 FST - Université Hassan 1er

LICENCE UNIVERSITAIRE SPECIALISEE

	Description du Cours

	Algorithmique & Structures de Données

	Déroulement du Cours

	Cours + TD + (TP)

	Compétences Attendues

	· Connaissance des algorithmes classiques
(Recherche, parcours, tris, …)

· Concevoir, définir et utiliser une structure de données.

· Etablir et implémenter des algorithmes de traitement des structures de données (listes chaînées, piles, files, arbres,..)

	Contenu du cours
	· Introduction à l’Algorithmique

· Les Objets et structures Algorithmiques

· Les fonctions et les procédures

· La récursivité

· La complexité d’un algorithme

· Les types complexes (Tableaux ou vecteurs, matrices, les chaînes)

· Les algorithmes de Tri

· Les pointeurs

· Les listes à simple chaînage

· Les listes à double chaînage

· Les piles

· Les files

· Les arbres

	Pré requis du Cours
	Notions de logique binaire

	Evaluation du Cours
	· Contrôles écrits et oraux

· Travaux pratiques.

	Support
	- polycopies

Chapitre 1 : Introduction à l’algorithmique

1. Définitions :

« Un Algorithme est une spécification d'un schéma de calcul, sous forme d'une suite finie d'opérations élémentaires obéissant à un enchaînement déterminé ».

« Un Algorithme est un ensemble de règles opératoires dont l'application permet de résoudre un problème donné au moyen d'un nombre fini d'opérations ».

2. Propriétés d'un algorithme:

Un algorithme doit être:

· PRECIS:

 Il doit indiquer:

- l'ordre des étapes qui le constituent

- à quel moment il faut cesser une action

- à quel moment il faut en commencer une autre

- comment choisir entre différentes possibilités

· DETERMINISTE

- Une suite d'exécutions à partir des mêmes données doit produire des résultats identiques.

· FINI DANS LE TEMPS

 C’est-à-dire s'arrêter au bout d'un temps fini.

3. Les Phases de résolution d'un problème informatique

La résolution d'un problème informatique se décompose en quatre phases:

· Phase d'étude

Inventorier les paramètres connus ou observables et définir les objectifs à réaliser.

· Phase de réalisation du modèle

Déterminer l'enchaînement des opérations. Cette phase aboutit à l'élaboration d'un schéma de résolution.

· Phase de spécification

Exprimer le schéma de résolution de manière plus précise en utilisant éventuellement un pseudo-langage. Cette phase débouche sur des algorithmes.

· Phase de traduction

 Mettre en œuvre les algorithmes en les traduisant en un langage de programmation.

4. Le Pseudo langage.

· Il permet d'écrire tout algorithme de façon formelle, c'est-à-dire suffisamment précise, tout en restant compréhensible pour l'ensemble des informaticiens.

· La phase de programmation se trouvera nécessairement allégée, puisqu'elle se résumera à adapter l'ensemble des opérations décrites aux spécificités du langage utilisé.

· Il est basé sur les instructions disponibles dans la plupart des langages.

Exemple:

Calculer la factorielle de N (version itérative)

 VAR

N, F: Entier

DEBUT

 ECRIRE (‘Entrer un entier N=‘)

 LIRE (N)

 F (1

 POUR I allant de 1 à N FAIRE

 F (F* I

 FIN POUR

 ECRIRE (‘la Factorielle de N est :’, F)

FIN

5. Les Structures élémentaires:

· Entrées/Sorties: LIRE, ECRIRE

Exemple:

ECRIRE (‘Entrer un entier N=‘)

 LIRE (N)

· Affectation:
Exemple:
X (Y

X (x+1

· Instruction conditionnelle:
SI (Expression Vraie) ALORS instructions

SINON instructions

FINSI
Exemple:

Si (Somme<= Solde) Alors Retrait

Sinon Ecrire (‘Solde Insuffisant’)

· Répétition (boucles)

TANT QUE (Expression Vraie) FAIRE instructions

FIN TANT QUE

POUR I Allant de 0 à N

FAIRE instructions

I(I+1

FIN POUR

FAIRE instructions TANT QUE (Expression Vraie)

[image: image1.emf](e) (d) (c) (b) (a)

n=3 n=3 n=3 n=3 n=3

n=2 n=2 n=2

n=1

(e) (d) (c) (b) (a)

n=3 n=3 n=3 n=3 n=3

n=2 n=2 n=2

n=1

6. L’Organigramme:

Il permet de représenter graphiquement un algorithme.

