Machines à Courant Continu
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Machines à courant continu
I) Introduction :

Une machine à courant continu est un convertisseur d'énergie réversible : l'énergie électrique y est transformée en énergie mécanique dans le fonctionnement en moteur, et l'énergie mécanique y est transformée en énergie électrique dans le fonctionnement en génératrice.

( La machine à courant continu est un convertisseur électromécanique. 
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La principale utilisation en est le moteur dont on contrôle facilement la vitesse, son coût et l’entretien nécessaire en sont les inconvénients majeurs.

· Faible puissance : (qq W) : servomécanisme équipement auto

· Moyenne puissance : (<300 kW) : Machines outils engins de levage

· Fortes puissances : (<10 MW) : traction TGV (premiers TGV 12 MCC 525 KW sous 1070 V et Imax=1000 A
II) Principe de fonctionnement :

II.1) Principe
Dans les machines tournantes deux aimants cherchent à aligner leurs pôles opposés :

-dans les machines à courant alternatif le stator génère un champ que suit le rotor aimanté : (c’est la machine synchrone ou asynchrone)

-dans les machines à courant continu , le stator crée un champ magnétique fixe et le rotor lui présente un champ magnétique fixe lui aussi mais les conducteurs voient alternativement un courant dans un sens puis dans l’autre les parcourir, à l’aide du collecteur.
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II.2) Description de la machine

Le circuit magnétique est,formé d’une partie fixe, le stator et d’une partie mobile, le rotor qui sont séparés par un entrefer.

II.2.1) L’inducteur (stator)

Il crée le champ magnétique dans l’entrefer. 

Le champ est créé soit :

· Par un bobinage alimenté en continu

· Ou par aimant permanent

	L’inducteur est formé d'aimants en  ferrite ou de bobines  enroulées  sur  des   noyaux polaires disposés sur le stator. Lorsque les bobines sont parcourues par un courant continu ( courant inducteur ou courant d’excitation ), elles créent un champ magnétique dans le circuit magnétique de la machine, et  en particulier dans l'entrefer.

Lorsque la machine comporte un seul pôle nord et un seul pôle sud, elle est dite bipôlaire.

S’il y a plusieurs pôles, la machine est multipolaire. Le nombre de pôles de la machine est noté 2p.

P=nombre de paire de pôles.
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II.2.2) L’induit (rotor)

Un circuit électrique situé sur le rotor : l’induit. C’est un circuit électrique obtenu en associant des conducteurs logés dans des encoches du rotor. 
Il est alimenté par une source de tension continue variable par l’intermédiaire du système de collecteur balais.

Le courant qui le parcourt alors, crée un champ magnétique qui tend à s’aligner sur celui de l’inducteur créant ainsi le couple moteur.
II.2.3) Collecteur - Balais

Le collecteur ( mobile avec le rotor ), c’est un anneau formé de lames de cuivre isolées sur lesquelles frottent des balais. De ces balais en graphite partent les fils qui assurent la liaison électrique entre le rotor et l'extérieur de la machine.
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II.3) Représentation normalisée d'un moteur à courant continu :
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II.4) Deux types de fonctionnement

Fonctionnement en moteur, en génératrice

II.5) Force électromotrice

Relation générale ; cas particulier du fonctionnement à excitation constante 

II.5.1) Champ magnétique B créé par l’inducteur.

Le rotor tourne à la vitesse angulaire (.  ( en rad /s. (= 2( N ; n en tr/s.
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Exemple pour un inducteur à 2p pôles :(figure 1)
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Cette courbe réelle peut être remplacée par les courbes de la figure 2 pour les études ultérieures. 

Ce champ inducteur est fixe . Chaque point de l’entrefer est toujours soumis au même champ magnétique.

II.5.2) Force électromotrice induite dans un conducteur

Considérons un conducteur placé sur le rotor qui tourne à la vitesse angulaire (.

Ce conducteur coupe des lignes de champ; d’après la loi de Faraday, il est le siège d’une fém induite telle que le conducteur se comportant en générateur de courant va générer un courant induit s’opposant à la cause qui lui à donné naissance (Loi de Lenz)
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	· En a) le conducteur est soumis à une force motrice. Le rotor tournant à vitesse constante, la somme des forces agissant sur le conducteur est nulle. Il existe donc une force  électromagnétique 
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directement opposée à, due à un courant induit I dirigé vers l’arrière de la figure (règle des 3 doigts de la main droite)

A ce courant induit correspond une fém induite e1 de même orientation que I.

