 16 ou 32 bits,

voire plus.

1.2.1.2 Rôle du DSP.

Le traitement numérique du signal, qu'il provienne du son ou d'une image vidéo, est rendu

accessible par le DSP grâce à son unité de calcul spécifique multiplicateur / additionneur /

accumulateur de données.

En effet, tout DSP est prévu pour effectuer le plus rapidement possible, en principe en un seul

cycle d'horloge, l'opération multiplication/addition sur des grandeurs numériques :

R +Y. X =MR
où X et Y sont soit des données, soit des constantes et R une donnée, une constante ou un

résultat précédent. MR est alors le résultat de l'opération arithmétique.

Si le DSP fonctionne en virgule fixe avec des données sur 16 bits, le résultat MR est alors sur

32 bits (ou plus, selon l'architecture). Si l'utilisateur ne conserve que les 16 bits de poids fort,

le calcul est alors effectué en simple précision. Si les 32 bits sont utilisés, on parle de double

précision : le temps de calcul est alors plus long.

Si le DSP fonctionne en virgule flottante avec des données en 32 bits, le résultat MR est alors

sur 40 bits (ou plus, selon l'architecture). L’utilisateur ne prend en compte que les données de

32 bits en ignorant les bits de poids faibles de la mantisse.

Le premier DSP a été produit en 1982 par Texas Instruments. Depuis, cinq autres générations

de DSP sont apparues. Les processeurs des générations 1, 2 et 5 sont en virgule fixe, les

générations 3, 4, 6 en virgule flottante.

En 2004, les principaux fabricants de DSP sont :

− Texas Instruments

− Analog Devices

− Motorola

− Zilog

− Lucent

− Nec

− Zoran

− Zsp

− Microchip
1.2.1.3 Les diverses approches possibles.

1.2.1.3.1 Approche signal

Cette approche caractérise d'emblée le DSP et fait de lui un composant numérique pour les

spécialistes du signal et les électroniciens. L’utilisateur retrouve les filtres, avec amplification,

atténuation, mais aussi le traitement numérique du signal (convolution, corrélation,

transformée de Fourier rapide : FFT pour Fast Fourier Transform), filtrage numérique,

compression, codage et décodage des données ...), toutes ces applications faisant appel à des

algorithmes.

Les signaux à traiter sont caractérisés par la fréquence maximale possible associée à un

phénomène physique ou à un système donné. D'après le théorème de Shannon (voir cours de

traitement du signal), la fréquence d'échantillonnage Fe, définie par e e T F / 1 = , Te étant la

période d'échantillonnage, doit être telle que max 2f Fe≥

Si on ne respecte pas cette règle, il risque d'y avoir repliement spectral (aliasing). La

fréquence d'échantillonnage Fe est en général imposée par le convertisseur

analogique/numérique.

Le nombre de cycles de calcul à l'intérieur d'une période d'échantillonnage Te, donne la

possibilité pour le DSP d'intervenir efficacement ou non en temps réel entre deux prises

d'échantillons. Si ce n'est pas le cas, par exemple pour un signal vidéo, le DSP intervient

selon un processus plus lent, tout en gérant des interruptions sur une période

d'échantillonnage. La gestion des ports entrée/sortie devient alors très complexe.

Dans d'autres cas, le DSP est intéressant pour faire une simulation ou une estimation de

grandeurs en temps réel en parallèle avec le déroulement d'un phénomène physique. Il faut

alors que les durées de calcul des données simulées soient plus courtes que la durée

d'évolution du phénomène physique. Ceci est possible si le modèle n'est pas trop complexe,

ou si le phénomène physique est très lent.

Tableau
Les applications des DSP sont nombreuses dans les domaines suivants :

− télécommunications : modem, multiplexeurs, récepteurs de numérotation DTMF,

télécopieurs, codeurs de parole GMS, …),
− interfaces vocales : codeur vocaux pour répondeurs, reconnaissance automatique

de la parole, synthèse vocale …
− militaire : guidage missiles, navigation, communications cryptée, radar, …
− multimédias et grand public : compression des signaux audio (CD), compression

des images, cartes multimédias pour PC, synthèse musicale, jeux, …
− médical : compression d’image médicale (IRM, échographie…), traitements des

signaux biophysiques (ECG, EEG,…), implants cochléaires, équipement de

monitoring.
− électronique automobile : équipement de contrôle moteur, aide à la navigation,

commande vocale, détection de cliquetis pour avance à l’allumage, …
− automatisation et contrôle de processus : surveillance et commande de machines,

contrôle de moteurs, robots, servomécanisme, …
− instrumentation : analyseur de spectre, générateurs de fonction, interprétation de

signaux sismiques, …

1.2.1.3.2 Approche technologique

La Figure 1-2 montre la vitesse d’un composant en fonction de sa « performance », c’est-àdire

de l’adaptation à des besoins spécifiques de l’électronique. On voit la place privilégiée

du DSP par opposition à celle du microprocesseur, d’usage plus général.

Schema
1.2.1.4 Approche processeur

On l'a vu, le DSP peut être comparé au microprocesseur et au microcontrôleur. De fait,

certains DSP, comme les TMS320F240x de Texas Instruments utilisé pour des commandes

de moteurs électriques, ou les Z89323/373/ ... /473 de Zilog sont des processeurs où l'on a

optimisé les avantages du DSP et ceux du microcontrôleur. D'autres, comme les DSP 56000

de Motorola sont issus de la technologie du microprocesseur 68000.

Dans la commande et le contrôle de systèmes complexes, le DSP joue à la fois le rôle du

microcontrôleur, et celui du calculateur rapide en temps réel pour obtenir tous les signaux

nécessaires à la commande. C'est le cas du DSP Texas TMS320F240x qui permet la

commande des moteurs asynchrones en contrôle vectoriel ou en flux orienté, ainsi que celle

des moteurs synchrones et des moteurs pas-à-pas.

