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CALCUL  DE  PROBABILITES
I. DENOMBREMENT   (rappel)

L'analyse combinatoire est une branche des mathématiques qui étudie comment compter les objets.

1.1. Arrangement

a) Définition : E est un ensemble de n éléments et  p un entier naturel 
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. Un  arrangement de p éléments de E est une liste ordonnée de p éléments 2 à 2 distincts choisis parmi les n éléments de E.

Remarque : 2 arrangements de p éléments de E diffèrent l'un de l'autre


- soit par la nature de p éléments choisis,


- soit par l'ordre de ces éléments.

Exemple : Soit E={a,b,c,d}. Considérons les arrangements des 4 lettres pris 3 à 3. On a  (a,b,c) 
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(a,b,d),  (a,b,c) 
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 (b,a,c).

b) Nombre d'arrangements : 
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On peut considérer que tout arrangement s'obtient en plaçant p objets pris parmi n objets dans p cases en mettant au plus un objet dans chaque case.
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b) Nombre d'arrangements : Aﬁ

On peut considérer que tout arrangement s'obtient en plagant p objets pris parmi

%« N objets dans p cases en mettant au plus un objet dans chaque case.
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Il y a n(n - 1)...(n-p+1) façons de placer les p objets.

Le nombre d'arrangements de p éléments d'un ensemble de n éléments (p 
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 n) est :
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ex. : E ={a,b,c,d}. Le nombre d'arrangements des éléments de E pris 3 à 3 est 
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1.2. Permutation. Factorielle

a) Définition : E est un ensemble de n éléments. Une permutation des éléments de E est un arrangement des n éléments de E.

Remarque : 2 permutations des éléments de E diffèrent l'une de l'autre par l'ordre des éléments.

Exemple : (a,b,c,d) 
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(b,a,c,d).

Le nombre de permutations, noté Pn, d'un ensemble de n éléments est :

 Pn=
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b) Factorielle : n est un entier naturel, on désigne par n! (on lit "factorielle n") l'entier défini par :



n! = 1.2.3...(n-1).n pour n ( 0. 

 

Par convention 0!= 1.

- On a n ! = n . (n-1) !

- Le nombre de permutation de n éléments est Pn = n!

- Autre écriture de   
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1.3. Combinaison

a) Définition : E est un ensemble de n éléments et un entier naturel (p ( n). Une combinaison de p éléments des n éléments de E est un sous-ensemble de p éléments de E.

Remarque : 2 combinaisons de n éléments pris p à p diffèrent l'une de l'autre par la nature des éléments.

Exemple :  E={a,b,c,d}. Considérons les combinaisons des 4 lettres pris 3 à 3. On a  {a,b,c} 
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 (a,b,d),  {a,b,c} = {b,a,c}.

b) Nombre de combinaisons : 
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On obtient tous les arrangements de n objets pris p à p :

· en formant toutes les combinaisons de p éléments,

· en permutant dans chacun des 
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 combinaisons, les p éléments qui les constituent, ce qui peut se faire de p! façons.
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Le nombre de combinaisons de p éléments des n éléments d'un ensemble E est :
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c) Propriétés
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pour tout n , p (p ( n)    
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1.4 - Tirages
Nombre de façons de tirer p objets parmi n objets (p ( n).

· Tirage simultané : tirer simultanément p objets parmi n objets, c'est choisir une partie de p objets. On ne tient pas compte de l'ordre. Il y a 
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 cas possibles.

· Tirage successif sans remise : tirer successivement sans remise p objets parmi n objets, c'est choisir un arrangement de p objets.  Il y a 
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 cas possibles.

· Tirage successif avec remise : d'une urne contenant n boules, on en tire une première boule b1 parmi les n boules, que l'on remet dans l'urne ; puis, on tire une seconde boule b2 parmi les n boules,  que l'on remet dans l'urne ; … puis, on tire une p-ième boule. Les boules b1, b2, …, bp ne sont pas nécessairement distinctes. Il y a n p cas possibles.

Exemple : Un boîte contient 6 boules dont 4 noires et 2 rouges.

On tire au hasard et simultanément 3 boules de la boîte.

1) Calculez le nombre de cas possibles.
2) Calculez le nombre de tirages favorables à l'événement :


A : " avoir exactement 1 rouge",


B : " avoir des boules de même couleur",


C : " avoir au moins 1 rouge"

3) Reprenez les questions 1- et 2- pour des tirages

· successifs sans remise,

· successifs avec remise.

II PROBABILITES
2.1- Introduction

Il existe deux manières d'introduire la notion de probabilité.