6. METHODES D'ANALYSES
a. Types de méthodes d'analyse:

· Analyse descendante

C'est une méthode de décomposition des problèmes (du général au particulier) .

· Analyse ascendante

Elle consiste à identifier dès le début les actions élémentaires qu'il faudra savoir résoudre.

· Les méthodes dirigées par les données

Dans un système de gestion de base de données (SGBD), le programmeur commence par décrire les données de l'application (Merise).

· Analyse pour la programmation Orientée objet

L'accent est mis sur la réutilisation et l'adaptation en utilisant les mécanismes d'héritage et la programmation par interface (UML).

b. Intérêt des Les méthodes d’analyse:
· Obtenir une analyse et une programmation de haut en bas selon une décomposition arborescente qui autorise le fractionnement des programmes en modules de taille facilement lisible

· Rendre possible la lecture des modules de haut niveau par des non-spécialistes.

· Faciliter la maintenance et l'extensibilité en donnant la possibilité de modifier une arborescence, sans affecter ce qui est au niveau supérieur.

· Diminuer les risques d'erreurs de programmation.

· Fournir aux programmeurs un mode commun de décomposition des problèmes.
Chapitre 2 : Objets et Actions élémentaires
1.Type de Variable (ou d'objet)

Toute Variable (objet) doit être caractérisée par:

· Un identificateur (Nom de la variable)

· Un type qui indique l'ensemble des valeurs que peut prendre la variable et les actions autorisées sur elle.
Exemple:

X, Y:Entier; // déclaration de deux entiers.

	Type
	Définition

	entier

	prend ses valeurs dans un sous-ensemble des entiers relatifs. C'est un ensemble fini dans lequel chaque élément possède un successeur et un prédécesseur.

	réel

	prend ses valeurs dans un sous-ensemble de réels décimaux signés. Dans la plupart des langages, cet ensemble n'est pas un ensemble fini. On ne peut trouver de successeur ou de prédécesseur à un réel donné.

	caractère

	prend ses valeurs dans l'ensemble des caractères de la table ASCII

	chaîne de caractère

	se compose d'une suite de symboles de type caractère

	booléen

	type logique qui peut prendre les valeurs VRAI (1) ou FAUX (0)

2. Opérateurs sur les types simples
[image: image7.jpg]Eerire

Exemples:

25 DIV 3 =8 (division entière

25 MOD 3 = 1 (Reste de la division entière

Etat, Test: booléen

Etat (1
Test (0 ((Etat OU Test) = Vraie.

[image: image8.jpg]Opérateur notation type des opérandes | type du résultat
ot — unaires T entier ou réel Celui de Fopérande
négation logique NON booléen booléen

Elévation 4 la puissance

entier ou réel

entier ou réel

Multiplication

entier ou réel

entier ou réel

Division enticre DIV entier entier
Division entier ou réel réel
reste(modulo) MOD entier entier
Addition + 5 4
entier ou réel entier ou réel
Soustraction -

Comparaison tout type booléen
<t logique)
1 booléen booléen

ou logique

3. Les Structures Fondamentales:

a- Enchaînement des actions

On utilise cette structure lorsqu'une action doit succéder à une autre (T1, T2)

b- Structure alternative ou conditionnelle

SI
Expression Vraie
ALORS
T1

 SINON
T2
 FINSI

[image: image9.jpg]

Exemple :

 Ecrire un algorithme permettant d’éditer de 2 nombres Entiers.