Mais une autre approche possible consiste à considérer un « noyau DSP » à l’intérieur d’un

circuit intégré comportant de nombreuses opérations. La société Hewlett Packard propose la

vente des logiciels permettant la création puis l’intégration d’un noyau DSP dans un ASIC

(Applied Specific Integrated Circuit). Il peut servir, à l’intérieur du composant intégré, en «

parallélisme » à un processeur RISC (Reduced Instruction Set Computer). Citons, par

exemple, le DSP TMS320C54x associé au coeur ARM7, ou bien le MPC823 de Motorola qui

réunit à la fois un DSP56800, un coeur Power PC et un module RISC.

Le DSP peut aussi être associé à d’autres processeurs par l’intermédiaire du port hôte. Il peut

servir en « parallélisme » à un microprocesseur.

1.3 CLASSIFICATION DES DSP

Il est impossible d’effectuer une classification « définitive » des DSP, car chaque

constructeur met sur le marché tous les ans un nouveau composant qui surclasse les anciens

ou les concurrents par la puissance de calcul, la rapidité (gestion du pipeline et fréquence

d’Horloge), le nombre de registres, de Timers, de ports série…

1.3.1 Virgule fixe ou flottante

Un point essentiel des DSP est la représentation des nombres (les données) qu’ils peuvent

manipuler. Il est possible de distinguer deux familles :

− Les DSP à virgule fixe : les données sont représentés comme étant des nombres

fractionnaires à virgule fixe, (exemple -1.0 à +1.0), ou comme des entiers

classiques. La représentation de ces nombres fractionnaires s’appuie la méthode du

« complément à deux ». L’avantage de cette représentation (qui n’est qu’une

convention des informaticiens) est de permettre facilement l’addition binaire de

nombres aussi bien positifs que négatifs.

− Les DSP à virgule flottante : les données sont représentés en utilisant une mantisse

et un exposant. La représentation de ces nombres s’effectue selon la formule

suivante : n = mantisse x 2 exposant. Généralement, la mantisse est un nombre

fractionnaire (-1.0 à +1.0), et l’exposant est un entier indiquant la place de la

virgule en base 2 (c’est le même mécanise qu’en base 10).

1.3.1.1 Les DSP à virgules flottantes

Les DSP à virgule flottante sont plus souples et plus faciles à programmer que les DSP à

virgule fixe. Un DSP comme le TMS320C30 manipule des nombres formés avec une

mantisse de 24 bits et un exposant de 8 bits (taille de la donnée en mémoire : 32 bits). Les

valeurs intermédiaires des calculs sont mémorisées dans des registres avec un format de 32

bits de mantisse et un exposant de 8 bits (taille du registre : 32 + 8 bits supplémentaires). La

dynamique disponible est très grande, elle va de -1 x 2128 à (1-2-23) x 2127, toutefois la

résolution reste limitée à 24 bits au mieux. Outre les nombres fractionnaires, ce DSP sait

également manipuler les entiers avec une précision de 32 bits.

La très grande dynamique proposée par les DSP à virgule flottante permet virtuellement de

ne pas se soucier des limites des résultats calculés lors de la conception d’un programme. Cet

avantage a cependant un prix, à savoir qu’un système basé sur un DSP à virgule flottante a un

coût de fabrication supérieur par rapport à un système basé sur DSP à virgule fixe. La puce

d’un DSP à virgule flottante nécessite à la fois une surface de silicium plus importante (coeur

plus complexe), et un nombre de broches supérieur, car la mémoire externe est elle aussi au

format 32 bits. Le système revient donc plus cher (exemple : 2 x 32 broches ne serait ce que

pour les bus de données externes avec une architecture Harvard de base).

Un DSP à virgule flottante est plutôt adapté (sans être impératif) à des applications dans

lesquelles :

− les coefficients varient dans le temps (exemple : les filtres adaptatifs),

− le signal et les coefficients ont besoin d’une grande dynamique,
− la structure mémoire est importante (exemple : traitement d’image),
− la précision est recherchée sur toute une gamme dynamique importante

De part leurs facilités de programmation, ils peuvent également se justifier dans des projets

ou le temps et la facilité de développement sont des facteurs importants. On les trouve

également dans des produits de faible volume de production, pour lesquels le prix du DSP

n’est pas significatif.

1.3.1.2 Les DSP à virgules fixes

Un DSP à virgule fixe est un peu plus compliqué à programmer qu’un DSP à virgule

flottante.

Poids des bits MSB LSB

-23 22 21 20 Valeurs -8 4 2 1

0 1 0 1 = 4+1 = +5

1 1 0 1 = -8+4+1 = -3

le moins positif 0 0 0 1 = 1 = +1

le plus positif 0 1 1 1 = 4+2+1 = +7

le moins négatif 1 1 1 1 = -8+4+2+1 -1

le plus négatif 1 0 0 0 = -8 -8

Figure 1-3 : Représentation des nombres entiers codés sur 4 bits en complément à 2

Poids des bits MSB LSB

-20 2-1 2-2 2-3 Valeurs -1 1/2 1/4 1/8

0 1 0 1 = 0.5+0.125 = +0.625

1 1 0 1 = -1+0.5+0.125 = -0.375

le moins positif 0 0 0 1 = 1 = +0.125

le plus positif 0 1 1 1 = 0.5+0.25+0.1251 = +0.875

le moins négatif 1 1 1 1 = -1+0.5+0.25+0.125 -0.125

le plus négatif 1 0 0 0 = -1 -1

Figure 1-4 : Représentation des nombres fractionnaires codés sur 4 bits en complément à 2

Dans un DSP à virgule fixe typique comme le TMS320C25, les nombre sont codés sur 16

bits (rappel : des entiers classiques ou des fractionnaires).

Toutefois, sur ce DSP, les calculs sont effectués avec des accumulateurs de 32 bits. Lorsque

les résultats doivent être stockés en mémoire, les 16 bits les moins significatifs sont perdus.

Ceci permet de limiter les erreurs d’arrondis cumulatives. Il est toujours possible de stocker

séparément en mémoire les 16 bits faibles puis les 16 bits fort s’il n’y a plus de registres

libres lors d’une étape de calcul.

Cette particularité n’est pas toujours disponible sur tous les DSP. Dans ce cas, les calculs

requérant absolument une double précision sont réalisés en chaînant deux à deux des

instructions spéciales manipulant des données 16 bits en simple précision, au détriment du

temps d’exécution.