- La probabilité "subjective" d'un événement est un nombre qui caractérise la croyance que l'on a que cet événement est réalisé avec plus ou moins de certitude. Cette croyance peut atteindre deux extrêmes : certitude que l'événement est réalisé (probabilité 1) et certitude qu'il n'est pas réalisé (probabilité 0). La probabilité est un nombre compris entre 0 et 1. 
- La probabilité assimilée à une fréquence : on ne définit alors la probabilité qu'à partir d'expériences indéfiniment renouvelables. La probabilité d'un événement est la fréquence d'apparition de cet événement. C'est un nombre compris entre 0 et 1 ; 0 signifiant que l'événement n'apparaît jamais et 1 signifiant qu'il apparaît chaque fois qu'on renouvelle l'expérience.

Les deux positions esquissées ci-dessus donnent deux notions qui fonctionnent de la même manière.

2.2- Vocabulaire des événements

· Une expérience est dite aléatoire si on ne peut pas prévoir le résultat avant sa réalisation. Exemple : lancer d’une pièce de monnaie, d’un dé.

· A une expérience aléatoire, on associe l’ensemble (ou univers) des résultats possibles. 

Exemples : - pour le lancer d’une pièce de monnaie, l’univers des résultats possibles est 
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 = { pile, face}  ou est  
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= { pile, face, tranche}.

- Lancer d’un dé normal est  
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= { 1, 2, 3, 4, 5, 6}

· Les résultats possibles i.e. les éléments de 
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 sont appelés les événements élémentaires. 

· Un événement est un sous-ensemble de 
[image: image28.wmf]W

. Par exemple A = {1,3,5} est un événement.

· Réunion d’événements : si A et B sont deux événements, ‘’A ou B’’ est réalisé si et seulement si l’un au moins des événements A et B se réalisent. On note A ( B

· Intersection d’ événements : ‘’A et B’’ est réalisé si et seulement A et B sont réalisés simultanément. On note A ( B.

· Evénement contraire 

 : c’est le complémentaire de A dans 
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. 



 comprend les événements élémentaires qui ne sont pas dans A.

Par exemple, dans le cas d’un dé si A = {1, 3, 5} alors 

 = {2, 4, 6}.

· Un événement impossible est un événement qui ne se réalise jamais. C’est l’ensemble vide.

· Evénement certain : c’est 
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 . L’événement contraire de 
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 est 

.

· Evénements incompatibles ou disjoints : deux événements A et B sont dits incompatibles lorsqu’ils ne peuvent se réaliser simultanément.

A et B incompatibles ( A ( B = (.

Par exemple, 2 événements contraires sont incompatibles.

2.3 - Probabilités d’événements
· Considérons une expérience aléatoire à laquelle est associée un ensemble fini 
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 de n résultats possibles. (Card 
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= n). 
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 ={e1, e2,...,en }.

- la probabilité d’un événement A, notée p(A), est telle que p(A) ≤ 1.

- p(
[image: image35.wmf]W

) = 1

- si A ( B = ( alors p(A ( B) = p(A) + p(B)

· Evénements équiprobables
- On dit qu'il y a équiprobabilité des événements lorsque tous les événements élémentaires ont la même probabilité d'être réalisés.

- Notons pi la probabilité de l’événement élémentaire {ei}. Les événements élémentaires sont deux à deux disjoints et leur réunion est 
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alors p1 + p2 + ... + pn = 1.

- Dans le cas où ces événements sont équiprobables, p1 = p2 =...= pn=


- Considérons un événement A formé de m événements élémentaires, on a Card A = m. La probabilité de A est p(A) =  

+

+...+

=
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 est l’ensemble fini des résultats possibles associés à une épreuve. Dans le cas où tous les résultats sont équiprobables, la probabilité d’un événement A est tel que :
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Exemple :  Une urne contient 10 boules dont 5 rouges, 3 blanches et 2 noires. La probabilité de tirer une boule blanche est 
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2.4 - Propriétés d’une probabilité
· 0 ( p(A) ( 1

· Si A et 

 sont deux événements alors p(

) = 1- p(A).

Démonstration: On a A ( 

= 
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  et A ( B = ( alors p(A ( 

) = p(
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), donc p(A) + p(

) = 1 et p(

) = 1- p(A).

· Propriétés
- Pour deux événements A et B, p(A ( B) = p(A) + p(B) - p(A ( B)

- Dans le cas d’événements équiprobables de 
[image: image42.wmf]W

 on a :

Card(A ( B) = Card(A) + Card(B) - Card(A ( B) et 


· Evénements indépendants 

On dit que deux événements A et B sont indépendants lorsque p(A ( B) = p(A).p(B).

Ne confondez pas ‘’événements indépendants’’ et ‘’événements incompatibles’’
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