· En b) et d) Le champ étant nul sur la ligne neutre, la fém est nulle.

· En c) : compléter le schéma fig.6. En déduire le sens de la fém induite ( même raisonnement que pour le cas a).

( Dans sa rotation, le conducteur est donc le siège d’une fém induite e1 alternative dont la représentation est donnée ci-dessous  :
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Remarque : 
– si le conducteur se trouve à gauche de la ligne neutre, la fém induite est positive ; 



– si le conducteur se trouve à droite de la ligne neutre, la fém induite est négative ; 

II.5.3) Fém induite dans une spire

Considérons deux conducteurs diamétralement opposés sur le rotor et constituant une spire.

Les conducteurs de liaison ne coupent pas de ligne de champ: ils sont inactifs.

Par contre les conducteurs (1) et (2) sont le siège de fém dont le sens est donné par la loi de Lenz comme précédemment.

Aux bornes de la spire la fém est la somme des fém de chaque conducteur : es = 2e1 et est donc alternative, d’amplitude double de e1. 
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( La tension aux bornes des balais est unidirectionnelle : l’ensemble collecteur-balais joue le rôle d’un redresseur. 
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Dans l’hypothèse où eS est sinusoïdale.




II.5.4) Bobinage réel de l’induit :

 Pour diminuer l’intensité qui  les traverse, les N conducteurs de l’induit sont répartis en 2a voies d’enroulement. (2a bobinages montés en parallèle). Chaque voie contient donc N/2a conducteurs en série.
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e fem d’un conducteur.

II.5.5) Ondulation de la fem totale :

Le nombre N de conducteurs étant important, il n’est plus possible de relier  entre eux uniquement des conducteurs diamétralement opposés. Deux spires successives sont décalées et donc 

les fem qui y sont induites sont aussi décalées.
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Entre les balais, la fem induite est pratiquement constante dés que N >100.

II.5.6) Expression de la fem totale.
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	P: nombre de paires de pôles

a : nombre de paires de voies d’enroulement

N : nombre de conducteurs


D’après la loi de Faraday : E = (( /(t.

On peut vérifier expérimentalement que  
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E en V ; ( flux sous un pôle en Wb; ( vitesse angulaire en rad/s ; K en V.Wb-1.rad-1.s-1.

Remarque : à flux constant E est proportionnelle  à la vitesse
Si ( = constante,  E= K ‘. (
II.5.7) Caractéristiques de la fem

II.5.7.1) Caractéristique à vide à vitesse constante E = f(ie) 

	Rappel : à vitesse constante, E est proportionnelle à (, 

( E = K ( ( = K’’ ( ) 

( Cette caractéristique correspond à la courbe de magnétisation du circuit

 ( = f(ie) (à n cst). 
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II.5.7.2)  Caractéristique E = f(n) à ie constant

	A ie constante, ( est constante, E est proportionnel à la vitesse : E = K’ ( 

En effet : E = K ( ( = K’ (
Ces caractéristiques sont utiles pour l'étude d'un moteur

 à courant continu.

Conclusion : (si ie = cte ) : si on connaît (E1,(1) donc K’ on

 peut déduire chaque valeur de ( :

 Ex : 
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II.6) Modèle équivalent

En fonctionnement générateur ,en moteur

II.6.1) Inducteur :

Bien que bobiné, l’inducteur est soumis à une tension continue donc le caractère inductif n’apparaît pas et peut donc être modélisé par une résistance.
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II.6.2) Induit :
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 En régime quelconque
 
[image: image34.wmf]di

UERiL

dt

=++



[image: image35.wmf]di

UERiL

dt

=--


En régime permanent
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Avec R résistance de l’enroulement de l’induit et L inductance de l’induit

II.7) Couple Electromagnétique

II.7.1) Origine du couple :

	Placés dans le champ magnétique créé par l’inducteur, les conducteurs sont  parcourus par un courant I dont le sens est indiqué sur le schéma ci-contre :

Deux conducteurs diamétralement opposés sont alors soumis à deux forces magnétiques, formant un couple de forces et donc produisant la rotation du rotor.