La précision des calculs est un point critique des DSP à virgule fixe, car le concepteur de

programmes doit rester vigilant à chaque étape d’un calcul. Il doit rechercher la plus grande

dynamique possible (c.à.d. exploiter au mieux la gamme des nombres disponibles), pour

conserver une bonne précision des calculs, tout en évitant autant que faire ce peu les

débordements du ou des accumulateurs. Les bits supplémentaires des accumulateurs (les bits

de garde) prévus à cet effet permettent de réduire cette contrainte.

Les programmeurs contournent les limites des DSP à virgule fixe en déterminant à l’avance,

et avec soins, la précision et la dynamique nécessaire (par méthode analytique ou avec des

outils de simulation) pour réaliser leurs projets.

Il est également possible d’effectuer des opérations en virgule flottante dans un DSP à virgule

fixe par le biais de routines logicielles adéquates. Cette approche est néanmoins pénalisante

en temps d’exécution, même sur un DSP à virgule fixe très rapide.

En termes de rapidité, les DSP à virgule fixe se placent d'ordinaire devant leurs homologues à

virgule flottante, ce qui constitue un critère de choix important.

Les DSP à virgule fixe sont les plus utilisés, car ils sont moins chers que les DSP à virgule

flottantes. On les trouve dans tous les produits de grande diffusion ou le coût est un facteur

important. Il peut cependant exister des exceptions, certains DSP à virgule fixe se présentant

comme des micro contrôleurs perfectionnés plus chers qu’un DSP à virgule flottante de base.

1.3.2 Classification virgule fixe / flottante des DSP

La classification la plus simple est celle définissant si le DSP appartient à la famille des DSP

virgule flottante ou DSP virgule fixe. Pratiquement, lorsque les données sont sur 16 bits, le

DSP est à virgule fixe. C’est également le cas pour la famille DSP56000 à 24 bits de

Motorola.

Les données sont à virgule flottante pour des DSP de 32 bits

Voyons le cas des DSP fabriqués par Texas Instruments (désignés par TMS) et Analog

Devices (désignés par ADSP). Le classement du tableau 1.3 est effectué selon le nombre de

bits du bus de données et le temps d’exécution d’un cycle, puis d’une opération complexe,

comme la transformée de Fourier rapide à 1024 points de calcul.

Tableau
1.3.3 Performance des DSP

Plus que pour un microprocesseur classique, les performances d’un DSP conditionnent son

domaine d’application.

La plupart des DSP sont particulièrement destinés à des applications « temps réel » et

spécialisées, c’est à dire des applications où le temps de traitement est bien sûr primordial,

mais où la diversité des événements à traiter n’est pas notablement importante. De ce point de

vue, l’approche DSP s’apparente plus à une étude « électronique » visant à réaliser une ou

des fonctions de traitements de signal, que d’une approche informatique temps réel et/ou

multitâche traditionnelle.

Il existe cependant des applications ou le DSP assure à la fois des fonctions de traitements

numériques du signal et les fonctions générales d’un microprocesseur au coeur d’un système

informatique classique.

Dans tous les cas, les performances du DSP sont critiques. Le concepteur d’un système à

base de DSP doit évaluer d’une part la « puissance » nécessaire pour réaliser les traitements

numériques voulus, et d’autre part les performances des DSP disponibles pour réaliser son

application.

1.3.4 Puissance de calcul d’un DSP

C'est un autre critère de classification des DSP. Cette puissance de calcul dépend de la

rapidité de l'exécution des instructions, et donc de l'horloge. Dans un DSP, le MAC

(multiplicateur et accumulateur) calcule le produit de deux entrées codées sur N bits, dans un

temps « record » de 7ns à 150ns. Un cycle d'horloge !. La multiplication est obtenue de

manière asynchrone. Le résultat est chargé dans un accumulateur à 2 x N bits. L’utilisateur

choisit de garder seulement les N bits de poids fort en simple précision, et effectue alors une

troncature ou alors l'ensemble du résultat en double précision. Bien entendu, si le DSP est à

virgule flottante, l'effet de la troncature est moins gênant.

100

0

200

300

400

500

600

1975 1980 1985 1990 1995

Temps de calcul [ns]

Années

Figure 1-5 : Evolution du temps d’exécution d’une opération MAC selon Texas Instruments

La méthode classique pour évaluer les performances d’un DSP est de se baser sur sa vitesse

d’exécution. Encore faut-il trouver une bonne définition de ce qu’est la vitesse d’exécution,

ce qui n’est pas forcément simple.

Cette méthode de base consiste donc à compter le nombre d’instructions effectuées par

seconde. Un obstacle apparaît alors, car une instruction ne signifie pas forcément la même

chose d’une famille de DSP à l’autre. Le Tableau 1-6 résume les principales définitions en

usage.

Acronyme

Anglais Définition

MFLOPS

Million FLoating-point

Operations Per Second.

Mesure le nombre d’opérations à virgule flottante

(multiplications, additions, soustractions, etc.) que le DSP à

virgule flottante peut réaliser en une seconde.

MOPS

Million Operations

Per Second.

Mesure le nombre total d’opérations que le DSP peut

effectuer en une seconde. Par opérations, il faut comprendre

non seulement le traitement des données, mais également les

accès DMA, les transferts de données, les opérations d’E/S,

etc. Cette définition mesure donc les performances globales

d’un DSP plutôt que ses seules capacités de calcul.

MIPS

Million Instructions

Per Second.

Mesure le nombre de codes machines (instructions) que le

DSP peut effectuer en une seconde. Bien que cette mesure

s’applique à tous les types de DSP, le MFLOPS est préféré

dans le cas d’un DSP à virgule flottante.

MBPS

Mega-Bytes Per Second.

Mesure la largeur de bande d’un bus particulier ou d’un

dispositif d’E/S, c’est à dire son taux de transfert.

Tableau 1-3 : Définitions des unités les plus courantes de mesures des performances des DSP

Une autre méthode consiste à définir une fois pour toute une opération de référence comme

étant un « MAC », puisqu’il s’agit d’une fonction commune à tous les DSP. Il ne reste plus

qu’à compter le nombre de « MAC » par seconde.