Algorithme Edition du Sup(X, Y)

Var X, Y : Entier

DEBUT

Ecrire (‘Entrer deux Entiers’)

Lire(X, Y)

Si (X>Y)
Alors Ecrire(X)

Sinon Ecrire(Y)

FINSI

FIN

[image: image10.jpg]VRAIL
Condition,
A
FAUX
Tl
s

[image: image11.jpg]

c- Structure itérative

TANTQUE Expression Vraie

FAIRE

T1

FINTANTQUE

Le test (si l’expression est vraie) est effectué avant l’exécution du bloc d’instructionsT1, il est donc possible de n’avoir aucune exécution du bloc.

Exemple :

Effectuer une multiplication de 2 Entiers positifs en utilisant que l’addition.

P=A x B = A+A+A+…+A

 B fois

Algorithme MULTI

Var P, A, B : Entier

BEBUT

P (0

ECRIRE (‘Entrer deux entiers positifs’)

LIRE (A, B)

Tant que (B<>0) FAIRE

P (P+A

B (B -1

FIN Tant que

ERIRE (P)

FIN

d- La répétition

REPETER T1 Tant que (Expression Vraie)

Le bloc d’instructions T1 est d’abord exécuté puis on teste

(Si l’expression est toujours vraie).

Le bloc T1 est exécuté au moins une fois.

e- La Boucle :

Pour I allant de Val1 à Val2

Faire T1

I (I+1

FIN Pour

Exemple : (Algorithme MULTI)

Algorithme MULTI2

Var P, A, B,I : Entier

BEBUT

P (0

I (0

ECRIRE (‘Entrer deux entiers positifs’)

LIRE (A, B)

Pour I allant de 0 à B

 FAIRE

P (P+A

I (I + 1

FIN Pour

ERIRE (P)

FIN

f- L'alternative généralisée(Structure de Cas)

Suivant la valeur de l'expression, un des traitements T1, T2, T3 ou T4 est exécuté.

Exemple : (Menu)

Ecrire un algorithme permettant d’afficher un Jour selon sa position dans la semaine.

Algorithme CAS

Var Choix : Entier

DEBUT

ECRIRE (‘Entrer un entier entre 1 et 7’)

LIRE (Choix)

Selon (Choix)

Cas 1 : ECRIRE (‘Lundi’)

Cas 2 : ECRIRE (‘Mardi’)

………………………

Cas 7 : ECRIRE (‘DIMANCHE’)

Fin Selon

FIN

3. Les Fonctions :

Lorsqu'un traitement peut être répété dans le programme et doit rendre un résultat unique de type simple, il est commode de le définir comme une fonction dont l'utilisation est analogue à celui des fonctions mathématiques usuelles (SIN(x), TANG(x), COS(x) etc...).
Une fonction est caractérisé par :

· Son identificateur (Nom de La fonction)

· Sa liste d’arguments ou de paramètres (précise l’identificateur et le type de chacun d’eux)

· Le type du résultat de retour.

FONCTION Id_Fonction (parametre_formel : type du paramètre) : type_resultat

VAR

i : ENTIER

DEBUT

TRAITEMENT

RETOURNER (RESULTAT)

FIN
Remarque :

Une Fonction qui réalise un certain traitement et ne retourne pas de résultat peut être nommé une Procédure.

Dans le programme principal, l'appel à ce sous-programme se fera de la façon suivante:

ALGORITHME Nom_algo

VAR
i, j, k : ENTIER

DEBUT

...

i (Id_Fonction(j)

...

FIN
a) Exemple:

Ecrire une fonction qui calcule la somme des N premiers éléments de la suite Un=3*n+1.