Remarque : Si le courant gardait le même sens dans un conducteur, il n’y aurait pas de rotation. ( nécessité de l’ensemble collecteur+ balais ).
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II.7.2) Moment du couple électromagnétique : 
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       avec ( angle entre le champ de l’inducteur et celui de l’induit.

Pour la machine à courant continu, cet angle est égal à (/2 (si la RMI est compensée) d’où :
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On a aussi les relations 

Puissance électromagnétique développée : 
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Le couple électromagnétique   
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 Cem en N.m ; ( en Wb ;I en A; K en V.Wb-1.rad-1s-1.

Remarque : Si ( = constante, Tem= K’I.

II.7.2.1) MCC séparée : 
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II.7.2.2) MCC série : 
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II.7.3) Production du flux: 
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Pour avoir un couple important, il faut que ( soit le plus grand possible.

II.7.3.1) Le flux est créé par un électroaimant
 bobine traversée par un courant continu : courant inducteur i

U excitation = r excitation .Iexc
II.7.3.2) Le flux est créé par des aimants permanents 

(pour les petites puissances embarquées...) 

II.8) Différents modes d’excitation:
II.8.1) Excitation indépendante : 

	le circuit inducteur, producteur de flux,  est alimenté  par une source continue indépendante. (différente de celle qui alimente l’induit.) 

Le couple est proportionnel à I si (=cte.
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II.8.2) Excitation série. : 

	L’inducteur est branché en série avec l’induit. 

Il est donc traversé par le même courant.

Tem est proportionnel à I2  si la machine n’est pas saturée. 
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II.9) Réaction magnétique d’induit 

II.9.1) Observation 

On fait fonctionner la machine en génératrice à excitation indépendante. 
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	U = f(I) à n et ie constants


Théoriquement :  la courbe attendue est la droite Uth = f(I) droite décroissante de pente –R. Le terme R.I représente la chute ohmique de tension dans l'induit. Il représente un élément de perte de puissance dans le fonctionnement de la machine.

Dans le modèle utilisé, la fém E est constante et Uth = E – RI 
(( et ( cte )  

Or on relève expérimentalement, la courbe Uch(I) : Uch inférieure à la valeur théorique Uth pour une charge donnée.

Il y a donc une chute de tension d’autant plus élevée que I est importante : 

Tout se passe comme si la f.é.m diminuait quand le courant augmente. 

La différence ( = Uth – Uch traduit la réaction magnétique d'induit. 

Ce phénomène est dû à la production par l'induit d'un champ magnétique qui s'oppose au champ magnétique inducteur. 

La réaction magnétique d’induit existe aussi en fonctionnement moteur, puisqu'un courant circule dans l'induit.

	II.9.2) Cause du phénomène 

· Les courants induits créent un champ Bi orthogonale à Be
· Les deux champs se superposent et la résultante est décalée

II.9.3) Conséquence du phénomène 

· L’induction est alors plus élevée et sature les pôles

· L’existence d’un flux dans l’air crée une inductance de fuite d’induit (plutôt faible car l’entrefer transversal est plutôt grand)

II.9.4) Remède

En pratique, on compense la réaction magnétique d'induit par l'intermédiaire d'enroulements de compensation parcourus par le courant induit et placés en alternance avec les pôles inducteurs (bobiné au stator et en série avec l’induit).
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II.10) Pôles de commutation

Quand un système passe sous la ligne neutre, le courant qui le traverse s’inverse grâce au système balais + collecteur. C’est le phénomène de commutation. Dans la spire, la fem induite s’oppose au changement brusque du courant et un arc électrique peut apparaître entre le balai et la lame du collecteur. Pour éviter ce phénomène qui risque de détériorer les balais et le collecteur, on bobine des pôles auxiliaires dit de commutation sur le stator, ils sont branchés en série avec l’induit.

[image: image53.emf]
III) Les différentes méthodes d'étude:

III.1) Méthode directe:
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On détermine directement la puissance mécanique à l’aide d’un frein.

Exemple : Utilisation d’une « dynamo-balance » : 

III.2) Méthode des pertes séparées:

III.2.1) Bilan des pertes :

III.2.1.1) Pertes Joule induit et inducteur :

Résistances déterminées à chaud par la méthode volt-ampèremétrique.

PJinduit =RI2 avec R résistance induit et I courant induit.