Cependant cette définition n’apporte pas beaucoup d’informations sur les performances des

DSP modernes. En effet, un « MAC » est exécuté en un seul cycle. Sachant que sur les DSP

récents la plupart des instructions sont également exécutées en un cycle, cela revient donc à

mesurer les MIPS du DSP. Il faut également tenir compte du fait que certains DSP en font

plus dans un seul « MAC » (nombre, format et taille des opérandes traités) que d’autres.

1.3.5 Mesure du temps d’exécution (« Benchmark »)

La vitesse de calcul pure d’un DSP n’est pas une indication universelle, les méthodes et les

résultats diffèrent d’un DSP à l’autre. De plus elle ne rend pas compte d'un certain nombre de

perfectionnement dont peuvent bénéficier tel ou tel DSP.

Certains DSP proposent en effet des modes d’adressages plus performants que d’autres. Ces

modes sont spécialement adaptés à des algorithmes standards du traitement du signal

(exemple : le mode d’adressage dit « bits reversing » pour accélérer les calculs des FFT). Les

instructions itératives sont également importantes en terme de performance (rapidité des

boucles logicielles) et ne devraient pas être ignorées.

Enfin, le temps d’accès à la mémoire est un autre paramètre incontournable. Certains DSP

intègrent des blocs de mémoire vive rapide. Cette mémoire est placée dans l’espace

d’adressage du DSP au même titre que de la mémoire vive externe, ce qui permet d’y ranger

données et programmes sans avoir à effectuer des transfère permanents de ou vers l’extérieur.

Les éventuels cycles d’attentes pouvant être nécessaires pour adresser une mémoire externe

lente sont ainsi évités.

Pour toutes ces raisons, la mesure des performances par benchmark complète

avantageusement la mesure de vitesse pure. Elle consiste à mesurer le temps que met le DSP

pour exécuter des programmes « standards » de traitements du signal. Encore faut il définir

ce qu’est un programme standard de traitement du signal.

Le point faible des benchmarks réside dans cette définition des d’algorithmes standards. Quel

domaine d’applications faut il choisir ? Quels sont les algorithmes les plus représentatifs ? Il

existe plusieurs systèmes de benchmarks se proposant de servir de référence. Ainsi, le BDT

benchmark est couramment utilisé, un autre benchmark fréquemment utilisé est le « Standard

Performance Evaluation Corporation », ou SPEC95, qui couvre plusieurs domaines tels que

les vocodeurs, l’asservissement en position des têtes de lectures des disques dur, les modems,

voire les applications multimédia sur PC.

Dans la pratique, un autre problème se pose : la qualité de l’implémentation des algorithmes

peu varier d’un système de développement à l’autre. Ainsi par exemple, à qualité égale, un

filtre numérique peut demander plus ou moins de ressources processeur en fonction de telle

ou telle implémentation. Cet aspect n’est pas pris en compte par les benchmarks.

La mesure des capacités d’un DSP par benchmark reste néanmoins intéressante, car elle tend

à mesurer la performance globale du système de traitement numérique (y compris les

capacités du programmeur !)

schema
1.4 ARCHITECTURE FONCTIONNELLE

1.4.1 Architecture d’un processeur

Un processeur est un composant intégré (en technologie C-MOS) ou une partie de composant

susceptible d'exécuter des instructions selon un programme d'instructions préétabli sur des

données numériques. Le programme, et parfois les données, sont enregistrés dans des

mémoires numériques.

L’architecture est ce qui détermine d'emblée et de manière définitive les principales

caractéristiques du processeur en particulier la rapidité d'exécution des instructions. Elles sont

liées au nombre de bus internes, qui sont des liaisons parallèles à N bits, à la valeur même de

N, aux opérations possibles sur les données transitant sur les bus et enfin à la puissance de

calcul de l'unité centrale.

Les bus sont reliés à des registres temporaires pour stocker provisoirement les codes

d'instructions, des adresses ou des données. D'autres types de registres existent :

− les registres de contrôle ou d'état, qui ne sont pas stockés en mémoire car ils sont

adressés directement par une instruction, par mesure de sécurité. Ces registres sont

essentiels car ils déterminent le déroulement précis d'une instruction. Certains d'entre

eux sont en lecture seule, d'autres en écriture seule.

− les registres définissant les conditions de fonctionnement d'un port (série, DMA, hôte

...), des interfaces avec des mémoires de sortie ou du Timer, qui ont une adresse en

mémoire de données.

Les instructions s'exécutant au coeur du processeur appelé unité centrale, comportant dans le

cas le plus classique, une seule unité arithmétique de traitement des données. À l'entrée des

unités de calcul constituant l'unité centrale, les données sont chargées dans des registres

temporaires qui, lors de la réalisation de l'instruction de calcul, vont être reliés à l'unité de

calcul ; le résultat de l'opération sera disponible dans un registre (temporaire) de sortie.

L’architecture est conçue pour que les instructions puissent :

− charger les données dans un registre temporaire d'entrée en lisant le contenu d'une

mémoire vive à une adresse donnée, les données transitant par un bus de données et les

adresses pour la lecture par un autre bus ;

− effectuer une opération logique ou arithmétique sur une donnée ou entre deux données

dans l'unité centrale;

− effectuer des tests sur le résultat obtenu (dépassement, signe...) ;

− modifier certains registres ;

− aller écrire un résultat à une adresse de la mémoire prévue.

Toutes ces instructions doivent en principe être exécutées en un seul cycle d'horloge.

L’architecture contient donc un noyau DSP si elle comporte une unité centrale laquelle est

composée d'une ou plusieurs unités de traitement, chacune comportant des unités de calcul,

dont l'ALU (Arithmetic and Logic Unit) le MAC (Multiplier and ACcumulator), le décaleur à

barillet (Barrel Shifter) et enfin des multiplexeurs d'aiguillage des données. En plus de 1'unité

centrale, le noyau DSP comporte un séquenceur, pour envoyer les adresses des instructions

enregistrées dans la mémoire programme, et un ou plusieurs générateurs d'adresses (parfois

appelés pointeurs) agissant sur les bus d'adresses.

1.4.2 Architecture de Von Neumann et de Harvard

À chaque cycle d'horloge, le processeur sait par le compteur de programme l'instruction qu'il

doit faire exécuter. Nous avons vu qu'il va chercher chaque instruction en mémoire, l'exécute

avec les données correspondantes et retourne les données résultantes en mémoire.