 CL_Somme (N :Entier) : Entier

VAR

S,U, I: ENTIER

DEBUT

S (0

Pour I allant de 1 à N Faire:

U (3*I + 1

S (S+U

I (I + 1

Fin Pour

RETOURNER (S)

FIN

Utilisation dans un programme:

 ALGORITHME Algo1

VAR

A, B, D: ENTIER

DEBUT

Ecrire ('Entrer un Entier positif A')

Lire (A)

Ecrire ('Entrer un Entier positif B')

Lire (B)

D ((CL_Somme (A) - CL_Somme (B))

Ecrire (D)

FIN
b) Le passage d’arguments (paramètres) à la fonction :

la façon dont les valeurs des paramètres sont transmises à la fonction est importante et doit être comprise pour éviter des effets pervers et inattendus. La question est de savoir si les arguments effectifs passés à la fonction sont-ils modifiés par l’exécution de la fonction ? Si oui, quelles valeurs auront-ils à la fin de la fonction ?

Selon le Langage de programmation, On distingue 3 types de transmission :

· Le passage de paramètre par valeur.

· Le passage de paramètre par adresse.

· Le passage de paramètre par référence.

Exercice 1:

Soit x un nombre représentant un temps exprimé en secondes. Écrire un algorithme qui transforme ce nombre en heures, minutes et secondes.

Exercice 2:

Écrire l'algorithme de résolution d'une équation du second degré.

Exercice 3 :

Écrire un algorithme qui lit une suite de nombres non nuls terminée par le marqueur 0 et affiche la moyenne des nombres lus.

Chapitre 3 :

 La récursivité
1. Définition:
Une fonction F, qui s'appelle elle-même ou qui appelle une autre fonction F' contenant un appel de F est une fonction récursive.
F(…)

F(…)

F(…)

 …
{

{

{

…

…

…

 …

F(…);

 F(…);

 F(…);

 …

…

 …

 …

 …

}

}

}

Niveau 1

 Niveau 2

 Niveau 3
2. Propriétés:

Une Fonction récursive doit posséder les deux propriétés suivantes:

· Existence des critères d’arrêt pour lesquels les appels cessent.

· Chaque fois que la fonction s'appelle, elle doit être plus proche des ses critères d'arrêt
Remarque:

On dit qu'il y a:

* Récursivité simple lorsqu'une fonction s’appelle elle-même en cours d'exécution.

* Récursivité croisée lorsqu'une fonction A appelle une fonction B qui elle-même appelle la fonction A.

3. Exemple:
Calcul de Factorielle de n(entier)
n! = n(n-1)(n-2) ... 2*1 si n > 0

n! = 1

(La Solution itérative Classique

FONCTION Fact(n: ENTIER): ENTIER

VAR

F: ENTIER

DEBUT

F(1

TANT QUE n > 1

F(F*n

n (n-1

FINTANTQUE

FIN

Connaissant la relation mathématique:

N!=n*(n-1)!
On peut en déduire :

(La Solution Récursive :
FONCTION Fact(n : ENTIER):ENTIER

DEBUT

SI n=1 ALORS RETOURNER (1)

 SINON RETOURNER (n*Fact(n-1))

FINSI

FIN

L’existence d’une partie auto imbriquée conduit à la nécessité de gérer une pile destinée à emmagasiner temporairement les informations relatives à l’exécution de la fonction à un certain niveau d’imbrication.

Ainsi, le calcul de Fact(3), par exemple, s'effectue de la manière suivante:

Fact(3)=3*Fact(2)=3*2*Fact(1)=3*2*1=6

[image: image12.jpg]Tl

T4

4. Transformation de boucle en fonction récursive:

On peut transformer en une fonction récursive, n’importe quelles instructions de type :
« Pour x allant de val1 à val2 faire

 instructions »
« x (val1;
Tant que x< val2
 faire

 instructions »
« x (val1;
faire
instructions
 Tant que x< val2 »

Exemple:

a et b étant deux entiers positifs ou nuls ,

 On peut Calculer la somme a+b suivant le principe :
 a+b=a+ (b-1) +1
FONCTION Somme(a,b : entiers) : retourne un entier

DEBUT

 si b=0 alors
 retourner (a)

 sinon retourner (1+Somme(a,b-1))

finsi

 FIN

Ainsi:

Somme(4,3)=1+ Somme(4,2)= 1+(1+ Somme(4,1))=1+(1+(1+ Somme(4,0)))= 1+(1+(1+ Somme(4,0)))=7

Cet exemple montre que le choix d'une solution récursive n'est pas toujours pertinent, cependant ils existent des types de problèmes où la récursivité est la bonne solution.
5. Quelques algorithmes récursifs:

· Calcul des éléments de la suite Fibonacci:

- Les deux premiers éléments sont égaux à 0 et 1

- Chaque élément de la suite est égal a la somme de ses deux prédécesseurs.