PJinducteur =r.(iex)  2 avec r résistance induit et iex courant inducteur.

III.2.1.2) Pertes fer (hystérésis et courant de Foucault)

Les pertes Fer

La masse de fer du rotor est aimantée par influence. Au cours de la rotation, l’aimantation se renverse à chaque demi-tour. Il ya des pertes d’énergie qui dépendent de Bmax et du nombre de cycles par seconde donc de n.
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 en W.kg-1

avec  f=pn ; Bm=valeur maximale deB;  kH= coefficient dépendant du matériau (tôles ordinaires :kH=0,05 ).
Les pertes par courant de Foucault

Rotor  en mouvement dans un champ magnétique : création de courants induits dans le rotor. Ces courant échauffent la masse métallique et s’opposent à la cause qui les engendre (rotation).

On réduit l’intensité de ces courants en augmentant la résistance du chemin qu’ils empruntent : tôles feuilletées isolées par du vernis.
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 en W.kg-1

f=pn; Bm=valeur maximale deB;  kF= coefficient lié à la nature et à la masse du matériau utilisé.

III.2.1.3) Pertes mécaniques :

Dues aux frottements ou à la ventilation.

Frottements dus aux contacts des balais sur le collecteur. Pfroot=A.n

Ventilation due à l’entraînement d’air quand l’induit tourne : Pvent=B.n2.

III.2.2) Détermination des pertes « collectives » par un essai à vide :

En moteur à excitation indépendante. Les pertes seront les mêmes qu’en charge à condition qu’on ait le même flux par pôle  et la même vitesse (même fem).

Mesure de Uv et Iv

[image: image57.wmf]22

collfermecavvvvvvvvv

PppUIRIPRIEIUI

=+=-=-=»


III.2.3) Rendement :

Calculé à partir de la puissance électrique et des pertes.

Moteur excitation indépendante : 
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III.2.4) Séparation des pertes :

Les pertes fer dépendent de B2 et n. 
Les pertes mécaniques  dépendent de n.

Lors de l’essai à vide, on relève pC en fonction de U2 à n=cte.

Les pertes mécaniques seront donc constantes alors que les pertes magnétiques varieront avec U2   (B2).

Remarques :

Le rendement d’une machine est maximal quand les pertes  « constantes » (indépendantes de I2 : Pc)  sont égales aux  pertes « variables » (proportionnelles à I2).

Il ne faut pas utiliser une machine de trop forte puissance par rapport à la charge à entraîner car le rendement est moins bon.

Avec cette méthode, on oublie des pertes. Le rendement est un rendement approché. L’erreur de mesure intervient seulement sur la mesure des pertes (petite puissance) donc celle-ci est plus faible.

III.3) Méthode d'opposition:

Détermination du rendement de l'induit par deux méthodes

Si on dispose de deux machines identiques, on fait fonctionner l’une en moteur et l’autre en génératrice. Le moteur entraîne la génératrice qui alimente le moteur. On fait fonctionner le groupe en pleine charge. La puissance fournie correspond aux pertes du groupe.

III.3.1) Méthode de Rayleigh-Kapp : 

la puissance fournie aux deux machines est électrique.

Les deux machines sont accouplées et reliées au réseau.
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III.3.2) Méthode d’Hopkinson :

la puissance fournie aux deux machines est mécanique et fournie par un moteur de rendement connu.
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IV) Moteur à excitation indépendante :

IV.1) Bilan des puissances
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La puissance absorbée l’est par l’induit et l’inducteur

- 
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 qui est nulle en cas de moteur à aimant permanent

Donc 
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Les pertes sont

- les pertes Joules dans l’inducteur : 
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- le perte Joules dans l’induit avec R résistance d’induit : 
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- les pertes fer dépendent de la tension. Pfer
Pertes par hysteresis 
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- pertes mécaniques qui dépendent de la vitesse.
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La puissance mécanique est donc 
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Le rendement est donc
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- essai à vide sous la tension nominale pour déterminer Pfer + pertes méca


PV = U.IV = PJV+Pfer + pertesméca=RIV2+ Pfer + pertesméca.



les pertes Joule à vide sont négligeables donc 



PV =U.IV ( Pfer + pertesméca =Pc pertes collectives

- Tu = Tem - T pertes fer et mécanique
IV.2) Caractéristiques

n=f(U) à couple constant
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On parle de caractéristique « shunt » si la vitesse varie peu avec la charge.