Dans l'architecture de la machine de Von Neumann, le programme et les données sont

enregistrés sur la même mémoire. Chaque instruction contient la commande de l'opération à

effectuer et l'adresse de la donnée à utiliser, il faut donc souvent plusieurs cycles d'horloge

pour exécuter une instruction. La Figure 1-6 indique une architecture simple de Von

Neumann, constituée d’un bus de données et de programme et d’un bus d'adresses.

On voit que les échanges s'effectuent de manière simple entre l'unité arithmétique et logique

(ALU), c'est-à-dire l'unité centrale et la mémoire unique, par un bus transitant les codes de

programme et les données. On a ainsi des données « collées » aux instructions. Les

microprocesseurs et beaucoup de microcontrôleurs utilisent cette architecture car elle est très

souple pour la programmation

schema
Figure 1-6 : Architecture de Von Neumann

Dans l'architecture dite de Harvard (car mise au point dans cette université américaine en

1930), on sépare systématiquement la mémoire de programme de la mémoire des données :

l'adressage de ces mémoires est indépendant. La Figure 1-7 indique une architecture simple de

Harvard, constituée d’un bus de données, d’un bus de programme et de deux bus d'adresse.
schema
Figure 1-7 : Architecture de Harvard

On voit que les échanges s'effectuent de manière double entre l'unité centrale et les deux

mémoires, ce qui permet une grande souplesse pour l'enregistrement et l'utilisation des

données. D'ailleurs, la mémoire de programme est également utilisée en partie comme

mémoire de données pour obtenir encore plus de possibilités de traitement avec des

algorithmes complexes.

L’architecture généralement utilisée par les microprocesseurs est la structure Von Neuman

(exemples : la famille Motorola 68XXX, la famille Intel 80X86). L’architecture Harvard est

plutôt utilisée dans des microprocesseurs spécialisés pour des applications temps réels,

comme les DSP.

Il existe cependant quelques rares DSP à structure Von Neuman. La raison de ceci est liée au

coût supérieur de la structure de type Harvard. En effet, elle requiert deux fois plus de bus de

données, d’adresses, et donc de broches sur la puce. Or un des éléments augmentant le coût

de productions des puces est précisément le nombre de broches à implanter.

Pour réduire le coût de la structure Harvard, certains DSP utilisent l’architecture dite «

Structure de Harvard modifiée ». À l’extérieur, le DSP ne propose qu’un bus de données et

un bus d’adresse, comme la structure Von Neuman. Toutefois, à l’intérieur, la puce DSP

dispose de deux bus distincts de données et de deux bus distincts d’adresses. Le transfert des

données entre les bus externes et internes est effectué par multiplexage temporel.

1.4.3 Utilisation de pipelines

Pour améliorer les performances de l’unité de traitement, les DSP les plus récents utilisent la

méthode du pipeline. Elle consiste à imposer un ordre et un rythme dans le déroulement des

instructions de manière à optimiser en rapidité leur exécution. En un cycle processeur, les

opérations élémentaires suivantes peuvent être exécutées en parallèle :

1. aller chercher l’instruction en mémoire programme (Fetch) ;

2. réaliser le décodage de l’instruction, et des adresses des opérandes (Decode) ;

3. lire les opérandes en mémoire de données (Read) ;

4. exécuter l’opération et écrire le résultat (Execute).

Le principe de pipeline consiste à découper le travail en tâches élémentaires de même durée

pour permettre leur réalisation en parallèle. Il faut prévoir des registres tampon entre chaque

opération élémentaire, ce qui montre le Tableau 1-5.

Il y a donc en permanence quatre instructions dans le pipeline, ce qui est le plus souvent

invisible, sauf s’il y a « conflit » dans le pipeline, ce qui se passe quant l’une des quatre

instructions exige plus d’un cycle d’horloge. Dans la plupart des cas, DSP « rattrape » le

conflit en décalant alors les autres instructions d’un cycle.

schema
1.5 MÉTHODES ET OUTILS DE DÉVELOPPEMENTS

1.5.1 Généralités

Un processus de développement typique pourrait être celui de la Figure 1-8

La souplesse du développement d’applications à base de DSP est un avantage important en

termes de temps, de facilité, de fiabilité, et donc de coût.

Comme le suggère la Figure 1-8, créer une application DSP, c’est mener de front deux études

distinctes.

− La partie matérielle : elle inclue la mise en oeuvre du DSP lui-même, mais aussi la

création d’une chaîne d’acquisition et/ou de restitution du signal (parfois des

signaux) à traiter. Les moyens de transformation du signal analogique vers le

domaine numérique s’appuient eux aussi sur des circuits spécialisés (AIC,

CODEC, CNA, CAN...) Le choix des performances à obtenir et des moyens pour

réaliser la chaîne d’acquisition et/ou restitution du signal est primordial pour

exploiter au mieux les capacités d’un DSP. L’objectif est de rendre l’application

finale homogène, ergonomique, et ayant un coût de fabrication industriel approprié.

− La partie logicielle : elle s’appuie sur des outils classiques adaptés aux spécificités

des DSP. L’approche est différente de celle utilisée pour la partie matérielle, car il

est toujours possible de recommencer autant de fois que nécessaire pour arriver au

résultat. Seul un temps de développement trop limité ou une mauvaise évaluation

de départ des capacités du DSP cible peut créer des problèmes de développements.

La conception logicielle n’en est pas plus facile pour autant, car le programme

réalise l’essentiel du traitement du signal. Le rôle du DSP ne se limite pas

forcément au seul traitement numérique du signal, un DSP peut assurer les mêmes

fonctions qu’un microprocesseur « normal », et donc être le coeur du système

informatique de l’application. Ainsi, le cas échéant, un DSP peut exécuter à la fois

un système d’exploitation temps réel et assurer les fonctions de traitement

numérique du signal.

schema
Figure 1-8 : Exemple d’un processus de développement typique

1.5.2 Définition des ressources nécessaires

Cette phase doit permettre d’évaluer les besoins nécessaires à la mise en oeuvre du système

de traitement numérique du signal voulu. Elle consiste notamment à définir les spécifications

de la chaîne d’acquisition et de restitution du signal, telles que :

− la résolution (nombre de bits nécessaires pour quantifier le signal),

− la vitesse d’échantillonnage (critère de Shannon),

− la technologie et donc le type de convertisseurs utilisé,

− les filtres anti-repliements s'ils ne sont pas intégrés dans les convertisseurs.