F(0) = 0; F(1) = 1

(n > 1; F(n) = F(n-1)+ F(n-2)
FONCTION Fibo(n : entiers) : retourne un entier

DEBUT

 si (n=0 ou n=1) alors
 retourner (1)

 sinon retourner (Fibo(n-1)+Fibo(n-2));

finsi

 FIN

Exercice: Calculer les éléments de cette suite de Fibonacci par une méthode itérative. Faites la comparaison avec la solution itérative.

· Recherche du Plus Grand Diviseur Commun par l'Algorithme d’Euclide:

Calcul du pgcd de deux nombres par soustractions successives :

pgcd(a; b) = pgcd(a - b; b) si a > b

pgcd(a; b) = pgcd(a; b- a) si b > a

pgcd(a; b) = a si a = b
On suppose que les opérandes sont des entiers positifs.

Algo pgcd(a,b:entier) : retourne un entier

DEBUT

si a=b
alors

 retourner a

 sinon si a>b alors retourner pgcd(a-b,b)

 sinon retourner pgcd(b-a,a)

 finsi

 finsi

FIN

Exemple :

pgcd(114,42)=pgcd(72,42)=pgcd(30,42)=pgcd(12,30)=pgcd(18,12)=pgcd(6,12) = pgcd(6,6)=6

· Problème de Tours de Hanoi:

Il s’agit de déplacer les disques d’un pilier à un autre en utilisant un pilier intermédiaire et en respectant une simple règle : un disque d'un certain diamètre ne peut pas être placé au dessus d'un disque de diamètre inférieur.

[image: image2.jpg]lier 2
pilier 3

pitir 1
pilier 2

La résolution d’un tel problème est un algorithme récursif :

[image: image3.jpg]a-| |

[image: image4.jpg]=]

[image: image5.jpg]1 &l

[image: image6.jpg]11a

 ALGORITHME Hanoi(Nb_disque:entier, Depart:entier, Destination:entier)
Var: intermédiaire:entier

Debut

Si (Nb_disque=1)
Afficher (‘’On déplace de ’’, Depart,’’a’’, Destination)

Sinon

intermédiaire=6-(Depart+Destination)

Hanoi(Nb_disque -1, Depart, intermédiaire)

Hanoi(1, Depart, Destination)

Hanoi(Nb_disque -1, intermédiaire, Destination)

 Finsi

Fin

Exemple : Déplacer 3 Disques du pilier 1 vers le pilier 3.

Ce Traitement nécessite (2nb_Disque – 1) déplacements, soit 23 – 1 pour cet exemple.

Résumé:

· La récursivité est légèrement moins rapide qu’un algorithme itératif équivalent à cause du temps nécessaire à l’empilage et au dépilage des données

· La récursivité utilise plus de ressources mémoire pour empiler les contextes

· La récursivité est plus « élégante »

· Les algorithmes récursifs sont souvent plus faciles à écrire

Chapitre 4 :

La complexité d’un algorithme
1) Introduction:

Pour résoudre un problème la question du choix de l’algorithme se pose souvent. L’algorithme choisi doit satisfaire un compromis entre deux besoins souvent contradictoires:

· Simplicité à comprendre et facilité de mise en œuvre.

· Exploitation optimale des ressources de l’ordinateur (mémoire) et plus précisément s’exécuter le plus rapidement possible (vitesse d’horloge).