On parle de caractéristique « série » si la vitesse varie beaucoup  avec la charge.

Moteur série:couple important avec I plus faible mais variation de vitesse importante.

Si la variation de vitesse n’est pas gênante (traction, levage) ( caractéristique série.

Si elle est gênante(caractéristique shunt.(tours, raboteuse, fraiseuse) .

IV.3) Point de fonctionnement

Régime statique et régime dynamique

IV.4) Conduite en vitesse des MCC

a) démarrage : 
Pour se mettre en rotation le couple moteur doit être supérieur au couple résistant.

Donc le couple résistant impose le courant de démarrage : Cem = C r = K(Id.

Comme au démarrage (=0 donc E=K(=0 donc U = Ed+RId = RId

Donc
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b) variation de vitesse :
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c) freinage:

freinage rhéostatique (l’induit débite dans un rhéostat)
freinage par inversion du sens de rotation sans inverser le couple moteur
freinage par récupération (avec un convertisseur réversible en courant)
d) inversion du sens de marche:

Par inversion de la tension dans l’inducteur ou l’induit

IV.5) Marche en 4 quadrants
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Pour passer des quadrants 
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IV.6) Equations de la MCC
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	Relations temporelles
	En passant par la notation laplacienne

	Loi des mailes
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	Relation de la dynamique 
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	Loi de la MCC 
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IV.7) Régimes transitoires

V) Moteur à excitation série :

V.1) .Schéma électrique équivalent 
	Remarque : Lorsqu'on étudie un moteur à excitation série, on suppose dans la plupart des cas que le circuit magnétique est non saturé; alors, ( est proportionnel à I.

Représenter le schéma du modèle équivalent du moteur.
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V.2) .Schéma électrique équivalent 
Si on suppose ( = k.I : E = K(( = KkI( = K’(I

De plus,Tém = K(I = KkII = K’I2

A retenir : si le circuit magnétique d'un moteur à CC à excitation série est non saturé, alors 

E  = K’(I    et    Tém = K’I2

E est proportionnel à l’intensité de l’induit si ( = cte

Tém est proportionnel à l’intensité de l’induit au carré

V.3) Bilan des puissances

Puissance absorbée, puissance utile , pertes et rendement
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Tem =K.(.I et ((k’I donc Tem ( k’’I2       et Tu = Tem - T pertes fer et mécanique

V.4) Caractéristiques

n=f(I) , T=f(I) et T=f(n) à U constant et n=f(U) à couple constant
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Moteur série: couple important avec I plus faible mais variation de vitesse importante.

Si la variation de vitesse n’est pas gênante (traction, levage) ( caractéristique série.

Si elle est gênante(caractéristique shunt.(tours, raboteuse, fraiseuse) .

VI) Alimentation des moteurs à courant continu :

VI.1) Alimentation de l’inducteur en Excitation Indépendante :

Montage redresseur à diodes ; lissage du courant inducteur

VI.2) Comment alimenter l’induit ?

Variation de la vitesse ; lissage du courant d’induit ; un, deux ou quatre quadrants

VI.3) Alimentation de l’induit par redresseur commandé :

Montages P3, PD3 ; Pont mixte ou pont « tout thyristor »

VI.4) Alimentation de l’induit par Hacheur

Hacheur série , hacheur parallèle, hacheur en ½ pont et hacheur en pont

VI.5) Groupe Ward Leonard

[image: image91.png]



Le groupe Ward-Léonard représente l'ancienne génération des treuils d'ascenseur à traction à câbles. Ce système permettait de faire varier la vitesse d'un moteur à courant continu à excitation indépendante en réglant la tension de l'induit par l'intermédiaire d'une génératrice à courant continu dont on faisait varier l'excitation; la génératrice étant entraînée mécaniquement par un moteur à courant alternatif classique. 

Pour une faible variation du courant d'excitation de la génératrice, il était possible de maîtriser des puissances énormes de moteurs à courant continu dans une plage de variation de vitesse très étendue. 
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Conclusion







Pour passer des quadrants Q1Q2 ou Q3Q4 le dispositif d’alimentation devra être réversible en tension.







Pour passer des quadrants Q1Q4 ou Q2Q3 le dispositif d’alimentation devra être réversible en courant.
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