Elle permet plus généralement de cerner tous les besoins du système numérique, tels que par

exemple la consommation de courant et l’autonomie pour une application portable, ou au

contraire les bus nécessaires à l’intégration de l’application dans un système hôte.

1.5.3 La sélection du DSP le plus adapté

La sélection d’un DSP se base avant tout sur la
 puissance de traitement nécessaire, et sur le

résultat de benchmarks réalisant des fonctions représentatives des traitements à réaliser.

Toutefois, la performance du DSP n’est pas le seul critère à prendre en compte, il faut

également tenir compte des impératifs suivants :

− Le type de DSP à utiliser (virgule fixe ou flottante) en fonction du domaine

d’application.

− Les ressources mémoires utilisés, car s’il faut par exemple exécuter très rapidement

une FFT 1024 points, un DSP intégrant plus de 2048 mots de mémoire vive

statique peut être nécessaire.
− Les besoins d’un ou de plusieurs timers internes, de ports série synchrones ou

asynchrone, etc.

− La nécessité éventuelle d’exécuter un système temps réel, qui s’avérera plus facile

à implanter sur certains DSP.

− Le coût du DSP, son rapport « performance/prix » en fonction du volume de

production envisagé.

− La pérennité du produit, c'est-à-dire l’évolution prévue par le fabricant (roadmap).

D’autres éléments non négligeables interviennent dans le choix d’un DSP, il s’agit des

moyens disponibles pour mener le développement en un temps donné, comme :

− La qualité de la documentation (de préférence claire et abondante).

− La disponibilité de notes d’applications, d’un support technique.

− La qualité du système de développement utilisé.

− La possibilité d’utiliser un langage de haut niveau (Langage C).

− La présence de librairies (du constructeur ou de tierces parties).

− La possibilité de réaliser facilement des prototypes et à faible coût.

Le choix n’est pas toujours simple et certains critères peuvent être contradictoires, certaines

règles de choix se dégagent quand même. Ainsi pour des applications destinées à faire un fort

volume de production, le critère déterminant est sans conteste le prix du DSP. Pour des

applications à faible volume de production, le prix du DSP importe peu, le critère est alors la

facilité de développement.

Dans tous les cas, la présence d’un bon support technique est un facteur à ne pas négliger, car

un DSP est quand même plus complexe à mettre en oeuvre qu’un microprocesseur classique.

1.5.4 Structure matérielle de développement

Un environnement (ou système) de développement pour DSP peut être scindé en deux parties

principales:

− Un environnement de développement pour créer et mettre en forme le logiciel de

l’application (création du source, utilisation des bibliothèques, assemblage).

− Un environnement de développement utilisant des outils spécifiques pour tester et

déboguer le logiciel de l’application (simulateur, module d’évaluation, émulateur).

1.5.4.1 Le simulateur

Le simulateur est un programme particulier exécuté par un PC ou une station de travail. Son

rôle consiste à simuler le plus exactement possible le fonctionnement du DSP cible.

L’interface utilisateur du simulateur permet de consulter les mémoires, tous les registres

internes du DSP, ses entrées/sorties, etc. Le simulateur exécute chaque instruction DSP

comme le ferai le DSP lui-même, et en répercute les résultats dans les mémoires et les

registres simulés.

L’avantage de ce moyen de développement est qu’il ne nécessite pas la mise en oeuvre du

DSP cible, le test d’un module logiciel peut donc se faire rapidement dès sa création. Comme

l’indique la figure 9, l’écriture d’un logiciel DSP est un processus très itératif, la disponibilité

d’un simulateur est donc toujours appréciable eu égard au gain de temps de développement

qu’il génère.

L’inconvénient est que le logiciel DSP en cours de développement n’est pas du tout exécuté

en temps réel. Les opérations d’entrées/sorties sont simulées en utilisant des fichiers sur le

disque dur du PC. Le simulateur devient vite limitatif lorsqu’il s’agit de tester le code en

charge des opérations d’entrés/sorties.

1.5.4.2 Le module d’évaluation

Le module d’évaluation se présente sous la forme d’une carte électronique incorporant le

DSP cible et le minimum des ressources nécessaires à sa mise en oeuvre, telles que des

mémoires externes, un AIC, le cas échéant une liaison série RS232, et une alimentation. La

partie matérielle est figée et n’est pas (ou alors très peu) évolutive. Un module d’évaluation

s’utilise donc généralement « tel quel », et est surtout utile quand ses caractéristiques

recouvrent celles de l’application à développer. Le module est piloté à partir d’un logiciel

adéquat exécuté par un PC.

La communication avec le module d’évaluation s’effectue au travers d’une liaison série s’il

s’agit d’un modèle autonome, ou à via un bus du PC s’il s’agit d’une carte à enficher. Le

programme à tester est téléchargé dans le module pour être exécuté par le DSP.

Comme le simulateur, le module d’évaluation permet de consulter la mémoire et les registres

du DSP à volonté. Il permet également de poser des points d’arrêts simples aux endroits

stratégiques du code à déboguer.

Un problème posé par les modules d’évaluations est la non disponibilité de l’ensemble des

ressources du DSP. En effet, en plus du code à tester, le DSP exécute également un mini

moniteur de débogage, chargé de communiquer avec le PC et d’interpréter des commandes

de bases. Une partie des interruptions et de la mémoire du DSP est donc attribué au moniteur

de débogage.

Un module d’évaluation n’en reste pas moins un outil de développement approprié pour

tester des parties de codes en temps réel. Il est disponible immédiatement, ce qui n’est pas

toujours le cas du prototype de l’application à développer, et son faible prix en fait souvent

un outil d’apprentissage apprécié.