2) Le Temps d’exécution d’u programme :

Il dépend des facteurs suivants:

· Le type et la taille des données entrants

· La qualité du code généré par le compilateur.

· La vitesse d’exécution des instructions du µP utilisé.

· La complexité algorithmique.

3) La Notation en « O » :

Pour comparer les performances d’algorithmes, on peut considérer une mesure basée sur leur temps d’exécution. On utilise la notion dite « de Landau » qui traite de l’ordre de grandeur du nombre d’opérations effectuées par un algorithme donné. C’est la notation « O » qui donne une majoration de l’ordre de grandeur du nombre d’opérations.

Pour déterminer cette majoration, il faut:

· Connaître la taille n de la donnée en entrée du problème (ex. nombre de données à traiter, le degré d’un polynôme, taille d’un fichier, le codage d’un entier, etc.)

· Déterminer les opérations fondamentales qui interviennent dans ces algorithmes et qui sont telles que les temps d'exécution seront directement proportionnels au nombre de ces opérations.
Définition de la O-notation

Une fonction f(n) est O(g(n)) s'il existe deux constantes positives K et n0 tel que |f(n)| ≤ K|g(n)| pour tout n≥n0

En d’autres termes, f(n) est O(g(n)) si à partir d’une certaine valeur n0 de n tous les f(n) sont inférieurs à g(n) en valeur absolue.

Le O(g(n)) représente le coût de l’exécution de la fonction f(n). Il permet de classer la complexité de la fonction f parmi les classes de complexité connues. Le but de cette classification est d’anticiper le comportement de la fonction en présence de grande quantité de données.
4) Exemple :

On désire calculer Exp(x) par l’approximation suivante:

S=Exp(x)≈ 1+x/1! + x²/2! + x^3/3! + …+ x^n/n!

Algorithme 1:

Début

S(1

I(1

Tant que I <=n répète

P(1

J (1

Tant que J <= I répète

P (P*x/J

J(J+1

Fin tant que

S (S + P

I (I +1

Fin Tant que

Fin

la Boucle interne s’exécutera :

1 + 2 + 3 + 4 + … + n = n(n+1)/2 Fois (T(n) est en O(n²).

Algorithme 2:

Début

 S(1

 I(1

P (1

Tant que I <=n répète

P (P*x/I

S (S + P

I (I +1

Fin tant que

 Fin

Le corps de la fonction n’est exécuté que n fois (T(n) est en O(n).

 C/C : le deuxième Algorithme est nettement intéressant que le premier !

5) Les complexités les plus couramment.

Soit E un ensemble de n données:

	Algorithme
	Complexité

	· Access au 1er élément de E

· Recherche dichotomique (E trie)

· Parcours de E

· Tri rapide

· Parcours de E pour chaque élément d'un ensemble F de même dimension

· Génération de tous les sous-ensembles de E

· Génération de toutes les permutations de E

· …
	O(1)

O(log n)

O(n)

O(n log n)

O(n²)

O(2^n)

O(n!)

Le tableau suivant donne les ordres de grandeurs des différentes complexités en fonction de la taille de l'ensemble de données:

	La complexité
	N=4
	n=16
	n=64
	n=256
	n=4096

	O(1)

O(log n)

O(n)

O(n log n)

O(n²)

O(2^n)

O(n!)
	1

2

4

8

16

16

24
	1

4

16

64

256

65536

…..
	1

6

64

384

4096

18446744073709551616

……….
	1

8

256

2048

65536

….

…..
	1

12

4096

49152

16777216

…..

…..

T1

Test (Alternative)

Instruction

T2

DEBUT

X>Y

Ecrire (‘Entrer deux Entiers’)

Lire(X, Y)

Ecrire (X)

Ecrire (Y)

FIN

FIN

Ecrire (P)

P (P+A

B (B-1

Lire (A, B)

Ecrire (‘Entrer deux Entiers Positifs’)

B<>0

DEBUT

P (0

2

1

3

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

PAGE
1
Algorithmique & Structures de Données

A.RADOUANE