1.5.4.3 L’émulateur temps réel

L’émulateur temps réel est l’outil privilégié pour développer des applications DSP. C’est

l’outil le plus souple et le plus performant, car il ne souffre pas des limitations d’un

simulateur ou d’un module d’évaluation. Son rôle consiste à émuler en temps réel le

fonctionnement du DSP au sein même du prototype de l’application à développer. Toutes les

ressources du DSP cible sont libres pour tester non seulement le code du programme de

l’application, mais également le fonctionnement du prototype.

Tout comme le module d’évaluation, un émulateur est piloté par un PC, via lequel il est

possible d’examiner la mémoire et les registres du DSP. Il est également possible de poser

des points d’arrêts à déclenchements sophistiqués, basés par exemple sur des conditions

logiques portant sur le contenu de registres, de mémoires, voire de ports d’entrées/sorties. Un

émulateur permet en outre de garder une trace des instructions exécutées dans telle ou telle

partie du code à tester, ce qui facilite grandement le débogage dans certains cas complexes.

Seul moyen vraiment sûr pour tester un programme et un prototype, un émulateur reste

néanmoins handicapé par son prix élevé dont il faut tenir compte dans le coût global d’un

développement. Il faut noter que les DSP récents incluent directement dans leurs coeurs des

fonctions d’émulation (points d’arrêts, registres spéciaux, etc.) Cette approche permet de

simplifier la conception des émulateurs et tends à les rendre moins chers.

1.5.5 Structure logicielle de développement

Les deux principales méthodes pour écrire un programme DSP consistent à utiliser un

assembleur dédié ou un langage de haut niveau.

Un langage de haut niveau comme le langage C présente l’avantage d’être connu par la

plupart des ingénieurs amenés à travailler dans le domaine du traitement du numérique du

signal. Un programme DSP écrit en langage C peut donc être compris relativement

facilement par un grand nombre de personnes, sans qu’elles aient besoin de connaître

précisément le DSP cible. De plus, la portabilité du langage C permet de d’utiliser un

programme sur des DSP fabriqués par différents constructeurs.

schema
Figure 1-9 : Organigramme d’un système de développement de logiciel pour DSP

L'utilisation d’un assembleur pour programmer un DSP n’en demeure pas moins intéressante.

Plus que pour un microprocesseur classique, les performances de traitement sont cruciales, et

l’assembleur est le seul langage permettant d’utiliser totalement les possibilités spécifiques de

tel ou tel DSP. Par exemple, un algorithme de codage LPC est ainsi estimé 1,5 fois plus

rapide quand il est implémenté en assembleur plutôt qu’en C. Même lorsqu’ils sont

spécialement optimisés pour le DSP cible, les compilateurs C ne permettent pas de générer

un programme ayant les performances d’un code bien écrit en assembleur par un développeur

confirmé.

La souplesse du système de développement permet d’ajouter facilement des portions de

programmes assembleurs (assemblage « en ligne », ou librairie de fonctions assembleurs) à

un logiciel écrit en C. Ce mélange est recommandé par les constructeurs, ainsi la plupart des

exemples de traitements numériques sont donnés en assembleur, alors que les exemples de

mise en oeuvre du DSP sont donnés en C. Les outils de débogage acceptent indifféremment

l’un, l’autre, ou le mélange des deux langages.

Certaines sociétés indépendantes des constructeurs fournissent des librairies de fonctions de

traitements numériques du signal prêtes à l’emploi. Le langage C facilite l’intégration des

librairies, voire même la mise en oeuvre de véritables systèmes d’exploitations temps réels et

multitâche, par exemple le système SPOX de Spectron Microsystems.

Bien qu’étant le plus répandu, le langage C n’est pas le seul utilisable pour programmer un

DSP, il existe quelques rares compilateurs ADA, FORTRAN et PASCAL pour DSP.

1.5.6 Utilisation d’un logiciel pour programmer une interface C

1.5.6.1 Intérêt d’un logiciel convivial : génération de codes pour DSP

Dans une étude de simulation en électronique, en traitement du signal, ou en automatique, il

est intéressant d'utiliser des outils mathématiques appropriés pour tester ou faire fonctionner

en quasi-émulation un montage, un système ou une transmission de données. La

programmation du DSP se fait sur l'écran de l'ordinateur, à l'aide de schémas-blocs et de

signaux de commande précisés sur la modélisation du système, ce qui est plus agréable et

plus convivial pour l'utilisateur. Les algorithmes sont étudiés par simulation, puis sont

transformés pour être exécutables par un DSP.

Le logiciel dispose de « boîtes à outils » de problèmes déjà résolus, sortes de sousprogrammes

qui facilitent une étude plus globale d'un système. Il est ainsi possible de créer

des fichiers en langage C qui seront compilés pour être exécutés par un DSP. On parle alors

de générateurs de codes pour DSP.

1.5.6.2 Les générateurs de codes vers dSPACE

La société Scientific Software propose deux logiciels: MATLAB et SIMULINK et une carte

d'application nommée dSPACE.

L’analyse mathématique s'effectue grâce au logiciel MATLAB. Pour une étude plus proche

des problèmes de l'électronicien ou de l'automaticien, il est possible de lui associer le logiciel

SIMULINK. L’étude d'un système va alors aboutir à une commande optimisée par DSP,

écrite éventuellement en langage C. Un compilateur convertit le programme écrit par le

logiciel en un fichier exécutable par un DSP en virgule flottante, situé sur une carte

d'implantation dSPACE.

Ce DSP va ensuite fonctionner de manière à tester la commande avec des signaux réels issus

d'un système complexe, comme le contrôle d'un robot.

Le logiciel MATLAB sert à l'analyse mathématique des données, telles que la résolution

d'équations différentielles ou l'analyse numérique matricielle. Par la suite, on peut grâce à des

« outils », développer l'analyse du signal : convolution, corrélation, transformée de Fourier,

traitement d'images... MATLAB permet en outre l'identification du domaine de fréquences

des systèmes utilisés en électronique et en traitement du signal. Enfin, il est possible, en vue

de l'application au DSP, de tester des algorithmes, par exemple ceux qui sont utilisés en

codage correcteur d'erreur pour la transmission numérique des données.

Pour étudier de manière plus approfondie un système complexe, en particulier en simulation,

on passe de MATLAB à SIMULINK. À partir de là, on utilise SIMULINK en générateur de

codes de commande pour DSP.

L’avantage ici est que les codes envoyés sur dSPACE sont bien adaptés au DSP utilisé, quel

que soit le fabricant et que les performances du composant sont optimales.

Dans ces conditions, on peut faire fonctionner le DSP en temps réel, c'est-à-dire en réaction

complète et rapide avec le fonctionnement et le comportement du système commandé.

1.5.6.3 Les logiciels de développement

La société Hewlett Packard propose des logiciels permettant, à partir d'un concept, de

développer complètement une programmation de DSP, en utilisant soit le langage C, soit les

outils MATLAB. Bien entendu, des outils, des bibliothèques de données et de sousprogrammes

sont disponibles et il est possible d'effectuer toutes les simulations nécessaires

pour vérifier le fonctionnement.

1.6 SPÉCIALISATION

Pour un usage donné du DSP (commande numérique d'un moteur électrique, comme un

moteur asynchrone triphasé, par exemple) une classification est possible selon la facilité de

mise en oeuvre du programme du composant et selon les performances obtenues.

1.6.1.1 Commande de moteurs

Les TMS320F240x sont des DSP-contrôleurs 16 bits, à virgule fixe, qui sont très bien

adaptés à ce rôle. Ils comportent les sorties nécessaires à la commande par modulation de

largeur d'impulsions vectorielle de l'onduleur alimentant le moteur asynchrone. Il fonctionne

avec deux fréquences d'horloge : l'une pour les opérations à 20MHz, l'autre pour le «chien de

garde » (Watch Dog) de la fonction contrôleur, à 16384Hz. Les bus internes fonctionnent en

16bits. D'autre part, il est possible d'envisager plusieurs modes de commande, de types

d'asservissement, à partir de données obtenues concernant le moteur : courant et position

angulaire. Il effectue en temps réel les calculs de transformation nécessaires (transformation

de Park) pour optimiser les commandes d'asservissement.

La société Analog Devices proposait un système concurrent nécessitant un ensemble DSP et

ADSP2115, 16bits, à virgule fixe, associé à un processeur vectoriel ADMC200 pour

effectuer les transformations de Park.

Depuis, cette société présente un DSP-microcontrôleur ADMC330, ADMC401, qui réalisent

sensiblement les mêmes fonctions que le TMS320C240 : fréquence d'horloge 13MHz,

virgule fixe, 16bits. En 2002 est apparu une nouvelle famille ADSP21299x possédant toutes

les caractéristiques de l’ADMC401 avec en plus un bus CAN et un temps de cycle de l’ordre

de 6ns.

1.6.1.2 Traitement de signaux simultanés

Un autre type de DSP spécialisé est celui qui gère de manière souple des signaux simultanés,

tel l'ADSP21csp0l de Analog Devices. C'est un DSP 16bits à virgule fixe, de performance

50MIPS, avec un temps de cycle de 20ns. L’appellation csp (concurrent signal processing)

signifie que ce DSP peut gérer à la fois quatre entrées/sorties de mémoires externes sans

difficulté, grâce à des mémoires « tampon » d'attente.
1.6.1.3 DSP pour téléphones cellulaires

UADSP21msp5l de Analog Devices dispose dans son circuit intégré d'un système de

traitement de la voix. Il comporte un convertisseur analogique/numérique de type sigmadelta,

avec des filtres anti-repliement de spectre. Il est spécialement conçu pour les

téléphones cellulaires. La société Motorola fabrique également des DSP pour téléphones

cellulaires.

1.6.2 Exemple de la famille ADSP21xx d’Analog Devices

La famille ADSP 2lxx est à virgule fixe utilisant des données en 16 bits. Cette famille a

évolué très vite en fonction de la diversification des besoins des DSP Ces besoins ont fait

naître des opérations particulières à certains DSP, comme le port hôte (HIP : Host Interface

Port) des ADSP2111, 2171 et 2173, qui permet de communiquer des données avec un autre

processeur, ou l'interface analogique de l'ADSP21msp58 (Tableau 1-6).

Pour tous les DSP de la famille 2lxx, le constructeur a cherché à ce que l'architecture interne

du composant permette d'exécuter en un seul cycle d'horloge les tâches ci-dessous :

− créer l'adresse suivante du programme ;

− aller chercher l'instruction suivante ;

− réaliser un ou deux déplacements de données ;

− exécuter l'instruction.

Dans un cycle d'horloge le DSP peut aussi

− recevoir ou transmettre les données d'un port série ;

− recevoir ou transmettre les données d'un port DMA ou port hôte.

Le coeur des DSP de la famille ADSP21xx dédiée spécifiquement aux calculs contient les

ensembles principaux suivant :

− un ALU (Arithmetic and Logic Unit) permettant les calculs simples du processeur :

addition, soustraction, opérations logiques entre données de 16 bits,

− un MAC (Multiplier and ACcumulator) permettant les calculs de multiplication et

d'addition (ou de soustraction) entre données de 16 bits,

− un BS (Barrel Shifter) permettant le décalage de bits sur 16 ou 32 bits en mode

logique et arithmétique,

− un DAG (Data Address Generator), générateur d'adresses de données, un pointeur,

indispensable pour la plupart des opérations.

Le processeur ADSP-2101, le plus ancien, comporte deux ports série pour la transmission des

données, 1k (1024 mots) de mémoire de données de 16 bits en mémoire vive (RAM) et 2k de

mémoire de programme de 24 bits en RAM. Le bus d'adressage est en 14 bits. L’horloge

interne fonctionne à 25 MHz. La technologie est de type C-MOS, où la longueur du canal est

de 0.5µm. La consommation du composant est inférieure à 1W.

Le processeurADSP-2181, l'un des plus récents, comporte deux ports série pour; la

transmission des données, 16k de mémoire de données de 16 bits en mémoire vive (RAM) et

16k de mémoire de programme de 24 bits en RAM. Le bus d'adressage est en 14 bits.

L’horloge interne fonctionne à 33MHz. La technologie est du type C-MOS, avec une

longueur du canal de 0.5µm. Son architecture est conçue pour mener en parallèle de

multiples opérations afin de favoriser le « pipe-lining ».

SCHEMA
